
HAL Id: hal-02961755
https://univ-angers.hal.science/hal-02961755

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Optimal control of timed event graphs with resource
sharing and output-reference update

Germano Schafaschek, Laurent Hardouin, Jörg Raisch

To cite this version:
Germano Schafaschek, Laurent Hardouin, Jörg Raisch. Optimal control of timed event graphs with
resource sharing and output-reference update. Automatisierungstechnik, 2020, 68 (7), pp.512-528.
�10.1515/auto-2020-0051�. �hal-02961755�

https://univ-angers.hal.science/hal-02961755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

at – Automatisierungstechnik 2020; 68(7): 512–528

Methods

Germano Schafaschek*, Laurent Hardouin and Jörg Raisch

Optimal control of timed event graphs with
resource sharing and output-reference update
Optimalsteuerung zeitbehafteter Synchronisationsgraphen mit Ressourcenkonkurrenz und
Aktualisierung von Referenzsignalen

https://doi.org/10.1515/auto-2020-0051
Received April 8, 2020; accepted June 4, 2020

Abstract: Timed event graphs (TEGs) are a subclass of
timed Petri nets that model synchronization and delay
phenomena, but not conflict or choice. We consider a
scenario where a number of TEGs share one or several
resources and are subject to changes in their output-
reference signals. Because of resource sharing, the result-
ing overall discrete event system is not a TEG. We pro-
pose a formal method to determine the optimal control in-
put for such systems, where optimality is in the sense of
the widely adopted just-in-time criterion. Our approach is
based on a prespecified priority policy for the TEG compo-
nents of the overall system. It builds on existing control
theory for TEGs, which exploits the fact that, in a suitable
mathematical framework (idempotent semirings such as
the max-plus or the min-plus algebra), the temporal evo-
lution of TEGs can be described by a set of linear time-
invariant equations.

Keywords: timed event graphs, idempotent semirings,
just-in-time control, min-plus algebra, resource sharing

Zusammenfassung: Zeitbehaftete Synchronisationsgra-
phen (ZSGen) bilden eine spezielle Klasse zeitbehafteteter
Petri-Netze. Sie können Synchronisations- und Verzöge-
rungsphänomene modellieren, nicht aber Konflikte. Wir
untersuchen ein Szenario, in demsichmehrere ZSGen eine
oder mehrere Ressourcen teilen und die Referenzsignale
der ZSGen unvorhersehbaren Änderungen unterworfen
sind. Da die beteiligten ZSGen um Ressourcen konkur-
rieren, ist das Gesamtsystem kein ZSG. Wir beschreiben

*Corresponding author: Germano Schafaschek, Fachgebiet
Regelungssysteme, Technische Universität Berlin, Berlin, Germany,
e-mail: schafaschek@control.tu-berlin.de
Laurent Hardouin, Laboratoire Angevin de Recherche en Ingénierie
des Système, Université d’Angers, Angers, France, e-mail:
laurent.hardouin@univ-angers.fr
Jörg Raisch, Fachgebiet Regelungssysteme, Technische Universität
Berlin, Berlin, Germany, e-mail: raisch@control.tu-berlin.de

eine formale Vorgehensweise zur Bestimmung des im just-
in-time Sinne optimalen Stellsignals für dieses Gesamt-
system. Unser Ansatz basiert auf einer vorab festgelegten
Priorisierung der einzelnen ZSGen. Er baut auf der exis-
tierenden Regelungstheorie für ZSGen auf und nutzt die
Tatsache, dass sich die zeitliche Entwicklung von ZSGen
in einem geeigneten mathematischen Rahmen (idempo-
tente Halbringe wie beispielsweise die max-plus- oder die
min-plus-Algebra) durch lineare zeitinvariante Gleichun-
gen beschreiben lässt.

Schlagwörter: Zeitbehaftete Synchronisationsgraphen,
idempotente Halbringe, min-plus-Algebra, just-in-time
Regelung, Ressourcenkonkurrenz

||
Thiscontribution isdedicated to Prof. Dr.-Ing. Dr. h.c.Michael Zeitz on
the occasion of his 80th birthday.

1 Introduction
In this paper,we consider a scenariowhere several discrete
event subsystems, each modeled by a timed event graph
(TEG), share one or more resources and where the refer-
ence signals for the subsystemsmay change unexpectedly.
TEGs are a subclass of timed Petri nets. They are character-
ized by the fact that each place has precisely one upstream
and one downstream transition and all arcs have weight
one. TEGs can model synchronization and delay phenom-
ena but not conflict, choice, or the sharing of resources.
Therefore, the overall systemclass investigated in this con-
tribution is more general than the subclass of TEGs.We ar-
gue that it models a wide range of application scenarios,
e. g., in manufacturing or transportation. We aim at deter-
mining the optimal control input, where optimality is un-
derstood in the sense of the widely adopted just-in-time
criterion. In particular, the aim is to fire all input transi-
tions as late as possible while guaranteeing that the firing
of output transitions is not later than specified by the re-
spective reference signal. For example, in amanufacturing

Open Access. © 2020 Schafaschek et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public
License.

https://doi.org/10.1515/auto-2020-0051
mailto:schafaschek@control.tu-berlin.de
mailto:laurent.hardouin@univ-angers.fr
mailto:raisch@control.tu-berlin.de

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 513

context, the firing of an input transition could correspond
to the provisioning of raw material, while the firing of an
output transition could model the completion of a work-
piece. In general, a just-in-time policy aims at satisfying
customer demands while minimizing internal stocks. We
solve this optimal control problem for a fixed prioritization
of subsystems, but allow updates of the reference signals.

It is a well-known fact that in a suitable mathematical
framework, namely an idempotent semiring (or dioid) set-
ting such as themax-plus or themin-plus algebra, the evo-
lution of TEGs can be described by linear equations (see
[3] for a thorough coverage). Based on such linear dioid
models, an elaborate control theory has become available.
Given an a-priori known reference signal, it mostly focuses
on optimality in the sense of the just-in-time criterion and
considers feedforward and (output or state) feedback con-
trol. For a tutorial introduction to this control framework,
the reader may refer to [11].

In some applications, it may be necessary to update
the reference for the system’s output during run-time, for
instance when customer demand is increased and a new
production objectivemust be considered. In [12], a strategy
has been presented to optimally update the input in face of
such changes in the output-reference. In case the new ref-
erence encodes unachievable requirements, the authors
show how to relax it such that optimal control for the re-
laxed reference leads to firing times of the output transi-
tions that are as close as possible to (but possibly later
than) the originally desired ones.

Systems of practical interest often involve limited re-
sources that are shared amongdifferent subsystems. As ex-
amples, one can think of an automatedmanufacturing cell
where the same tool/robotmaybe required in several steps
of the production process, or of computational tasks com-
peting for the use of a fixed number of processors. TEGs
do not allow for concurrency or choice and hence are in-
apt tomodel such resource-sharingphenomena.Overcom-
ing this limitation has motivated several efforts in the lit-
erature, with a predominant focus on modeling and anal-
ysis. In [7, 6], a modeling strategy for continuous timed
Petri nets is proposed where conflict places are handled
by the use of priority rules. In [8], constraints due to re-
source sharing are translated into additional inequalities
in the system model. [1] models conflicting TEGs by max-
plus time-varying equations; the models are restricted to
safe conflict places. [5] relaxes the safety hypothesis on the
conflict places and studies cycle time evaluation on con-
flicting TEGs withmultiple shared resources. Works focus-
ing on control of TEGswith resource sharing are less abun-
dant. In [15], the authors show that concurrency can be

incorporated into switchingmax-plus linear systemsmod-
els and apply model predictive control techniques to ob-
tain the optimal switching sequence. In [13], the modeling
and control of a number of TEGs that share resources is ad-
dressed. Obviously, because of resource sharing, the over-
all system is no longer a TEG. Under a prespecified prior-
ity policy, the authors show how to compute the optimal
(just-in-time) input for each subsystem with respect to its
individual output-reference.

In this paper, we propose a formal method to obtain
the optimal control inputs in face of changes in the output-
references for TEGs that share resources under a given pri-
ority policy, thus merging the results from [12] with those
of [13]. This paper represents an extended version of a re-
cent conference paper [14]. It extends the contributions of
[14] in the following ways: the results are presented more
didactically, with more detailed explanations of some cru-
cial steps. Most significantly, we generalize the method to
the case of an arbitrary number of shared resources (Sec-
tion 5.3 is entirely new), whereas in [14] only the case of
a single shared resource is explicitly covered; as a prereq-
uisite thereto, we also formalize the extension of the re-
sults from [13], originally only presented for at most two
shared resources, to the case of multiple shared resources
— Section 4.3 originates here. The examples in this pa-
per, although still simple, are more general and elucida-
tive than those from [14]. We also enhance the presenta-
tion of preliminary concepts, providing a brief survey of
the theoretical background and making the paper largely
self-contained.

Prospective applications for the proposed approach
include emergency call centers (as studied, e. g., in [2],
which, in turn, is based on [7, 6]) where the arrival of high-
priority calls may render it necessary to reschedule the an-
swers to lower-priority ones, or manufacturing scenarios
where changes in the demand of high-priority products
will require a re-adjustment of resource allocations by pro-
cessing steps related to lower-priority products.

We consider a set of TEGs operating under opti-
mal schedules with respect to their individual output-
references and to thepriority policy; supposing the output-
reference of one or more of the subsystems is updated dur-
ing run-time, we show how to optimally update all their
inputs so that their outputs are as close as possible to the
corresponding new references and the priority policy is
still observed. In case the performance limitation of the
subsystems, combined with the limited availability of the
resources, make it impossible to respect some of the new
references, we also provide the optimal way to relax such
references so that the ultimately obtained inputs lead to
tracking them as closely as possible.

514 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

The examples presented along this paper serve solely
the purpose of illustrating and helping to clarify the re-
sults. Due to space limitations and also to the fact that ex-
isting computational tools are not in pace with the state-
of-the-art theoretical results proposed here, we do not
present a more comprehensive example. The proposed
method can, however, be applied to larger, more general
systems of practical relevance.

The paper is organized as follows. Section 2 summa-
rizes well-known facts on idempotent semirings. In Sec-
tion 3,we adapt existing results on the control of TEGswith
output-reference update to the idempotent semiring used
in this paper. Section 4 provides an overview of previous
results on modeling and control of TEGs with shared re-
sources. The major purpose of these three sections is mak-
ing the paper as self-contained as possible. In Section 5,
themain contributions of the paper are presented; namely,
we formulate and solve the problemof determining the op-
timal control inputs for TEGswith shared resources in face
of changes in the output-references. Section 6 presents the
conclusions and final remarks.

2 Preliminaries

In this section,we present a summary of somebasic defini-
tions and results on idempotent semirings and timed event
graphs; for an exhaustive discussion, the reader may refer
to [3]. We also touch on some topics from residuation the-
ory and control of TEGs (see [4] and [11], respectively).

