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Abstract. This paper deals with the problem of null controllability for
an unstable nonlinear parabolic partial differential equation (PDE) sys-
tem considering in-domain actuator. The main objective of this commu-
nication is to provide an efficient control law in order to stabilize the
system state close to zero in a desired time whatever the initial state
is. A numerical approach is developed and in order to highlight the rel-
evance of the proposed control strategy, a realistic physical problem is
investigated. Thermal evolution of a thin rod with homogeneous Dirich-
let boundaries conditions is considered. Thermal state is described by
the heat equation and assuming that thermal conductivity is tempera-
ture dependent, a nonlinear mathematical model has to be taken into
account. Considering that all the model inputs are known, a direct prob-
lem is numerically solved (regarding a finite element method) in order
to estimate the temperature at each point of the 1D geometry and at
each instant. Then an inverse problem is formulated in such a way as to
determine the in-domain control which ensures a final temperature close
to zero. An iterative regularization method based on the conjugate gradi-
ent method (CGM) is developed for the minimization of a quadratic cost
function (output error). Several numerical experimentations are provided
in order to discuss the numerical approach attractiveness.

Keywords: Parabolic partial differential equation · Inverse problem ·
Conjugate gradient method.

1 Introduction

Evolution of numerous physical phenomena could be described by a mathemat-
ical model based on a set of PDE: wave equation, Navier-Stokes equations that
describe the motion of viscous fluid substances, Saint-Venant equations that de-
scribe the flow below a pressure surface in a fluid in one direction, heat equation
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that describes the temperature evolution ... The last one is issued from energy
balance (Fourier’s Law) and leads to a set of a parabolic PDE with initial and
boundaries conditions. Control and stabilization of physical processes described
by PDE systems require multidisciplinary study and are one of the most exten-
sive research of the past decades [1].
Recent developments could be mentioned in [2-10] and from the theoretical point
of view the investigated mathematical models are usually linear. However, in nu-
merous realistic problems non linearities could not be neglected and development
of numerical approaches in order to build relevant control law is a crucial require-
ment. In the specific case of nuclear fusion for example, the control of the spatial
distribution of the safety profile in tokamak plasma is highly complex [11-12]
and should be investigated carefully by taken into account non linearities and
coupled phenomena (magnetohydrodynamics equation and heat equations).

In the following, our purpose is to stabilize in finite time the spatial distribu-
tion of the solution of a parabolic PDE system near to the stable desired state.
The main challenge is to identify the in-domain flux (heating or cooling) which
ensures the null controllability. It is well known that such inverse heat conduc-
tion problem (IHCP) is ill posed in Hadamard sense [13]. In the framework of
thermal properties identification, the iterative regularization method based on
the CGM has been developed in [14]. In recent works, authors have proposed new
developments for mobile heating source tracking in 2D and 3D geometries [15-17]
and for quasi online identification of a temperature dependent characteristics in
[18].

The paper is organized as follows. Next section is devoted to the mathe-
matical model of the physical system: direct problem is defined in order to de-
scribe the heat conduction in the investigated domain (thermal characteristics of
the heated material are also given). A finite element method implemented with
Comsol Multiphysics Solver and Matlab software is used for numerical simula-
tion [19-21]. Several numerical configurations are tested in order to highlight the
instability of the PDE system. In the third section, identification of the control
law is formulated as a minimization problem and the optimization method is
based on iterative descent scheme. This approach is based on iterative numerical
resolution of three well-posed problems: direct problem, sensitivity problem and
adjoint problem. Considering the constructive method of control proposed in the
third section, several numerical configurations are tested in the fourth section.
Finally, concluding remarks and outlooks are discussed in the last section.

2 Studied Configuration

2.1 Problem Statement

In this section, the investigated thermal system is briefly presented. Let us study
a thin plate. Considering that the plate thickness is neglected (temperatures are
equal on the upper and on the lower face of the plate), each point of the domain
is defined by its space variables (x, y) ∈ [0, L]×R. The time variable is t ∈ T =
[0, tf ] where tf is the final time. The in-domain actuator location is centered
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on 0 < a < L and the control ua(x, t) acts on ω = [a − ε, a + ε] ⊂ Ω = [0, L]
(see Fig. 1). Such localized internal control can be encountered in the context of
nuclear fusion for a current controlled by microwaves, for example [22-23].

Fig. 1. Studied geometry.