2.1 Idempotent semirings

An idempotent semiring (or dioid)D is a set endowed with
two binary operations, denoted ⊕ (sum) and ⊗ (product),
such that: ⊕ is associative, commutative, idempotent (i. e.,
(∀a ∈ D) a ⊕ a = a), and has a neutral (zero) element, de-
noted ε; ⊗ is associative, distributes over ⊕, and has a neu-
tral (unit) element, denoted e; the element ε is absorbing
for ⊗ (i. e., (∀a ∈ D) a ⊗ ε = ε). As in conventional algebra,
the product symbol ⊗ is often omitted. An order relation
can be defined overD by

(∀a, b ∈ D) a ⪯ b ⇔ a ⊕ b = b . (1)

Note that ε is the bottom element ofD, as (∀a ∈ D) ε ⪯ a.
An idempotent semiring D is complete if it is closed

for infinite sums and if the product distributes over infi-
nite sums. For a complete idempotent semiring, the top el-
ement is defined as ⊤ = ⨁x∈D x, and the greatest lower

bound (or infimum) operation, denoted ∧, by

(∀a, b ∈ D) a ∧ b = ⨁
x⪯a,x⪯b

x .

∧ is associative, commutative, and idempotent, and we
have a ⊕ b = b ⇔ a ⪯ b ⇔ a ∧ b = a.

Example 1. The setℤ def= ℤ ∪ {−∞,+∞}, with theminimum
operation as ⊕ and conventional addition as ⊗, forms a
complete idempotent semiring calledmin-plus algebra, de-
noted ℤmin, in which ε = +∞, e = 0, and ⊤ = −∞. Note
that inℤmin wehave 2⊕5 = 2, so 5 ⪯ 2; the order is reversed
with respect to the conventional order overℤ. ⋄

Remark 2 ([3]). The set of n×n-matrices with entries in an
idempotent semiring D, endowed with sum and product
operations defined by

(A ⊕ B)ij = Aij ⊕ Bij ,

(A ⊗ B)ij =
n
⨁
k=1
(Aik ⊗ Bkj) ,

for all i, j ∈ {1, . . . , n}, forms a complete idempotent semir-
ing, denoted Dn×n. Its unit element (or identity matrix) is
the n×n-matrix with entries equal to e on the diagonal and
ε elsewhere; the zero (resp. top) element is the n×n-matrix
with all entries equal to ε (resp. ⊤). The definition of order
(1) implies, for any A,B ∈ Dn×n,

A ⪯ B ⇔ (∀ i, j ∈ {1, . . . , n})Aij ⪯ Bij .

It is possible to deal with nonsquare matrices in this con-
text (including, in particular, row and column vectors)
by suitably padding them with ε-rows or columns; this
is done only implicitly, as it does not interfere with the
relevant parts of the results of operations between matri-
ces. ⋄

A mapping Π : D → C, with D and C two idempotent
semirings, is isotone if (∀a, b ∈ D) a ⪯ b⇒ Π(a) ⪯ Π(b).

Remark 3. The composition of two isotone mappings is
isotone. ⋄

Remark 4. Let Π be an isotone mapping over a complete
idempotent semiring D, and let Y = {x ∈ D |Π(x) = x}
be the set of fixed points of Π.⋀y∈Y y (resp.⨁y∈Y y) is the
least (resp. greatest) fixed point of Π. ⋄

Algorithms exist which allow to compute the least and
greatest fixedpoints of certain isotonemappings over com-
plete idempotent semirings. In particular, the algorithm
presented in [11] is applicable to the relevant mappings
considered in this paper.

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 515

In a complete idempotent semiring D, the Kleene star
operator on a ∈ D is defined as a∗ = ⨁i≥0 a

i, with a0 = e
and ai = ai−1 ⊗ a for i > 0.

Remark 5. The implicit equation x = ax⊕bover a complete
idempotent semiring D admits x = a∗b as least solution.
This applies, in particular, to the case in which x, b ∈ Dn

and a ∈ Dn×n (see [3] and Remark 2). ⋄

2.2 Semirings of formal power series

Let s = {s(t)}t∈ℤ be a sequence over ℤmin. The δ-transform
of s is a formal power series in δ with coefficients in ℤmin
and exponents in ℤ, defined by

s =⨁
t∈ℤ

s(t)δt .

We denote both the sequence and its δ-transform by the
same symbol, as no ambiguity will occur. Since

s ⊗ δ =⨁
t∈ℤ

s(t) ⊗ δt+1 =⨁
t∈ℤ

s(t − 1) ⊗ δt ,

multiplication by δ can be seen as a backward shift opera-
tion.

Definition 6. The set of formal power series in δ with co-
efficients in ℤmin and exponents in ℤ, with addition and
multiplication defined by

s ⊕ s� =⨁
t∈ℤ
(s(t) ⊕ s�(t))δt ,

s ⊗ s� =⨁
t∈ℤ
(⨁
τ∈ℤ
(s(τ) ⊗ s�(t − τ)))δt ,

is a complete idempotent semiring, denotedℤmin[[δ]]. Note
that the order in ℤmin[[δ]] is induced by the order in ℤmin,
i. e., s ⪯ s� ⇔ (∀t ∈ ℤ) s(t) ⪯ s�(t). ⋄

In this paper we will use sequences to represent the
number of firings of transitions in TEGs, so that each term
s(t) refers to the accumulated number of firings of a cer-
tain transition up to time t. Naturally, this interpretation
carries over to the terms of a series s corresponding to the
δ-transform of such a sequence. A series thus obtained
is clearly nonincreasing (in the order of ℤmin, which, as
pointed out before, is the reverse of the standard order of
ℤ), meaning s(t−1) ⪰ s(t) for all t. Wewill henceforth refer
to such series as counters.

Definition 7. The set of counters (i. e., nonincreasing
power series) in ℤmin[[δ]] is a complete idempotent semir-
ing, namedℤmin,δ[[δ]], with zero element sε given by sε(t) =

ε for all t, unit element se given by se(t) = e for t ≤ 0 and
se(t) = ε for t > 0, and top element s⊤ given by s⊤(t) = ⊤
for all t. We will denote this semiring by Σ, for brevity. ⋄

It is easy to see that sε, se, respectively s⊤ are indeed
the zero, unit, respectively top elements in Σ: ∀s ∈ Σ, ∀t ∈
ℤ,

(s ⊕ sε)(t) = s(t) ⊕ sε(t) = s(t) ;
(s ⊗ se)(t) =⨁

τ∈ℤ
s(τ) ⊗ se(t − τ)

=⨁
τ≥t

s(τ)

= s(t) (as s is nonincreasing) ;
(s ⊕ s⊤)(t) = s(t) ⊕ s⊤(t) = ⊤ .

Counters can be represented compactly by omitting
terms s(t)δt whenever s(t) = s(t+1). For example, a counter
s with s(t) = e for t ≤ 3, s(t) = 1 for 4 ≤ t ≤ 7, s(t) = 3
for 8 ≤ t ≤ 12, and s(t) = 6 for t ≥ 13 can be written
s = eδ3 ⊕ 1δ7 ⊕ 3δ12 ⊕ 6δ+∞.

2.3 TEG models in idempotent semirings

A timed Petri net is a tuple (P,T ,A,w, h, v), where P is a
finite set of places (graphically represented by circles), T
a finite set of transitions (represented by bars), A ⊆ (P ×
T) ∪ (T × P) a set of arcs connecting places to transitions
and transitions to places, w a weight function assigning a
positive integer weight to every arc, and h a function as-
signing a nonnegative holding time to each place. In the
following, holding times will be restricted to be integers.
Furthermore, the function v assigns to each place a non-
negative integer number of tokens residing initially in this
place. For any p ∈ P and t ∈ T, if (p, t) ∈ A, we say that p
is an upstream place of t, and t is a downstream transition
of p; analogously, if (t, p) ∈ A, t is said to be an upstream
transition of p, and p is a downstream place of t. The dy-
namics of a timed Petri net is governed by the following
rules: (i) a transition t can fire if all its upstream places p
contain at least w((p, t)) tokens that have resided there for
at least h(p) time units; (ii) if a transition t fires, it removes
w((p, t)) tokens from each of its upstream places p and de-
posits w((t, p̄)) tokens in each of its downstream places p̄.

Timed event graphs (TEGs) are timed Petri nets in
which eachplace has exactly one upstreamandone down-
stream transition and all arcs have weight 1. In a TEG, we
can distinguish input transitions (those that are not af-
fected by the firing of other transitions), output transitions
(those that do not affect the firing of other transitions), and

516 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

Figure 1: A SISO TEG, with input u and output y.

internal transitions (those that are neither input nor out-
put transitions). In this paper, we will limit our discussion
to SISO TEGs, i. e., TEGs with only one input and one out-
put transition,whichwedenote respectively byu and y; in-
ternal transitions are denoted by xi. An example of a SISO
TEG is shown in Fig. 1.

A TEG is said to be operating under the earliest firing
rule if every internal and output transition fires as soon as
it is enabled.

With each transition xi, we associate a sequence
{xi(t)}t∈ℤ, for simplicity denoted by the same symbol,
where xi(t) represents the accumulated number of firings
of xi up to and including time t. Similarly, we associate se-
quences {u(t)}t∈ℤ and {y(t)}t∈ℤ with transitions u and y, re-
spectively. Considering the TEG from Fig. 1 operating un-
der the earliest firing rule, in conventional algebrawehave

x1(t) = min(u(t), x2(t − 2) + 2) ,

i. e., the number of firings of transition x1 up to time t is
the minimum between the number of firings of transition
u up to time t and the number of firings of transition x2
up to time t − 2 (because the place connecting x2 to x1 has
holding time 2) plus 2 (as the place connecting x2 to x1 has
initially 2 tokens).

In ℤmin, the number of firings of transition x1 can be
conveniently rewritten as

(∀t ∈ ℤ) x1(t) = u(t) ⊕ 2x2(t − 2) ,

which, through the δ-transform, can be expressed in Σ as

x1 = u ⊕ 2δ
2x2 .

We can obtain similar relations for x2 and y and, defining
the vector x = [x1x2], write

x = [ε 2δ2

eδ3 ε
]x ⊕ [eδ

0

ε
]u ,

y = [ε eδ0]x .

In general, a TEG can be described by implicit equations
over Σ of the form

x = Ax ⊕ Bu ,
y = Cx .

(2)

From Remark 5, the least solution of (2) is given by

y = CA∗Bu , (3)

where G = CA∗B is often called the transfer function of the
system. For instance, for the system from Fig. 1 we obtain
the (scalar) transfer function G = eδ3(2δ5)∗.

2.4 Residuation theory

Residuation theory provides, under certain conditions,
greatest (resp. least) solutions to inequalities such as
f (x) ⪯ b (resp. f (x) ⪰ b).

Definition 8. An isotonemapping f : D → C, withD and C
complete idempotent semirings, is said to be residuated if
for all y ∈ C there exists a greatest solution to the inequality
f (x) ⪯ y. This greatest solution is denoted f ♯(y), and the
mapping f ♯ : C → D, y Ü→⨁{x ∈ D | f (x) ⪯ y}, is called the
residual of f .

Mapping f is said to be dually residuated if for all y ∈ C
there exists a least solution to the inequality f (x) ⪰ y. This
least solution is denoted f ♭(y), and the mapping f ♭ : C →
D, y Ü→ ⋀{x ∈ D | f (x) ⪰ y}, is called the dual residual
of f . ⋄

Note that, if equality f (x) = y is solvable, f ♯(y) and
f ♭(y) yield its greatest and least solutions, respectively.