The initial temperature distribution at t = 0 is denoted by f(x). Let us
denote by θ(x, t) the temperature in K at point x and time t. On the both
boundaries {x = 0;x = L}, homogeneous Dirichlet condition is considered.
Then, heat exchanges on the two faces of the plate could be described by the
following system:

ρC
∂θ(.)

∂t
− ∂

∂x

(
λ(θ)

∂θ(.)

∂x

)
= ξθ(.) + ua(.) ∀(x, t) ∈ Ω × T

θ(0, t) = θ(L, t) = 0 ∀t ∈ T
θ(x, 0) = f(x) ∀x ∈ Ω

(1)

The first equation of system (1) is the parabolic PDE describing the evolution
of the temperature distribution where: ρC is the volumic heat in J.m−3.K−1

and λ is the thermal conductivity in W.m−1.K−1. The non linearity of this
heat equation is due to the thermal dependence of the thermal conductivity
λ(θ). The coefficient ξ in W.m−3.K−1 can be negative or positive and ξθ(x, t)
describes the heat transfer with the surrounding and affects the system stability.
Control ua(x, t) in W.m−3 acts on ω and aims to stabilize the temperature such
as θ(x, tf ) = 0, ∀x ∈ Ω. If all the input parameters of (1) are known, this system
defines a well posed direct problem and its resolution leads to the determination
of the temperature distribution evolution θ(x, t), ∀(x, t) ∈ Ω × T .

2.2 Direct problem Resolution

In the following example, realistic input parameters are taken into account:
L = 0.1m, ρC = 106J.m−3.K−1 and initial temperature is defined as follows:

f(x) = 25

[
1

2
exp

(
−(x− 0.02)2

5× 10−5

)
+ exp

(
−(x− 0.05)2

10−4

)]
.

Thermal conductivity is assumed to be: λ(θ) = 33 + exp

(
θ

40

)
. Without any

internal control (ua(x, t) = 0), if ξ = 0 the temperature naturally converges
towards 0 and if ξ < 0, the term ξθ(x, t) increases the convergence speed. It is
well known that there exists a threshold K such that if ξ > K > 0, the system

is not stable and lim
t→∞

‖θ(t)‖2L2(Ω) = lim
t→∞

∫ L

0

[θ(x, t)]
2
dx = +∞.
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Effect of different values of ξ are taken into account and direct problem (1)
is solved until tf = 100s. Temperature are determined using a software based
on a finite element method (Comsol-Multiphysics solver interfaced with Matlab
program). Temperature norms ‖θ(t)‖2L2(Ω) for several values of parameter ξ are
shown in Fig. 2. Considering Fig. 2, it is obvious that according to the first
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Fig. 2. Evolution of temperature norm.

three small values of ξ, system (1) is stable: without control, temperature norm
decreases and temperature converges towards zero in the domain. For ξ = 4×104,
system (1) is unstable; ξθ brings a non-stability that tends to move the system
away from 0. Such behaviour is shown in Fig. 3.

Fig. 3. Temperature evolution - ξ = 4× 104.
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In the following section, unstable configuration where ξ = 4× 104 is consid-
ered and an inverse problem is proposed in order to identify the unknown control
law ua(x, t) which will be able to stabilize system (1).

3 Inverse Problem

The aim of the following inverse problem is to identify an in-domain control ua(.)
such that ‖θ(x, tf )‖2L2(Ω) ≈ 0. An iterative minimization method is developed in
order to minimize at each iteration k the quadratic cost function:

J(θk) =
1

2

∫ L

0

[
θk(x, tf )

]2
dx (2)

A discrete formulation could be considered and leads to a similar minimization
of ‖θ(x, tf )‖2L2(Ω):

Jdiscrete =

N∑
i=1

[
θ̂i(tf )

]2
,∀i = 1, . . . , N

where N is the number of sensors and θ̂i is the measured temperature at the
sensor location xi.
An iterative algorithm based on CGM is implemented in order to solve this
inverse problem written as a minimization one. CGM is a descent method that
solves the problem of parametric identification by stopping the minimization
when a relevant threshold Jstop is obtained. Such method has been developed
for thermal applications in [14-18]. At each iteration k of the algorithm, three
well-posed problems have to be solved:

1. The direct problem in order to determine the temperature distribution θk(x, tf ),
and then to estimate the criterion J(θk),

2. The adjoint problem to determine the gradient of the cost function J(θk)
and thus to define the next descent direction dk,