Theorem 9 ([4]). Mapping f as in Def. 8 is residuated if and
only if there exists a unique isotone mapping f ♯ : C → D
such that1 f ∘ f ♯ ⪯ IdC and f ♯ ∘ f ⪰ IdD, where IdC and IdD
are the identity mappings on C andD, respectively. ⋄

Remark 10. For a ∈ D, mapping La : D → D, x Ü→ a ⊗ x,
is residuated; its residual is denoted by L♯a(y) = a ⃝\ y (“left
division by a”). More generally, for A ∈ Dn×m, mapping
LA : Dm×p → Dn×p, X Ü→ A ⊗ X, is residuated; L♯A(Y) =
A ⃝\ Y ∈ Dm×p can be computed as follows: for all 1 ≤ i ≤ m
and 1 ≤ j ≤ p,

(A ⃝\ Y)ij =
n
⋀
k=1

Aki ⃝\ Ykj

(see [3] and Remark 2). ⋄

Theorem 11 ([4]). Mapping f as in Def. 8 is dually residu-
ated if and only if f (⊤) = ⊤ and (∀A ⊆ D) f (⋀x∈A x) =
⋀x∈A f (x). ⋄

1 Note that, for any idempotent semiringX , the order⪯ onX induces
an order, for simplicity also denoted⪯, on the set ofmappings overX :
for any such mappings Θ1, Θ2, one has Θ1 ⪯ Θ2 ⇔ (∀x ∈ X) Θ1(x) ⪯
Θ2(x) .

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 517

2.5 Optimal control of TEGs

Assume that a TEG to be controlled is modeled by equa-
tions (2) and that an output-reference z ∈ Σ is given. Under
the just-in-timeparadigm,weaimat firing the input transi-
tion u the least possible number of times while guarantee-
ing that the output transition y fires, by each time instant,
at least asmany times as specified by z. In other words, we
seek the greatestu (in the order of Σ) such that y = G⊗u ⪯ z.
Based on (3) and Remark 10, the solution is directly ob-
tained by

uopt = G ⃝\ z . (4)

Example 12. For the TEG fromFig. 1, suppose it is required
that transition y fires once at time t = 43, twice at t = 47,
and three times at t = 55, meaning the accumulated num-
ber of firings of y should be e (= 0) for t ≤ 42, 1 for 43 ≤ t ≤
46, 3 for 47 ≤ t ≤ 54, and 6 for t ≥ 55. This is represented by
the output-reference z = eδ42⊕1δ46⊕3δ54⊕6δ+∞. Applying
(4), we get uopt = eδ38 ⊕ 1δ41 ⊕ 2δ43 ⊕ 3δ46 ⊕ 4δ51 ⊕ 6δ+∞,
and the corresponding optimal output is yopt = G ⊗ uopt =
eδ41 ⊕ 1δ44 ⊕ 2δ46 ⊕ 3δ49 ⊕ 4δ54 ⊕ 6δ+∞. One can ver-
ify that yopt ⪯ z. These computations can be performed
with the aid of the C++ toolbox introduced in [9]. We in-
terpret the place with holding time 3 between x1 and x2,
initially empty, as the operation of the system, and the bot-
tom place with holding time 2 between x2 and x1, with two
initial tokens, as a double-capacity resource. Under this
interpretation, the firings of transitions x1 and x2 repre-
sent resource-allocation and resource-release events, re-
spectively. This paves the way for the examples of Sec-
tions 4 and 5, where the resource will be shared with other
(sub)systems. The optimal schedule obtained above can
be displayed in a chart as shown in Fig. 2, where each row
corresponds to one instance of the resource. ⋄

3 Optimal control of TEGs with
output-reference update

The material of this section is a dual version, adapted to
the point of view of counters, of the results from [12].

Inpractice, itmaybenecessary toupdate the reference
for the output of a system during run-time, for instance
when customer demand is increased and a new produc-
tion objective must be taken into account. For a system
like the one from Example 12, let reference z be updated
to a new one, z�, at time T. The problem at hand is to find
the input u�opt which optimally tracks z� without, however,

Figure 2: Optimal schedule obtained in Example 12; the gray bars
represent the operation of the system, and the dashed bars are the
delays imposed by the resource.

changing the inputs given up to time T. Define the map-
ping rT : Σ→ Σ,

[rT (u)](t) = {
u(t), if t ≤ T ;
ε , if t > T .

(5)

Our objective can then be restated as follows: find the
greatest element u�opt of the set

F = {u ∈ Σ |G ⊗ u ⪯ z� and rT (u) = rT (uopt)} ,

where uopt is the optimal input with respect to reference
z, computed as in (4). The following theorem provides,
given that certain conditions are met, a way to compute
this greatest element.

Theorem 13 ([12]). Let D and C be complete idempotent
semirings, f1, f2 : D → C residuated mappings, and c1, c2 ∈
C. If the set

S = {x ∈ D | f1(x) ⪯ c1 and f2(x) = c2}

is nonempty, we have⨁x∈S x = f ♯1 (c1) ∧ f
♯
2 (c2). ⋄

An obvious correspondence between F and S can be
established by takingD and C both as Σ, f1 as LG (which is
well known to be residuated — see Remark 10), c1 as z�, f2
as rT , and c2 as rT (uopt).

Remark 14. Mapping rT as defined in (5) is residuated,
with

[r ♯T (u)](t) = {
u(t), if t ≤ T ;
u(T), if t > T .

In fact, r ♯T is clearly isotone and we have rT ∘ r
♯
T = rT ⪯ IdΣ

and r ♯T ∘ rT = r
♯
T ⪰ IdΣ, so the conditions from Theorem 9

are fulfilled. ⋄

Hence, as long as set F is nonempty, Theorem 13 pro-
vides the desired solution

u�opt = G ⃝\ z� ∧ r ♯T (uopt) . (6)

In order to check for nonemptiness of F , let us consider
the set

F̃ = {u ∈ Σ | rT (u) = rT (uopt)} ,

518 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

Figure 3: Updated optimal schedule obtained in Example 15; the
gray bars represent the operation of the system, whereas the
dashed bars are the delays imposed by the resource.

i. e., the set of counters that up to and including time T are
identical to uopt. Consider now

u def= ⋀
u∈F̃

u = rT (uopt) .

Since rT ∘ rT = rT and therefore rT (u) = rT(rT (uopt)) =
rT (uopt), u ∈ F̃ . Isotony of LG thus implies

F ̸= 0 ⇔ G ⊗ u ⪯ z� . (7)

Example 15. For the system from Example 12 (Fig. 1) oper-
ating according to the optimal input obtained for output-
reference z, suppose that at time T = 40 a new demand is
received: three firings of y are now required at t = 54 (in-
stead of at t = 55). This translates to z� = eδ42⊕1δ46⊕3δ53⊕
6δ+∞. In order to determine whether F ̸= 0, following (7)
we check if G ⊗ u ⪯ z�. We have u = rT (uopt) = eδ

38 ⊕ 1δ40 ⊕
εδ+∞, soG⊗u = eδ41⊕1δ43⊕2δ46⊕3δ48⊕4δ51⊕5δ53⊕6δ56⊕
7δ58 ⊕ . . . = (eδ41 ⊕ 1δ43)(2δ5)∗ ⪯ z�, implying F ̸= 0. From
Theorem 13 (and recalling that r ♯T ∘ rT = r

♯
T), we then have

u�opt = G ⃝\ z� ∧ r ♯T (uopt) = eδ
38 ⊕ 1δ40 ⊕ 2δ43 ⊕ 3δ45 ⊕ 4δ50 ⊕

6δ+∞, andhence y�opt = eδ
41⊕1δ43⊕2δ46⊕3δ48⊕4δ53⊕6δ+∞.

The updated optimal schedule is shown in Fig. 3, to be in-
terpreted as explained in Example 12. ⋄

In case G ⊗ u º z� (and hence F = 0), this means the
past inputs make it impossible for the system to respect z�.
Intuitively, having implemented a just-in-time policy uopt
for a reference z up to time T may make it impossible to
satisfy a more demanding new reference z�. Since the con-
dition rT (u) = rT (uopt) cannot be relaxed, in order to have a
solutionwemust then increase z�; more precisely, wewish
to find the least counter z�� ⪰ z� such that

Fz�� = {u ∈ Σ |G ⊗ u ⪯ z
�� and rT (u) = rT (uopt)}

is not empty. The following result provides the answer.

Proposition 16. The least counter z�� ⪰ z� such thatFz�� ̸= 0
is z�� = z� ⊕ (G ⊗ u).

Proof. Since G ⊗ u ⪯ z� ⊕ (G ⊗ u) = z��, we have u ∈ Fz�� ,
therefore Fz�� ̸= 0. Take now an arbitrary ̃z�� ⪰ z� such that
F ̃z�� ̸= 0, and take any v ∈ F ̃z�� . Clearly v ∈ F̃ and hence

Figure 4: Updated optimal schedule obtained in Example 17; the
gray bars represent the operation of the system, whereas the
dashed bars are the delays imposed by the resource.

u ⪯ v; as LG is isotone, we haveG⊗u ⪯ G⊗v ⪯ ̃z��, implying
z�� = z� ⊕ (G ⊗ u) ⪯ z� ⊕ ̃z�� = ̃z��.

A correspondence between Fz�� and S can be estab-
lished analogously to that between F and S, only taking
c1 as z�� (instead of z�). Applying Theorem 13 and recalling
that r ♯T ∘ rT = r

♯
T , we obtain

u�opt = G ⃝\ (z� ⊕ (G ⊗ u)) ∧ r ♯T (uopt) . (8)

Note that in case F ̸= 0 we have z�� = z� ⊕ (G ⊗ u) = z� and
therefore recover solution (6).

Example 17. Consider, once more, the system from Exam-
ple 12 (Fig. 1) operating according to the optimal input ob-
tained for output-reference z, and suppose the same new
output-reference z� as in Example 15 is received, only now
at time T = 42 instead of at time 40. We again use (7)
to check whether set F is empty; in this case, we obtain
u = eδ38 ⊕ 1δ41 ⊕ 2δ42 ⊕ εδ+∞ and hence G ⊗ u = eδ41 ⊕
1δ44 ⊕ 2δ46 ⊕ 3δ49 ⊕ 4δ51 ⊕ 5δ54 ⊕ 6δ56 ⊕ 7δ59 ⊕ . . . = (eδ41 ⊕
1δ44)(2δ5)∗ º z�, implying F = 0. So, we seek the least
z�� ⪰ z� such that Fz�� ̸= 0; according to Proposition 16, we
get z�� = z�⊕(G⊗u) = eδ42⊕1δ46⊕3δ53⊕5δ54⊕6δ+∞, which is
the reference we shall effectively track. Then, from (8) we
have u�opt = eδ

38⊕1δ41⊕2δ43⊕3δ46⊕4δ50⊕5δ51⊕6δ+∞, and
hence y�opt = eδ

41 ⊕ 1δ44 ⊕ 2δ46 ⊕ 3δ49 ⊕ 4δ53 ⊕ 5δ54 ⊕ 6δ+∞.
The updated optimal schedule is shown in Fig. 4, to be in-
terpreted as explained in Example 12. ⋄

4 Modeling and optimal control of
TEGs with resource sharing

We now turn our attention to systems in which a number
of TEGs share one or multiple resources. We first focus on
the simple case of a single shared resource (Sections 4.1
and 4.2); the discussion is based on [13], where the au-
thors also present the more general case of two shared re-
sources. Here, we take it one step further and explicitly
generalize the approach to the case of arbitrarily many
shared resources (Section 4.3).

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 519

Figure 5: A number of TEGs with a single shared resource.

4.1 Modeling of TEGs with one shared
resource

Consider a system consisting of TEGs S1, . . . , SK sharing a
resource (with arbitrary capacity), as illustrated in Fig. 5.
Hk represents the internal dynamics of Sk . β may, in gen-
eral, be a TEG (or, in simple cases, just a single place) de-
scribing the capacity of the resource as well as the mini-
mal delay between release and allocation events. Clearly,
the overall system is no longer a TEG, as there are places
with several upstream and/or several downstream transi-
tions. For simplicity, let us assume that input transitions
(uk) are connected to resource-allocation transitions (xkA)
via a single place with zero delay and no initial tokens,
the same being true for the connection between resource-
release transitions (xkR) and output transitions (y

k). These
assumptions will be dropped in Section 4.3.

It is not possible tomodel systems exhibiting resource-
sharing phenomena by linear equations such as (2). Con-
sidering a system like the one from Fig. 5, in order to ex-
press the relationship among counters xkA and xkR, k ∈
{1, . . . ,K}, the Hadamard product of series is introduced
([10]).

Definition 18. The Hadamard product of s1, s2 ∈ Σ, written
s1 ⊙ s2, is the counter defined as follows:

(∀t ∈ ℤ) (s1 ⊙ s2)(t) = s1(t) ⊗ s2(t) .

This operation is commutative, distributes over ⊕ and ∧,
has neutral element eδ+∞, and sε is absorbing for it (i. e.,
(∀s ∈ Σ) s ⊙ sε = sε). ⋄

Consider a join structure (i. e., a placewith twoormore
incoming transitions) as shown in Fig. 6. At any time in-
stant t, the accumulated number of firings of γ, in con-
ventional algebra, cannot exceed that of λ1 and λ2 com-
bined, which translates to λ1 ⊙ λ2 ⪯ γ. Similarly, for a fork

Figure 6: A join and a fork structure.

structure (i. e., a place with two or more outgoing transi-
tions) such as the one shown in Fig. 6, the accumulated
number of firings of γ1 and γ2 combined — again, in con-
ventional algebra — can never exceed that of λ, meaning
λ ⪯ γ1 ⊙ γ2.

Generalizing these ideas allows us towrite, for the sys-
tem from Fig. 5,

x1R ⊙ ⋅ ⋅ ⋅ ⊙ x
K
R ⪯ α1 and α2 ⪯ x

1
A ⊙ ⋅ ⋅ ⋅ ⊙ x

K
A

which, combined with β ⊗ α1 ⪯ α2, leads to

β ⊗ (
K
⨀
k=1

xkR) ⪯
K
⨀
k=1

xkA . (9)

4.2 Optimal control of TEGs with one shared
resource

For a system like the one from Fig. 5, competition for the
resource is, in general, going to make it impossible for all
subsystems to concurrently follow a just-in-time schedule
with respect to their individual output-references.Oneway
to settle the dispute is introducing a priority policy among
the subsystems. We henceforth assume, without loss of
generality, that subsystem Sk has higher priority than Sk+1,
for all k ∈ {1, . . . ,K−1}. Thepriority policy is basedona sim-
ple rule: for each k ∈ {2, . . . ,K} and for all j ∈ {1, . . . , k − 1},
Sk cannot interfere with the performance of Sj.

Let the input-output behavior of each Sk, ignoring all
other subsystems, be described by yk = Gk ⊗ uk — which,
according to the assumptionsmade above, is equivalent to
xkR = G

k⊗ xkA — and assume that corresponding references
zk are given. The subsystemwith highest priority, S1, is free
to use the resource at will; therefore, we can effectively ne-
glect all other subsystems and simply compute its optimal
input by u1opt = x

1
Aopt
= G1

⃝\ z1 (cf. Section 2.5). For S2, we
must compute the optimal input under the restriction that
the optimal behavior of S1 is unchanged; based on (9), this
means we must respect

β ⊗ (x1Ropt ⊙ x
2
R) ⪯ x

1
Aopt
⊙ x2A . (10)

520 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

Figure 7: Optimal schedules obtained in Example 20; the gray, black, and crosshatched bars represent the operation of S1, S2, and S3, re-
spectively, whereas the dashed bars are the delays imposed by the resource.

In fact, we want to determine the greatest x2A — and thus
also the corresponding u2 — satisfying both G2 ⊗ u2 ⪯ z2

and (10); seeing that (10) implies

x1Ropt ⊙ x
2
R ⪯ β ⃝\ (x1Aopt

⊙ x2A) , (11)

the following result comes in handy.

Proposition 19 ([10]). For any a ∈ Σ, the mapping Πa : Σ→
Σ, x Ü→ a ⊙ x, is residuated. For any b ∈ Σ, Π♯a(b), denoted
b ⊙♯ a, is the greatest x ∈ Σ such that a ⊙ x ⪯ b. ⋄

From Proposition 19, inequality (11) leads to

x2R ⪯ (β ⃝\ (x1Aopt
⊙ x2A)) ⊙

♯ x1Ropt ; (12)

writing x2R = G
2 ⊗ x2A and combining (12) with G2 ⊗ x2A ⪯ z

2

yields

G2 ⊗ x2A ⪯ [(β ⃝\ (x1Aopt
⊙ x2A)) ⊙

♯ x1Ropt] ∧ z
2 ,

which, in turn, implies

x2A ⪯ G
2
⃝\ [(β ⃝\ (x1Aopt

⊙ x2A)) ⊙
♯ x1Ropt] ∧ G

2
⃝\ z2 . (13)

Since for any s1, s2 ∈ Σ it holds that s1 ⪯ s2 ⇔ s1 = s1 ∧ s2,
one can see that (13) is equivalent to

x2A = G
2
⃝\ [(β ⃝\ (x1Aopt

⊙ x2A)) ⊙
♯ x1Ropt] ∧ G

2
⃝\ z2 ∧ x2A . (14)

The greatest x2A satisfying (14), x2Aopt
, is the greatest fixed

point (provided it exists) of the mapping Φ2 : Σ→ Σ,

Φ2(x2A) = G
2
⃝\ [(β ⃝\ (x1Aopt

⊙x2A))⊙
♯x1Ropt] ∧ G

2
⃝\ z2 ∧ x2A . (15)

Notice that Φ2 consists in a succession of order-preserving
operations (Hadamard product ⊙ and its residual ⊙♯, left-
division ⃝\ , and infimum ∧), which, in turn, can be seen as
the composition of corresponding isotone mappings (for
instance, following the notation of Proposition 19, s1 ⊙ s2
corresponds to Πs1(s2), and similarly for the other opera-
tions). Therefore, according to Remark 3 Φ2 is also iso-
tone; Remark 4 then ensures the existence of its greatest
fixed point, which yields the desired optimal solution x2Aopt

(= u2opt).

Figure 8: Three TEGs sharing a resource with capacity 2.

Using the same procedure, we obtain, for each k,

xkA ⪯ G
k
⃝\ [(β ⃝\ ((

k−1
⨀
i=1

xiAopt
) ⊙ xkA)) ⊙

♯ (
k−1
⨀
i=1

xiRopt)]

∧ Gk
⃝\ zk

and, defining amappingΦk by analogywith (15), its great-
est fixed point provides xkAopt

and, therefore, also ukopt.

Example 20. Consider the system from Fig. 8, where sub-
systems S1, S2, and S3 share a resource with capacity 2.
S1, including the resource and ignoring S2 and S3, is the
system from Example 12, whose transfer function is G1 =
eδ3(2δ5)∗ (cf. Section 2.3). For S2 and S3, we obtain G2 =
eδ5(2δ7)∗ and G3 = eδ2(2δ4)∗, respectively. In this exam-
ple, β = 2δ2. The references z1 = eδ42 ⊕ 1δ46 ⊕ 3δ55 ⊕ 6δ+∞,
z2 = eδ39⊕1δ50⊕2δ54⊕3δ+∞, and z3 = eδ52⊕3δ+∞ are given.
As S1 has the highest priority, we can simply compute
u1opt = x

1
Aopt
= G1

⃝\ z1 = eδ38⊕ 1δ42⊕2δ43⊕3δ47⊕4δ52⊕6δ+∞

and y1opt = G
1⊗u1opt = eδ

41⊕1δ45⊕2δ46⊕3δ50⊕4δ55⊕6δ+∞.
Next, we determine x2Aopt

by following the procedure de-
scribed in this section. Computing the greatest fixed point
ofΦ2 as in (15),weget x2Aopt

= eδ28⊕1δ31⊕2δ35⊕3δ+∞ (= u2opt)
and x2Ropt = eδ

33 ⊕ 1δ36 ⊕ 2δ40 ⊕ 3δ+∞ (= y2opt). Finally, the
greatest fixed point of

Φ3(x3A) = G
3
⃝\ [(β ⃝\ (x1Aopt

⊙ x2Aopt
⊙ x3A))⊙

♯

(x1Ropt ⊙ x
2
Ropt)] ∧ G

3
⃝\ z3 ∧ x3A

yields x3Aopt
= eδ24 ⊕ 1δ27 ⊕ 2δ48 ⊕ 3δ+∞ (= u3opt), and so

x3Ropt = eδ
26 ⊕ 1δ29 ⊕ 2δ50 ⊕ 3δ+∞ (= y3opt). These optimal

schedules are shown in Fig. 7. Because the availability of

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 521

Figure 9: A number of TEGs with multiple shared resources.

the resource for S2 is subject to the operation of S1, the fir-
ings of y2 have to be considerably earlier than required by
z2; this is, however, the latest they can be so as to respect
z2 without interfering with S1. A similar effect can be ob-
served in y3 due to the limitations imposed by the opera-
tions of S1 and S2. ⋄

4.3 Modeling and optimal control of TEGs
with multiple shared resources

Consider, as before, a systemcomprisingK TEGs S1, . . . , SK ,
but now suppose they share L resources, as shown in
Fig. 9. Similarly to Section 4.1, each βℓ, ℓ ∈ {1, . . . , L}, is
a TEG (or possibly just a place) describing the capacity
as well as the minimal delay between release and alloca-
tion events of resource ℓ. We denote by xkℓA (resp. xkℓR) the
transition — and associated counter — representing the
allocation (resp. release) of resource ℓ by subsystem Sk .
Accordingly, Hkℓ denotes the internal dynamics of Sk be-
tween xkℓA and xkℓR . As opposed to Section 4.1, here we con-
sider that there may be also some dynamics between in-
put transitions (uk) and resource-allocation transitions for
the first resource (xk1A), modeled by TEGs (or, again, sim-
ply single places) called Pk1, as well as between resource-
release transitions for the last resource (xkLR) and output
transitions (yk), calledPk(L+1). The TEG (or single place) de-
scribing the dynamics between the release of resource ℓ−1
and the allocation of resource ℓ by Sk (i. e., between xk(ℓ−1)R
and xkℓA) is denoted Pkℓ.