3. The sensitivity problem to estimate the descent depth γk (in the descent
direction).

Let us consider that the control uka(x, t) is a piecewise linear continuous function
depending on time and space and can be formulated as follows:

ua(x, t) =

M∑
j=1

uaj(x)sj(t)

where

uaj(x) =


x−(a−ε)

ε uaj if x ∈ [a− ε, a]
(a+ε)−x

ε uaj if x ∈ [a, a+ ε]
0 if not
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and

sj(t) =


(M+1)t−(j−1)tf

tf
if t ∈

[
j−1
M+1 tf ,

j
M+1 tf

]
(j+1)tf−(M+1)t

tf
if t ∈

[
j

M+1 tf ,
j+1
M+1 tf

]
0 if not

Functions sj(t) are the “hat functions”, basis for piecewise linear functions.
According to this notation uka(x, 0) = uka(x, tf ) = 0, a pointwise actuator could
be investigated if ε is close to zero.

In the following three subsections, sensitivity problem, adjoint problem and
a conjugate gradient algorithm are presented.

3.1 Sensitivity Problem

In order to calculate at iteration k the descent depth γk in the descent di-
rection dk, the sensitivity problem has to be solved. Let us consider temper-
ature variation θ(x, t) + ε0δθ(x, t) induced by a variation of the thermal flux
ua(x, t) + ε0δua(x, t). Formulation of system (1) satisfied by the temperature
θ+ = θ + ε0δθ and considering the control u+a = ua + ε0δua leads to the fol-
lowing system while ε0 → 0. Sensitivity function δθ is solution of this so-called
sensitivity problem:

ρC
∂δθk(.)

∂t
−
∂2
(
λ(θ)δθk(.)

)
∂x2

= ξδθk(.) + δuka(.) ∀(x, t) ∈ Ω × T
δθk(0, t) = δθk(L, t) = 0 ∀t ∈ T

δθk(x, 0) = 0 ∀x ∈ Ω

(3)

In this study, the variation of thermal flux provided by the actuator is:

δua(x, t) =

M∑
j=1

δuaj(x)sj(t).

At each iteration k, the identified control uk+1
aj , ∀j = 1, . . . ,M is given by:

uk+1
aj = ukaj − γkdkj (4)

and γk is the optimal depth determined as follow:

γk = arg min
γ∈R

J(uka − γdk) =

−
∫ L

0

θk(x, tf )δθk(x, tf )dx∫ L

0

[
δθk(x, tf )

]2
dx

(5)

where θk(x, tf ) is the solution of the direct problem (1) and δθk(x, tf ) is the
solution of the sensitivity problem (3) (solved in descent direction dk).

In the following section adjoint problem is developed in order to determine
the descent direction dk.
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3.2 Adjoint Problem

In order to calculate at each iteration k, the gradient
∂J(θk)

∂ukaj
and the descent

direction dk, an adjoint problem is formulated. Let us denote by ` a Lagrangian
formulation which is a function of uka(.), θk(.) and ψk(.) where ψk(.) is the

adjoint function, fixed such as:
∂`

∂θk
δθk = 0 and

∂`

∂ψk
δψk = 0. Furthermore, if

θ(.) is solution of system (1) then:

`(uka, θ
k, ψk) = J(θk)⇒ δ`(uka, θ

k, ψk) = δJ(θk)

and variation of Lagrangian

δ`(uka, θ
k, ψk) =

∫ L

0

θk(x, tf )δθk(x, tf )dx

+

∫ tf

0

∫ L

0

[
ρC

∂δθk

∂t
− ∂2

∂x2
(
λ(θ)δθk

)
− ξδθk − δuka

]
ψkdxdt.

(6)

After several integrations by parts with respect to x and t, ψk(x, t) is solution
of the following adjoint problem:

−ρC ∂ψ
k(.)

∂t
− λ(θ)

∂2ψk(.)

∂x2
= ξψk(.) ∀(x, t) ∈ Ω × T

ψk(0, t) = ψk(L, t) = 0 ∀t ∈ T
ψk(x, tf ) = − 1

ρC
θk(x, tf ) ∀x ∈ Ω

(7)

This system is numerically solved using a retrograde scheme in time. For ψk(x, t)
solution of system (7), variation of Lagragian is:

δ`(uka, θ
k, ψk) =

∂`

∂uk
δuk = δJ(uka).