Through the same reasoning as applied in Section 4.1,
it is straightforward to conclude that, for each ℓ ∈
{1, . . . , L}, the relationship among counters xkℓA and xkℓR
must respect

βℓ ⊗ (
K
⨀
k=1

xkℓR) ⪯
K
⨀
k=1

xkℓA . (16)

The optimal (just-in-time) schedule for the usage of the re-
sources is sought under the same priority policy as in Sec-

tion 4.2. Let the input-output behavior of each Sk, consid-
ering the resources and ignoring all other subsystems, be
described as usual by yk = Gk ⊗ uk, and let us again as-
sume corresponding references zk to be given. For S1, we
can simply compute the optimal input by u1opt = G1

⃝\ z1.
Based on u1opt, we can obtain the optimal firing sched-
ules for the remaining transitions of S1. For instance, we
have x11Aopt

= P11 ⊗ u1opt and x11Ropt = H
11 ⊗ x11Aopt

. In general,
for each ℓ ∈ {2, . . . , L} we can then successively compute
x1ℓAopt
= P1ℓ ⊗ x1(ℓ−1)Ropt

and x1ℓRopt = H
1ℓ ⊗ x1ℓAopt

.
In order to determine the optimal input u2opt for S

2 —
i. e., the greatest u2 such that G2 ⊗ u2 ⪯ z2 — while guar-
anteeing no interference with the optimal behavior of S1,
based on (16) we must have, for each ℓ ∈ {1, . . . , L},

βℓ ⊗ (x1ℓRopt ⊙ x
2ℓ
R) ⪯ x

1ℓ
Aopt
⊙ x2ℓA . (17)

Notice that, for a just-in-time input u2 computed so that
(17) holds for ℓ = 1, it follows that x21A = P

21 ⊗u2, and hence
x21R = H

21⊗x21A = H
21⊗P21⊗u2. In fact, the optimal input we

seek is such that (17) holds for every ℓ and, furthermore,
such that a just-in-time behavior is enforced throughout
the system, implying x2ℓA = P

2ℓ ⊗ x2(ℓ−1)R for all ℓ ∈ {2, . . . , L}.
This means we can express any x2ℓA in terms of u2; defining
the terms

P2ℓ = {
P21 , if ℓ = 1 ,
P2ℓ ⊗ H2(ℓ−1) ⊗ P2(ℓ−1) , if 2 ≤ ℓ ≤ L ,

we have x2ℓA = P
2ℓ ⊗ u2, and hence x2ℓR = H

2ℓ ⊗ x2ℓA = H
2ℓ ⊗

P2ℓ ⊗ u2. Then, we can rewrite (17) as

βℓ ⊗ (x1ℓRopt ⊙ (H
2ℓ ⊗ P2ℓ ⊗ u2)) ⪯ x1ℓAopt

⊙ (P2ℓ ⊗ u2) ,

which, proceeding similarly to Section 4.2, leads to

u2 ⪯ (H2ℓ ⊗ P2ℓ) ⃝\ [(βℓ ⃝\ (x1ℓAopt
⊙ (P2ℓ ⊗ u2))) ⊙♯ x1ℓRopt].

Define, for each ℓ ∈ {1, . . . , L}, the mapping Φ2ℓ : Σ→ Σ,

Φ2ℓ(u2) = (H2ℓ ⊗ P2ℓ) ⃝\ [(βℓ ⃝\ (x1ℓAopt
⊙ (P2ℓ ⊗ u2))) ⊙♯ x1ℓRopt].

(18)

522 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

We seek the greatest u2 such that u2 ⪯ G2
⃝\ z2 and (∀ℓ ∈

{1, . . . , L}) u2 ⪯ Φ2ℓ(u2). This amounts to looking for the
greatest fixed point of the (isotone) mapping Φ2

: Σ→ Σ,

Φ2
(u2) = u2 ∧ G2

⃝\ z2 ∧
L
⋀
ℓ=1

Φ2ℓ(u2) .

The same arguments presented above can be applied
to determine ukopt for an arbitrary k ∈ {1, . . . ,K}. Defining

Pkℓ = {
Pk1 , if ℓ = 1 ,
Pkℓ ⊗ Hk(ℓ−1) ⊗ Pk(ℓ−1) , if 2 ≤ ℓ ≤ L ,

(19)

and expressing each xkℓA and xkℓR in terms of uk, from (16)
we obtain, for each ℓ ∈ {1, . . . , L},

βℓ ⊗ ((
k−1
⨀
i=1

xiℓRopt) ⊙ (H
kℓ ⊗ Pkℓ ⊗ uk)) ⪯

(
k−1
⨀
i=1

xiℓAopt
) ⊙ (Pkℓ ⊗ uk) .

Then, proceeding as before and defining the mapping
Φkℓ : Σ→ Σ,

Φkℓ(uk) = (Hkℓ ⊗ Pkℓ) ⃝\

[(βℓ ⃝\ ((
k−1
⨀
i=1

xiℓAopt
) ⊙ (Pkℓ ⊗ uk))) ⊙♯ (

k−1
⨀
i=1

xiℓRopt)]

for each ℓ ∈ {1, . . . , L}, the greatest uk such that uk ⪯ Gk
⃝\ zk

anduk ⪯ Φkℓ(uk) for all ℓ ∈ {1, . . . , L} is givenby thegreatest
fixed point of Φk

: Σ→ Σ,

Φk
(uk) = uk ∧ Gk

⃝\ zk ∧
L
⋀
ℓ=1

Φkℓ(uk) .

4.4 Supplementary remarks

Proposition 21 (Adapted from [10]). Let Σ̃ = {s ∈ Σ | (∀t ∈
ℤ) s(t) ∉ {ε,⊤}}. For any a ∈ Σ̃, the mapping Πa : Σ → Σ,
x Ü→ a⊙x, is dually residuated. For anyb ∈ Σ,Π♭a(b), denoted
b ⊙♭ a, is the least x ∈ Σ such that a ⊙ x ⪰ b.

Proof. For an arbitrary a ∈ Σ̃, we have (∀t ∈ ℤ) a(t)⊗⊤ = ⊤,
therefore Πa(s⊤) = a ⊙ s⊤ = s⊤. Moreover, since ⊙ dis-
tributes over ∧ (cf. Def. 18), for any A ⊆ Σ it holds that
Πa(⋀x∈A x) = a ⊙ (⋀x∈A x) = ⋀x∈A(a ⊙ x) = ⋀x∈A Πa(x).
The result then follows from Theorem 11.

Remark 22 ([10]). Given two counters x1, x2 ∈ Σ, the series
s ∈ ℤmin[[δ]] defined by (∀t ∈ ℤ) s(t) = x1(t) − x2(t) is not
necessarily a counter; x1 ⊙♯ x2 is the greatest counter less
than or equal to s (in the order ofℤmin[[δ]]). Similarly, pro-
vided x2 ∈ Σ̃ (cf. Proposition 21), x1⊙♭ x2 is the least counter
greater than or equal to s. ⋄

Note that, in Proposition 21, the restriction of a to the
subset Σ̃ is necessary for Πa to meet the conditions of The-
orem 11. In fact, if a(τ) = ε for some τ ∈ ℤ, (a ⊙ s⊤)(τ) =
ε ⊗ ⊤ = ε, so a ⊙ s⊤ ̸= s⊤. If a(ρ) = ⊤ for some ρ ∈ ℤ, one
can show that (∃A ⊆ Σ)Πa(⋀x∈A x) ̸= ⋀x∈A Πa(x). Taking,
for instance, A = Σ̃, as ⋀x∈Σ̃ x = sε we have Πa(⋀x∈Σ̃ x) =
a ⊙ (⋀x∈Σ̃ x) = sε; on the other hand, for any x ∈ Σ̃ we have
x(ρ) ̸= ε and hence (a ⊙ x)(ρ) = ⊤ ⊗ x(ρ) = ⊤, showing that
(⋀x∈Σ̃ Πa(x))(ρ) = (⋀x∈Σ̃(a ⊙ x))(ρ) = ⊤.

Remark 23. Since we take a term like ηδτ to mean that a
transition has accumulated η firings by time τ, it is rea-
sonable to assume that the counters u, xi, and y (cf. Sec-
tion 2.3) are elements of Σ̃. Note, additionally, that for any
finite subset B ⊆ Σ̃ one has⨂s∈B s ∈ Σ̃ and⨀s∈B s ∈ Σ̃. ⋄

5 Optimal control of TEGs with
resource sharing and
output-reference update

In this section, as the main contribution of this paper, we
incorporate the ideas discussed in Section 3 to the class of
systems studied in Section 4 by showing how to determine
the optimal (just-in-time) control inputs in face of changes
in the output-references for TEGs that share resources un-
der a givenpriority policy.Weagain emphasize that, in this
setting, the overall system is not a TEG.

This section is structured similarly to Section 4, start-
ing with the simple case of a single shared resource (Sec-
tions 5.1 and 5.2) and then generalizing to the case of mul-
tiple resources (Section 5.3).

5.1 Problem formulation: the case of a
single shared resource

Consider the system from Fig. 5 and assume every sub-
system Sk is operating optimally with respect to its own
output-reference zk, according to the priority-based strat-
egy introduced in Section 4.1. Now, suppose that at time T
each Sk has its reference zk updated to zk � (with the possi-
bility that zk � = zk for some of them). Analogously to Sec-
tion 3, we seek, for each k, the input uk�opt which leads the
corresponding output to optimally track zk � while preserv-
ing the inputukopt up to timeT. The crucial difference is that
now the priority scheme must be observed and, further-
more, the past resource allocations by subsystems with
lower priority must also be respected. Such allocations are
relevant — despite having occurred before time T — be-

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 523

cause the respective resource releasesmay take place after
T, thus influencing the availability of the resource in the
meantime.

For the purpose of the discussion to follow, let us fix
an arbitrary k ∈ {1, . . . ,K}. When updating the input of Sk,
we require minimal interference from lower-priority sub-
systems (i. e., all Sj with j ∈ {k + 1, . . . ,K}). This means
that we have to respect past resource allocations in these
subsystems, butmay ignore future ones. Recall that xjAopt

(t)
is the accumulated number of firings originally scheduled
for xjA up to time t. Respecting the past means that the fir-
ingswhich have already occurred by time T (when the new
references are received) cannot be revoked. On the other
hand, the prospective firings that have not taken place by
time T can still be postponed and hence, from the point
of view of Sk, ignored. In other words, for the sake of de-
termining uk�opt = x

k�
Aopt

with minimal interference from Sj,
we preserve the terms xjA(t) = x

j
Aopt
(t) for t ≤ T and neglect

all new firings by making xjA(t) = xjAopt
(T) for t > T. Re-

calling Remark 14, this is precisely captured by the counter
r ♯T (x

j
Aopt
).

In sum, (i) we must compute xk�Aopt
in decreasing order

of priority, i. e., start from k = 1 and proceed up to k = K;
(ii) when calculating xk�Aopt

for k > 1, we must consider xi�Aopt

for every i ∈ {1, . . . , k − 1}; (iii) when calculating xk�Aopt
for

k < K, wemust consider r ♯T (x
j
Aopt
) for every j ∈ {k+1, . . . ,K}.

It will be convenient to define the following terms:

Hk
A =

k−1
⨀
i=1

xi�Aopt
, Hk

R =
k−1
⨀
i=1
(Gi⊗ xi�Aopt

) ,

Lk
A =

K
⨀
j=k+1

r ♯T (x
j
Aopt
) , Lk

R =
K
⨀
j=k+1
(Gj⊗ r ♯T (x

j
Aopt
)) .

Hk
A combines the counters xi�Aopt

of all subsystems Si with
priority higher than that of Sk, referring to the already-
updated optimal schedules of resource-allocation transi-
tions xiA with respect to the corresponding updated refer-
ences zi�; accordingly, Hk

R combines the counters xi�Ropt =
Gi ⊗ xi�Aopt

representing the respective resource-release
events. In a similarway,Lk

A combines the counters r ♯T (x
j
Aopt
)

of all subsystems Sj with priority lower than that of Sk,
representing the past firings (up to time T) of resource-
allocation transitions xjA and neglecting their firings af-
ter time T, whereas Lk

R gathers the respective resource-
release events by combining the counters Gj⊗ r ♯T (x

j
Aopt
); it

should be emphasized that, even thoughwe only consider
the resource allocations by Sj up to time T, the respective
resource-release events may take place after T, so in gen-
eral one may have Gj⊗ r ♯T (x

j
Aopt
) ̸= r ♯T (x

j
Ropt
).

Thus, based on (9) and on the foregoing discussion,
in order to update uk = xkA without compromising the per-
formance of higher-priority subsystems and, at the same
time, ensuring minimal interference of lower-priority sub-
systems while taking into account their past resource allo-
cations, we must respect

β ⊗ (Hk
R ⊙ (G

k⊗ xkA) ⊙ L
k
R) ⪯ Hk

A⊙ x
k
A ⊙ L

k
A , (⋆)

where it is understood that for k = 1 (resp. k = K), the
degenerate terms H1

A and H1
R (resp. L

K
A and LK

R) are to be
neglected.

The problem of determining the new optimal input
uk�opt (= x

k�
Aopt

) with respect to a reference zk � given at time
T can be formulated as follows: find the greatest element
of the set

Fk = {xkA ∈ Σ |G
k⊗ xkA ⪯ z

k � and (⋆) and

rT (x
k
A) = rT (x

k
Aopt
)}. (20)

Remark 24. It should be clear that, for any k ∈ {1, . . . ,K},
if zi� = zi for all i ∈ {1, . . . , k}, then xi�Aopt

= xiAopt
for all

i ∈ {1, . . . , k}. Nonetheless, if zi� ̸= zi for some i < k, in
general it may be that xk�Aopt

̸= xkAopt
even if zk � = zk (see

Example 28). ⋄

5.2 Optimal update of the inputs: the case of
a single shared resource

We set out to look for the greatest element of set Fk (de-
fined as in (20)) by proposing a slight generalization of
Theorem 13.

Proposition 25. Let D and C be complete idempotent
semirings, f1, f2 : D → C residuated mappings, ψ : D → C,
and c ∈ C. Consider the set

Sψ
def= {x ∈ D | f1(x) ⪯ ψ(x) and f2(x) = c}

and the isotone mapping Ω : D → D,

Ω(x) = x ∧ f ♯1 (ψ(x)) ∧ f
♯
2 (c) .

If Sψ ̸= 0, we have⨁x∈Sψ
x = ⨁{x ∈ D |Ω(x) = x}.

Proof. Define the set

S̃ψ = {x ∈ D | f1(x) ⪯ ψ(x) and f2(x) ⪯ c}

and denote χ =⨁x∈Sψ
x and χ̃ =⨁x∈S̃ψ

x. Note that

f1(x) ⪯ ψ(x) and f2(x) ⪯ c

⇔ x ⪯ f ♯1 (ψ(x)) and x ⪯ f
♯
2 (c) (see Def. 8)

⇔ x ⪯ f ♯1 (ψ(x)) ∧ f
♯
2 (c)

⇔ x = x ∧ f ♯1 (ψ(x)) ∧ f
♯
2 (c) = Ω(x) .

524 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

So, we can rewrite S̃ψ as S̃ψ = {x ∈ D | x = Ω(x)}, clearly
implying χ̃ = ⨁{x ∈ D |Ω(x) = x}. Then, it also follows
from Remark 4 that χ̃ ∈ S̃ψ.

Now, assume Sψ ̸= 0. As Sψ ⊆ S̃ψ, this implies
(∃x̃ ∈ S̃ψ) f2(x̃) = c. Taking such an x̃, we have x̃ ⪯ χ̃ and
so c = f2(x̃) ⪯ f2(χ̃) (as f2 is isotone). But we saw above that
χ̃ ∈ S̃ψ, meaning f2(χ̃) ⪯ c, so f2(χ̃) = c. Therefore, χ̃ ∈ Sψ
and hence χ̃ ⪯ χ. On the other hand, Sψ ⊆ S̃ψ implies χ ⪯ χ̃,
showing that χ̃ = χ.

Now, let us once more fix an arbitrary k ∈ {1, . . . ,K},
and assume xi�Aopt

has been determined for each (if any) i ∈
{1, . . . , k − 1}. Seeing that (⋆) is equivalent to

Gk⊗ xkA ⪯ (β ⃝\ (Hk
A⊙ x

k
A ⊙ L

k
A)) ⊙
♯ (Hk

R ⊙ L
k
R) ,

by defining the mapping Ψk : Σ→ Σ,

Ψk(x) = zk � ∧ [(β ⃝\ (Hk
A⊙ x ⊙ L

k
A)) ⊙
♯ (Hk

R ⊙ L
k
R)]

we can write

Fk = {x ∈ Σ |Gk⊗ x ⪯ Ψk(x) and rT (x) = rT (x
k
Aopt
)} .

This reveals a correspondence between set Fk and set Sψ
from Proposition 25: take D and C both as Σ, f1 as LGk , ψ
as Ψk, f2 as rT , and c as rT (x

k
Aopt
). So, as long as Fk ̸= 0, the

conditions from the proposition aremet and, recalling that
r ♯T ∘ rT = r

♯
T , the optimal update of xkA is the greatest fixed

point of the (isotone) mapping Γk : Σ→ Σ,

Γk(x) = x ∧ Gk
⃝\Ψk(x) ∧ r ♯T (x

k
Aopt
) . (21)

Next, we must investigate when Fk is nonempty. To that
end, considering the set

F̃k = {xkA ∈ Σ | (⋆) and rT (x
k
A) = rT (x

k
Aopt
)} ,

we want to show that

xkA
def= ⋀

x∈F̃k

x ∈ F̃k , (22)

i. e., that there exists a (unique) least counter, which we
will denote by xkA, satisfying both (⋆) and rT (x

k
A) = rT (x

k
Aopt
).

Define the mapping ϒk : Σ→ Σ,

ϒk(x) = [(β ⊗ (Hk
R ⊙ (G

k⊗ x) ⊙ Lk
R)) ⊙
♭

(Hk
A⊙ L

k
A)] ⊕ rT (x

k
Aopt
) ⊕ x .

Note that, from Proposition 21 and Remark 23, the map-
ping Π(Hk

A⊙L
k
A)
is dually residuated, so ϒk is well defined.

Since x ⪰ rT (x) for any x ∈ Σ, for any element x̃kA of F̃k it

follows that x̃kA ⪰ rT (x̃
k
A) = rT (x

k
Aopt
). As, in addition, (⋆) is

equivalent to

(β ⊗ (Hk
R ⊙ (G

k⊗ xkA) ⊙ L
k
R)) ⊙
♭ (Hk

A⊙ L
k
A) ⪯ x

k
A ,

one can see that ϒk(x̃kA) = x̃
k
A, i. e., every element of F̃k is a

fixed point of ϒk; in short, F̃k ⊆ {x ∈ Σ |ϒk(x) = x}. Hence,
denoting

⋀ϒk
def= ⋀{x ∈ Σ |ϒk(x) = x}

(which, according to Remark 4, is the least fixed point of
ϒk), we have

xkA ⪰ ⋀ϒk . (23)

To prove the converse inequality, we proceed to show that
⋀ϒk is an element of F̃k .

Proposition 26. ⋀ϒk
def= ⋀{x ∈ Σ |ϒk(x) = x} ∈ F̃k .

Proof. Any xkA ∈ Σ such that ϒ
k(xkA) = x

k
A satisfies

(β ⊗ (Hk
R ⊙ (G

k⊗ xkA) ⊙ L
k
R)) ⊙
♭ (Hk

A⊙ L
k
A) ⪯ x

k
A

and, by consequence (cf. Def. 8), also satisfies (⋆). Accord-
ing to Remark 4, ⋀ϒk is a fixed point of ϒk, therefore (⋆)
holds for xkA = ⋀ϒk and it suffices to prove that rT(⋀ϒk) =
rT (x

k
Aopt
).
⋀ϒk being a fixed point of ϒ

k implies⋀ϒk ⪰ rT (x
k
Aopt
), so

rT(⋀ϒk) ⪰ rT(rT (x
k
Aopt
)) = rT (x

k
Aopt
).

Moreover, r ♯T (x
k
Aopt
) is a fixed point of ϒk, as can be seen

from the following argument. Since we assume xi�Aopt
to be

given for each i ∈ {1, . . . , k − 1}, according to (⋆) we know
x(k−1)Aopt

� fulfills

β ⊗ (H(k−1)R ⊙ (G
(k−1)⊗ x(k−1)Aopt

�) ⊙ L(k−1)R) ⪯

H(k−1)A ⊙ x
(k−1)
Aopt

� ⊙ L(k−1)A . (24)

But note that

H(k−1)R ⊙ (G
(k−1)⊗ x(k−1)Aopt

�) = Hk
R ,

L(k−1)R = (G
k⊗ r ♯T (x

k
Aopt
)) ⊙ Lk

R ,

H(k−1)A ⊙ x
(k−1)
Aopt

� = Hk
A , and

L(k−1)A = r
♯
T (x

k
Aopt
) ⊙ Lk

A ,

so (24) is equivalent to

β ⊗ (Hk
R ⊙ (G

k⊗ r ♯T (x
k
Aopt
)) ⊙ Lk

R) ⪯ (H
k
A⊙ r
♯
T (x

k
Aopt
) ⊙ Lk

A)

which, in turn, implies

(β ⊗ (Hk
R ⊙ (G

k⊗ r ♯T (x
k
Aopt
)) ⊙ Lk

R)) ⊙
♭ (Hk

A⊙ L
k
A) ⪯ r

♯
T (x

k
Aopt
).

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 525

This, together with the fact that r ♯T (x
k
Aopt
) ⪰ rT (x

k
Aopt
), im-

plies ϒk(r ♯T (x
k
Aopt
)) = r ♯T (x

k
Aopt
). Hence, ⋀ϒk ⪯ r

♯
T (x

k
Aopt
) and,

as rT is isotone and rT ∘ r
♯
T = rT , we have rT(⋀ϒk) ⪯

rT(r
♯
T (x

k
Aopt
)) = rT (x

k
Aopt
), which concludes the proof.

A direct consequence of Proposition 26 is that xkA ⪯
⋀ϒk , which, combined with (23), implies

xkA = ⋀ϒk , (25)

thus proving that (22) holds. Isotony of LGk then implies

Fk ̸= 0 ⇔ Gk ⊗ xkA ⪯ z
k � . (26)

In case Gk ⊗ xkA º z
k � (and hence, according to (26),

Fk = 0), this means the past inputs of Sk itself, com-
bined with the (updated) operation of higher-priority sub-
systems and with the past inputs of lower-priority ones,
make it impossible for Sk to respect zk �. As (⋆) and rT (x

k
A) =

rT (x
k
Aopt
) are irrevocable, we will then seek the least way to

relax zk � (i. e., look for the least counter zk �� ⪰ zk �) such
that the set

Fk
zk�� = {x

k
A ∈ Σ |G

k⊗ xkA ⪯ z
k �� and (⋆) and

rT (x
k
A) = rT (x

k
Aopt
)}

is nonempty. The solution is given by the following result.