According to the previous equations, cost function gradient is defined as follows:

∂J

∂ukaj
= −

∫ tf

0

∫ a+ε

a−ε
ψk(x, t)sj(t)dxdt (8)

The descent direction can be estimated at each new iteration k from the previous
gradient (at iteration k − 1), as follows:

dk = −

(
∂J

∂ukaj

)
j=1,...,M

+ βkd
k−1 (9)

with βk =

∥∥∥∥∥∥
(
∂J

∂ukaj

)
j=1,...,M

∥∥∥∥∥∥
2

∥∥∥∥∥∥
(

∂J

∂uk−1aj

)
j=1,...,M

∥∥∥∥∥∥
2 and ‖.‖ is the Euclidean norm.
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3.3 Conjugate gradient algorithm

In order to solve the previous inverse problem, an offline algorithm is imple-
mented as follows:

1. Initialization of the unknown parameter (control flux) at the first iteration
k = 0:

[
ukaj
]
j=1,...,M

= 0,

2. Resolution of the direct problem (1) in order to determine θk(x, t),
3. Determination of the criterion J(θk) according to (2):

– If the criterion is below the stopping threshold Jstop, then the algorithm
is stopped and uka is considered as the estimate of the unknown parameter
(internal control law ua(x, t) is then identified).

– Otherwise, continue to step 4,
4. Solve the adjoint problem (7) in order to determine the Lagrange multiplier
ψk(x, t) and the cost function gradient according to (8). Determination of
the descent direction dk according to (9),

5. Resolution of the sensitivity problem (3) in the descent direction dk to calcu-
late the sensitivity function δθk(x, t) and determination of the descent depth
γk according to (5),

6. Update new estimations of the control according to (4),
7. Increment of the iteration k = k + 1 and back to step 2.

In the next section, several numerical configurations are investigated in order
to highlight the method relevance.

4 Numerical results

In this paragraph, specific cases are proposed considering thermal properties
given in section 2.2. Non stability is induced by ξ = 4× 104 and without control
system evolution is shown in Fig. 3. The previous numerical method is used for
the determination of a relevant control law and the following values presented
in Table. 1 are taken into account with Jstop = 10−3:

Table 1. The various cases considered.

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

tf 100 100 100 100 40 40 40 40

a× 10−2 3 3 9 9 3 3 9 9

ε× 10−3 3 1 3 1 3 1 3 1

Furthermore, in order to compare the previous cases together, the energy re-

quired by each control law is calculated as follows: E =

∫ L

0

∫ tf

0

[ua(x, t)]
2
dxdt

and is given in the following Table. 2.
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Table 2. The cost of each cases.

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

E × 1012 ' 2.8 8.5 20 63 9.3 28 99 290

In Fig. 4. several results are shown: the evolution of identified control uaj for
cases 1, 2, 3 and 4 on the left and the evolution of identified control uaj for cases
5, 6, 7 and 8 on the right.
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Fig. 4. Evolution of identified control laws: cases 1, 2, 3 and 4 (left), cases 5, 6, 7 and
8 (right).

In Fig. 5. temperature evolution without control on the left and with control on
the right for the case 8 are shown.
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Fig. 5. Temperature evolution without control (left) and with control (right) - case 8.

According to the previous results, several remarks could be proposed:

– If the spatial support ω of the actuator is small, then the control flux has
to be big. Comparing cases 1&2, 3&4, 5&6 and 7&8, it is shown that if ω is
divided by 3, then the energy required by the control is multiplied by 3.

– If the final time tf of the process is small, then the control flux has to
be big. Moreover, due to the small time horizon and to the wide control
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flux, evolution of the control law is complex (with positive and negative
commutation). This behaviour is meaningful and could be compare to a
bang-bang point wise controller.

5 Conclusions

In this paper, the stabilization of a non linear parabolic PDE system in 1D ge-
ometry has been investigated. Considering a thermal realistic configuration, non
stability has been numerically put in evidence. In order to ensure the convergence
of the system state toward zero, an in-domain actuator has been implemented.
An iterative regularization method for identification of such unknown control is
presented. Numerical results of in-domain control determination for several stud-
ied configuration are provided and show that the suggested method is relevant
in order to identify an in-domain control law in such non linear system. Effect of
actuator spatial support (size, location) has been studied and it has been shown
how the desired final time (for stabilization purposes) affect the determination
of the control.

Future works will consist in adaptation of online implementation in order to
ensure disturbances rejection. Moreover, the effect of several non collocated actu-
ators and sensors could be easily investigated considering the proposed method.
The control of few moving actuators seems to be quite attractive and could
ensure null controllability in an elegant way.
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