Proposition 27. The least counter zk �� ⪰ zk � such that
Fk
zk�� ̸= 0 is z

k �� = zk � ⊕ (Gk⊗ xkA).

Proof. Taking zk �� = zk �⊕(Gk⊗xkA), it can be readily checked
that xkA ∈ F

k
zk�� , therefore F

k
zk�� ̸= 0; the proof then proceeds

by direct analogy with that of Proposition 16.

Following the same reasoning as before, we define the
mapping Ψk

zk�� : Σ→ Σ,

Ψk
zk�� (x) = z

k �� ∧ [(β ⃝\ (Hk
A⊙ x ⊙ L

k
A)) ⊙
♯ (Hk

R ⊙ L
k
R)],

with zk �� = zk � ⊕ (Gk ⊗ xkA). Since we know from Proposi-
tion 27 that Fk

zk�� ̸= 0, we can again apply Proposition 25 —
only now taking ψ as Ψk

zk�� instead of Ψk — to finally con-
clude that xk�Aopt

is the greatest fixed point of the (isotone)
mapping Γkzk�� : Σ→ Σ,

Γkzk�� (x) = x ∧ G
k
⃝\Ψk

zk�� (x) ∧ r
♯
T (x

k
Aopt
) . (27)

Example 28. Consider the system from Example 20
(Fig. 8), with S1, S2, and S3 operating under the ob-
tained optimal schedules with respect to references z1,
z2, and z3, respectively. Now, suppose new references
z1� = eδ36 ⊕ 1δ46 ⊕ 3δ54 ⊕ 5δ55 ⊕ 6δ+∞, z2� = z2, and
z3� = z3 are received at time T = 27. Observing the pri-

ority policy, we start by updating the input of S1. Recall
that, for k = 1, the terms H1

A and H1
R are not well de-

fined and hence are disregarded in (⋆). For the relevant
terms, we have L1

A = r
♯
T (x

2
Aopt
) ⊙ r ♯T (x

3
Aopt
) = eδ24 ⊕ 1δ+∞ and

L1
R = (G

2 ⊗ r ♯T (x
2
Aopt
)) ⊙ (G3 ⊗ r ♯T (x

3
Aopt
)) = eδ26 ⊕ 1δ+∞. Note

thatL1
A refers to all allocations of the resource by S

2 and S3

up to time T = 27 — in this case, just one allocation (by S3)
at t = 25 — and L1

R represents the corresponding resource
releases. These two terms combined inform that one in-
stance of the resource is occupied from t = 25 until t = 27;
inequality (⋆) accordingly imposes a hard condition on x1A.
The second hard condition is to preserve the past inputs
of S1 itself, meaning rT (x

1
A) = rT (x

1
Aopt
). For this example,

rT (x
1
Aopt
) = eδ27 ⊕ εδ+∞, so the restriction is simply that

there can be no firing of x1A (and hence nor of u
1) before or

at time T = 27. DefiningF 1 as in (20), through (26) one can
check that F 1 ̸= 0; then, we can directly look for the great-
est fixed point of Γ1 (defined as in (21)), which is x1�Aopt

=
eδ33 ⊕ 1δ42 ⊕ 2δ43 ⊕ 3δ47 ⊕ 4δ51 ⊕ 5δ52 ⊕ 6δ+∞(= u1�opt). Then,
x1�Ropt = eδ

36 ⊕ 1δ45 ⊕ 2δ46 ⊕ 3δ50 ⊕4δ54 ⊕ 5δ55 ⊕ 6δ+∞(= y1�opt).
We now proceed to update x2A. We have H2

A = x1�Aopt
,

H2
R = x

1�
Ropt , L

2
A = r

♯
T (x

3
Aopt
) = eδ24 ⊕ 1δ+∞, and L2

R = G
3 ⊗

r ♯T (x
3
Aopt
) = eδ26 ⊕ 1δ+∞. Moreover, rT (x

2
Aopt
) = eδ27 ⊕ εδ+∞.

We then verify thatF2 = 0, sowe look for the least z2�� ⪰ z2�

such that F2
z2�� ̸= 0. According to Proposition 27, we obtain

z2�� = eδ39⊕1δ50⊕2δ61⊕3δ+∞. Computing the greatest fixed
point of Γ2z2�� then yields x

2�
Aopt
= eδ29 ⊕ 1δ36 ⊕ 2δ56 ⊕ 3δ+∞(=

u2�opt) and x2�Ropt = eδ
34 ⊕ 1δ41 ⊕ 2δ61 ⊕ 3δ+∞(= y2�opt). Notice

that x2�Aopt
̸= x2Aopt

even though z2� = z2 (cf. Remark 24).
Finally, for S3 we getH3

A = x
1�
Aopt
⊙ x2�Aopt
= eδ29 ⊕ 1δ33 ⊕

2δ36 ⊕ 3δ42 ⊕ 4δ43 ⊕ 5δ47 ⊕ 6δ51 ⊕ 7δ52 ⊕ 8δ56 ⊕ 9δ+∞ and
H3

R = x
1�
Ropt ⊙ x

2�
Ropt = eδ

34 ⊕ 1δ36 ⊕ 2δ41 ⊕ 3δ45 ⊕ 4δ46 ⊕ 5δ50 ⊕
6δ54 ⊕ 7δ55 ⊕ 8δ61 ⊕ 9δ+∞. Recall that, for k = K = 3, the
terms L3

A and L3
R are not well defined and hence are dis-

regarded in (⋆). With rT (x
3
Aopt
) = eδ24 ⊕ 1δ27 ⊕ εδ+∞, we

have F3 ̸= 0, so we compute the greatest fixed point of Γ3

and obtain x3�Aopt
= eδ24 ⊕ 1δ29 ⊕ 2δ38 ⊕ 3δ+∞(= u3�opt). Then,

x3�Ropt = eδ
26 ⊕ 1δ31 ⊕ 2δ40 ⊕ 3δ+∞(= y3�opt).

The updated optimal schedules are shown in
Fig. 10. ⋄

5.3 Extension to the case of multiple shared
resources

Consider the system from Fig. 9, with every subsystem Sk

following the optimal schedule with respect to output-
reference zk, obtained according to Section 4.3. Suppose

526 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

Figure 10: Updated optimal schedules obtained in Example 28; the gray, black, and crosshatched bars represent the operation of S1, S2, and
S3, respectively, whereas the dashed bars are the delays imposed by the resource.

that each reference zk is updated to zk � at time T (with
perhaps zk � = zk for some of them). In this section we
seek, for each k, the optimal input uk�opt which preserves
ukopt up to time T and results in the output yk�opt that tracks
zk � as closely as possible, without interfering with the op-
eration of higher-priority subsystems andwhile respecting
the past resource allocations of every resource by lower-
priority subsystems.

As usual, we base the following discussion on a fixed
but arbitrary k ∈ {1, . . . ,K}. Let us denote the counter
representing the updated optimal firing schedule for the
resource-allocation transition xkℓA by xkℓ�Aopt

. Arguing as in
Section 5.1, the task at hand canbe summarized as follows:
(i)wemust computeuk�opt in decreasing order of priority; (ii)
when calculating uk�opt for k > 1, we must consider xiℓ�Aopt

for
every i ∈ {1, . . . , k − 1} and for all ℓ ∈ {1, . . . , L}; (iii) when
calculating uk�opt for k < K, we must consider r ♯T (x

jℓ
Aopt
) for

every j ∈ {k + 1, . . . ,K} and for all ℓ ∈ {1, . . . , L}.
Still along the lines of Section 5.1, define the terms

Hkℓ
A =

k−1
⨀
i=1

xiℓ�Aopt
, Hkℓ

R =
k−1
⨀
i=1

xiℓ�Ropt ,

Lkℓ
A =

K
⨀
j=k+1

r ♯T (x
jℓ
Aopt
) , Lkℓ

R =
K
⨀
j=k+1
(H jℓ⊗ r ♯T (x

jℓ
Aopt
)) ,

which can be explained as in the referred section, only
now for each resource ℓ. We aim at updating uk without
compromising the performance of higher-priority subsys-
tems and, at the same time, ensuringminimal interference
from lower-priority subsystems while taking into account
their past allocations of all resources. Based on (16), we
must consequently respect, for every ℓ ∈ {1, . . . , L},

β ⊗ (Hkℓ
R ⊙ x

kℓ
R ⊙ L

kℓ
R) ⪯ Hkℓ

A ⊙ x
kℓ
A ⊙ L

kℓ
A , (⋆⋆)

where it is understood that for k = 1 (resp. k = K), the
degenerate terms H1ℓ

A and H1ℓ
R (resp. LKℓ

A and LKℓ
R) are to

be neglected.
We can then formulate the problem of optimally up-

dating the input uk�opt with respect to a reference zk � given
at time T as follows: find the greatest element of the set

Mk = {uk ∈ Σ |Gk⊗ uk ⪯ zk � and rT (u
k) = rT (u

k
opt)

and (⋆⋆) holds for all ℓ ∈ {1, . . . , L}}.

Recall fromSection 4.3 that we canwrite xkℓA = P
kℓ⊗uk and

xkℓR = H
kℓ ⊗ Pkℓ ⊗ uk, with Pkℓ defined as in (19). Applying

this to (⋆⋆) gives

β⊗(Hkℓ
R ⊙(H

kℓ⊗Pkℓ⊗uk)⊙Lkℓ
R) ⪯ Hkℓ

A ⊙(P
kℓ⊗uk)⊙Lkℓ

A , (28)

which is equivalent to

uk ⪯ (Hkℓ ⊗ Pkℓ) ⃝\ [(βℓ ⃝\ (Hkℓ
A ⊙ (P

kℓ ⊗ uk) ⊙ Lkℓ
A)) ⊙

♯

(Hkℓ
R ⊙ L

kℓ
R)].

Define the mappings Ψkℓ : Σ→ Σ,

Ψkℓ(x) = (Hkℓ ⊗ Pkℓ) ⃝\

[(βℓ ⃝\ (Hkℓ
A ⊙ (P

kℓ ⊗ x) ⊙ Lkℓ
A)) ⊙

♯ (Hkℓ
R ⊙ L

kℓ
R)],

ℓ ∈ {1, . . . , L}, and Ψk
: Σ→ Σ,

Ψk
(x) = Gk

⃝\ zk � ∧
L
⋀
ℓ=1

Ψkℓ(x) .

We can then rewriteMk as

Mk = {x ∈ Σ | x ⪯ Ψk
(x) and rT (x) = rT (u

k
opt)}.

Note that x ⪯ Ψk
(x) is equivalent to IdΣ(x) ⪯ Ψ

k
(x), where

IdΣ is the identitymappingonΣ. It is trivial to verify that IdΣ
is residuated and that Id♯Σ = IdΣ. Therefore, there exists a
correspondence betweenMk and Sψ from Proposition 25:

takeD and C both as Σ, f1 as IdΣ, ψ as Ψk, f2 as rT , and c as
rT (u

k
opt). ProvidedMk ̸= 0, the proposition entails that uk�opt

canbedeterminedby computing the greatest fixedpoint of
the (isotone) mapping Λk : Σ→ Σ,

Λk(x) = x ∧ Ψk
(x) ∧ r ♯T (u

k
opt) .

In order to check whether Mk is nonempty, consider
the set

M̃k = {uk ∈ Σ | (⋆⋆) holds for all ℓ ∈ {1, . . . , L} and

rT (u
k) = rT (u

k
opt)}.

We want to show that

uk def= ⋀
x∈M̃k

x ∈ M̃k ,

G. Schafaschek et al., TEGs with resource sharing and output-reference update | 527

i. e., that there exists a (unique) least counter uk satisfying
(⋆⋆) for all ℓ ∈ {1, . . . , L} and rT (u

k) = rT (u
k
opt). Define, for

each ℓ ∈ {1, . . . , L}, the mapping ϒkℓ : Σ→ Σ,

ϒkℓ(x) = Pkℓ
⃝\ [(β ⊗ (Hkℓ

R ⊙ (H
kℓ ⊗ Pkℓ ⊗ x) ⊙ Lkℓ

R))⊙
♭

(Hkℓ
A ⊙ L

kℓ
A)] ,

and also the mapping ϒk : Σ→ Σ,

ϒk(x) = x ⊕ rT (u
k
opt) ⊕

L
⨁
ℓ=1

ϒkℓ(x) .

Since (⋆⋆) is equivalent to (28)which, in turn, is equivalent
to

Pkℓ
⃝\ [(β ⊗ (Hkℓ

R ⊙ (H
kℓ ⊗ Pkℓ ⊗ uk) ⊙ Lkℓ

R)) ⊙
♭

(Hkℓ
A ⊙ L

kℓ
A)] ⪯ u

k ,

one can see that for any element ũk of M̃k we have
ϒkℓ(ũk) ⪯ ũk for all ℓ. As ũk ⪰ rT (ũ

k) = rT (u
k
opt), it actually

holds that ϒk(ũk) = ũk, implying M̃k ⊆ {x ∈ Σ |ϒk(x) = x}.
Hence, denoting

⋀
ϒ
k

def= ⋀{x ∈ Σ |ϒk(x) = x}

we have

uk ⪰ ⋀
ϒ
k .

By arguments parallel to those put forth in Section 5.2, it
can be shown that the converse inequality also holds, so
we have

uk = ⋀
ϒ
k .

Analogously to (26), this leads to the conclusion that

Mk ̸= 0 ⇔ Gk ⊗ uk ⪯ zk � .

In caseGk⊗uk º zk �, we look for the least counter zk �� ⪰ zk �

such that the set

Mk
zk�� = {u

k ∈ Σ |Gk⊗ uk ⪯ zk �� and rT (u
k) = rT (u

k
opt)

and (⋆⋆) holds for all ℓ ∈ {1, . . . , L}}.

is nonempty. A straightforward adaptation of Proposi-
tion 27 gives the solution zk �� = zk � ⊕ (Gk⊗ uk).

Following the same reasoning as before, we define the
mapping Ψk

zk�� : Σ→ Σ,

Ψk
zk�� (x) = G

k
⃝\ zk �� ∧

L
⋀
ℓ=1

Ψkℓ(x) ,

with zk �� = zk � ⊕ (Gk ⊗ uk). We can then once more apply
Proposition 25, only now taking ψ as Ψk

zk�� instead of Ψk,
which leads to the conclusion that uk�opt is the greatest fixed
point of the (isotone) mapping Λk

zk�� : Σ→ Σ,

Λk
zk�� (x) = x ∧ Ψ

k
zk�� (x) ∧ r

♯
T (u

k
opt) .

6 Conclusion

This paper solves the problem of ensuring that a number
of TEGs competing for the use of shared resources operate
optimally (in a just-in-time sense) even in face of changes
in their output-references. The proposed method assumes
a prespecified priority policy on the component TEGs, and
the optimal inputs are computed under the rule that the
operation of lower-priority subsystems cannot interfere
with the performance of higher-priority ones. However,
when higher-priority subsystems recompute their inputs
after a change in the reference signal occurs, they need
of course to respect past resource allocations by lower-
priority subsystems. We also study the case in which the
limited availability of the resources renders it impossible
to respect the updated output-reference for one or more of
the subsystems. In this case, we show how to relax such
references in an optimal way so that the ultimately ob-
tained inputs lead to tracking them as closely as possible.
The results are illustrated through simple examples. Ex-
ploiting the generality of the method and applying it to a
larger,more realistic case study is a subject for futurework.

Funding: Financial support fromDeutsche Forschungsge-
meinschaft (DFG) via grant RA 516/14-1 is gratefully ac-
knowledged.

References
1. B. Addad, S. Amari and J.-J. Lesage. Networked conflicting

timed event graphs representation in (max,+) algebra. Discrete
Event Dynamic Systems, 22(4):429–449, 2012.

2. X. Allamigeon, V. Bœuf and S. Gaubert. Performance evaluation
of an emergency call center: tropical polynomial systems
applied to timed petri nets. In Formal Modeling and Analysis
of Timed Systems (FORMATS 2015), Springer, 2015.

3. F. Baccelli, G. Cohen, G. J. Olsder and J.-P. Quadrat.
Synchronization and Linearity: an Algebra for Discrete Event
Systems. Wiley, 1992.

4. T. Blyth and M. Janowitz. Residuation Theory. Pergamon press,
1972.

5. W.M. Boussahel, S. Amari and R. Kara. Analytic evaluation of
the cycle time on networked conflicting timed event graphs
in the (max,+) algebra. Discrete Event Dynamic Systems,
26(4):561–581, 2016.

6. G. Cohen, S. Gaubert and J. P. Quadrat. Asymptotic throughput
of continuous timed petri nets. In 34th IEEE Conference on
Decision and Control (CDC), New Orleans, LA, USA, 1995.

7. G. Cohen, S. Gaubert and J. P. Quadrat. Algebraic system
analysis of timed petri nets. In Idempotency, J. Gunawardena
Ed. Collection of the Isaac Newton Institute, pages 145–170,
1998.

528 | G.Schafaschek et al., TEGs with resource sharing and output-reference update

8. A Corréïa, A. Abbas-Turki, R. Bouyekhf and A. El Moudni.
A dioid model for invariant resource sharing problems.
IEEE Transactions on Systems, Man, and Cybernetics,
39(4):770–781, 2009.

9. B. Cottenceau, L. Hardouin and J. Trunk. A C++ toolbox to
handle series for event-variant/time-variant (max,+) systems.
In 15th International Workshop on Discrete Event Systems
(WODES’20) — to appear.

10. L. Hardouin, B. Cottenceau, S. Lagrange and E. Le Corronc.
Performance analysis of linear systems over semiring with
additive inputs. In 9th International Workshop on Discrete Event
Systems (WODES), Göteborg, Sweden, 2008.

11. L. Hardouin, B. Cottenceau, Y. Shang and J. Raisch. Control and
state estimation for max-plus linear systems. Foundations and
Trends in Systems and Control, 6(1):1–116, 2018.

12. E. Menguy, J.-L. Boimond, L. Hardouin and J.-L. Ferrier.
Just-in-time control of timed event graphs: update of reference
input, presence of uncontrollable input. IEEE Transactions on
Automatic Control, 45(11):2155–2159, 2000.

13. S. Moradi, L. Hardouin and J. Raisch. Optimal control of a
class of timed discrete event systems with shared resources,
an approach based on the hadamard product of series in
dioids. In 56th IEEE Conference on Decision and Control (CDC),
Melbourne, Australia, 2017.

14. G. Schafaschek, S. Moradi, L. Hardouin and J. Raisch. Optimal
control of timed event graphs with resource sharing and
output-reference update. In 15th International Workshop on
Discrete Event Systems (WODES’20) — to appear.

15. T. J. J. van den Boom and B. De Schutter. Modelling and control
of discrete event systems using switching max-plus-linear
systems. Control Engineering Practice, 14(10):1199–1211, 2006.

Bionotes
Germano Schafaschek
Fachgebiet Regelungssysteme, Technische
Universität Berlin, Berlin, Germany
schafaschek@control.tu-berlin.de

Germano Schafaschek studied Control and Automation Engineering
at the Federal University of Santa Catarina (UFSC), Florianópolis,
Brazil. He received a Master’s degree in Automation Systems Engi-
neering from the same university. Since 2016, he has been a teach-
ing and research assistant at the Control Systems Group (Fachgebiet
Regelungssysteme) of TU Berlin, Germany, where he also pursues
his PhD in a joint (cotutelle) program with the University of Angers,
France. His current research is mainly focused on modeling and con-
trol of timed discrete-event systems in tropical algebras. He is also
interested in the theory of formal languages and automata, Petri
nets theory, and supervisory control theory for timed and untimed
discrete-event systems.

Laurent Hardouin
Laboratoire Angevin de Recherche en
Ingénierie des Système, Université
d’Angers, Angers, France
laurent.hardouin@univ-angers.fr

Laurent Hardouin received the degrees of Master and Ph.D. in
Acoustic and Control from the University of Poitiers, France, in 1990
and 1993, respectively. He received the Habilitation Diriger des
Recherches from the University of Angers, France, in 2004. He is cur-
rently Full Professor of Polytech Angers at the University of Angers,
France. He specializes in discrete-event systems, max-plus alge-
bra, and interval analysis with applications to computer networks,
manufacturing systems, transportation systems, and robotics.

Jörg Raisch
Fachgebiet Regelungssysteme, Technische
Universität Berlin, Berlin, Germany
raisch@control.tu-berlin.de

Jörg Raisch studied Engineering Cybernetics at Stuttgart University
and Control Systems at UMIST, Manchester, UK. He received a PhD
and a Habilitation degree, both from Stuttgart University. He holds
the chair for Control Systems in the EECS Department at TU Berlin,
and he is also an external scientific member of the Max Planck Insti-
tute for Dynamics of Complex Technical Systems. His main research
interests are hybrid and hierarchical control, distributed cooperative
control, and control of timed discrete event systems in tropical al-
gebras, with applications in chemical, medical, and power systems
engineering. He was on the editorial boards of the European Journal
of Control, the IEEE Transactions on Control Systems Technology,
and Automatica. He serves on the editorial boards of Discrete Event
Dynamic Systems and Foundations and Trends in Systems and Con-
trol. He is chair of IFAC Technical Committee 1.3 (Discrete Event and
Hybrid Systems).

	Optimal control of timed event graphs with resource sharing and output-reference update
	1 Introduction
	2 Preliminaries
	2.1 Idempotent semirings
	2.2 Semirings of formal power series
	2.3 TEG models in idempotent semirings
	2.4 Residuation theory
	2.5 Optimal control of TEGs

	3 Optimal control of TEGs with output-reference update
	4 Modeling and optimal control of TEGs with resource sharing
	4.1 Modeling of TEGs with one shared resource
	4.2 Optimal control of TEGs with one shared resource
	4.3 Modeling and optimal control of TEGs with multiple shared resources
	4.4 Supplementary remarks

	5 Optimal control of TEGs with resource sharing and output-reference update
	5.1 Problem formulation: the case of a single shared resource
	5.2 Optimal update of the inputs: the case of a single shared resource
	5.3 Extension to the case of multiple shared resources

	6 Conclusion
	References

