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ABSTRACT 

The involvement of a gut-bone axis in controlling bone physiology has been long suspected, 

although the exact mechanisms are unclear. We explored whether glucose-dependent 

insulinotropic polypeptide (GIP)-producing enteroendocrine K-cells were involved in this 

process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) 

or enteroendocrine K-cells (GIP-DT) was investigated. Mice deficient in GIP secretion 

exhibited lower bone strength, trabecular bone mass, trabecula number and cortical thickness, 

notably due to higher bone resorption. Alterations of microstructure, modifications of bone 

compositional parameters, represented by lower collagen cross-linking were also apparent. 

None of these alterations were observed in GIP-DT mice lacking enteroendocrine K-cells, 

suggesting that other K-cell secretory product acts to counteract GIP action. To assess this, 

stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to 

mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by 

altering bone microstructure, bone gene expression and bone compositional parameters. 

However, the two molecules exhibited opposite actions on bone physiology, with evidence that 

xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a 
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previously unknown interaction between GIP and xenin, which both moderate gut-bone 

connectivity.  

  

Keywords: GIP, Xenin, Bone remodeling, Enteroendocrine system 
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1. INTRODUCTION 

A hormonal regulation of bone metabolism by the gastrointestinal tract has previously 

been proposed, based on the rapid reduction in circulating bone resorption markers after feeding 

(1). However, the mechanism linking these two organs has not been clearly established. The 

bone turnover response to oral glucose administration is much greater than to intravenous 

glucose administration, supporting a role for the gastrointestinal tract in modulating bone 

remodeling (2). Attempts to identify key molecules have highlighted the possible involvement 

of two types of enteroendocrine cells (EEC), namely K- and L-cells. K-cells, located mostly in 

the duodenal epithelium (3), are responsible for secretion of glucose-dependent insulinotropic 

polypeptide (GIP) (4). A role for GIP in modulating circulating markers of bone resorption in 

humans is supported by recent investigations (5). GIP receptor (GIPr) knockout animals have 

provided further information on the effects of GIP on bone metabolism (6-8). Although all these 

investigations have highlighted a link between the GIPr and bone remodeling, conflicting data 

obscure a clear understanding of the GIP/GIPr pathway on skeletal physiology.  

The original classification of EEC was based on their major secretory products and is 

still used today. However, we know now that EECs often secrete more than a single peptide 

product. The L-cells secrete the proglucagon products GLP-1, GLP-2, and oxyntomodulin and 

often also PYY, whereas GIP-secreting K-cells also may produce xenin, cholecystokinin, 

somatostatin and secretin (9,10). However, the possible actions of these additional K-cell 

products in bone metabolism has never been studied previously.   

The main objective of this study was to decipher the role of K-cell secretory products in 

bone physiology. In order to ascertain whether K-cells are involved in the control of bone 

physiology, we used a murine model of K-cell ablation, i.e. mice expression of diphtheria toxin 

under the control of the GIP promoter. We also administered synthetic GIP, xenin, 

cholecystokinin, secretin or a somatostatin receptor agonist to healthy mice, to better 
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understand how these peptides regulate bone remodeling. Finally, we also used a validated 

murine model of GIP secretion invalidation to decipher further its role in the regulation of bone 

physiology. We found that GIP and xenin were the only bone-active molecules and that they 

exerted different, but complementary, actions on bone physiology. These K-cell secretory 

product findings shed important new light on the role of the gut-bone axis.  

 

2. MATERIAL AND METHODS 

2.1. Reagents 

[D-Ala²]GIP1-42, xenin-25(Lys13PAL) and secretin analogues were purchased from GeneCust 

Europe with a purity >95% (Dudelange, Luxembourg). (pGlu-Gln)CCK-8 was purchased from 

Thermofisher scientific (Waltham, Massachusetts, United States). The somatostatin analogue, 

RC160, was purchased from Tocris Biosciences (Lille, France). Purity and sequences of 

peptides were verified by HPLC and matrix-assisted laser desorption ionization-time of flight 

(MALDI-TOF) mass spectrometry, respectively. Activity of all peptides was verified prior to 

administration to animals by quantifying cAMP response in receptor-expressing CHO-K1 cells. 

M-CSF (catalog number 216-MC) and soluble human RANKL (catalog number 390-TN) were 

purchased from Bio-techne (Lille, France). All other chemicals were obtained from Sigma-

Aldrich (Lyon, France), unless otherwise stated.  

 

2.2 Animals 

All procedures were approved and conducted in accordance with either the Institutional Animal 

Care and Use committees of the University of Angers (Angers, France) or with Danish Animal 

Experiments Inspectorate (License # 2018-15-0201-01397). Male GIP-GFP-KI (C57BL/6J 

background, n=8)) and their age and sex-matched wild-type littermates (n=8) were obtained 

from Kyoto University (Kyoto, Japan). GIP-DT (C57BL/6J background, n=9) mice and their 
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age and sex-matched wild-type littermates (n=6) were obtained from the Washington 

University school of medicine (Saint-Louis, MO, USA). All transgenic and corresponding wild-

type littermates were used at 16 weeks of age. Design and generation of transgenic animals 

have been described in detail elsewhere (11,12). Thirty-four 21-week-old NIH Swiss male mice 

(strain NIH/OlaHsd) were obtained from Envigo (Wooley Road, Huntington, Alconbury PE28 

4HS, UK). Male Swiss mice were randomly allocated into six groups that received once daily, 

by subcutaneous administration, saline (n=6), [D-Ala²]GIP1-42 (25 nmoles/kg) (n=6), xenin-

25(Lys13PAL) (25 nmoles/kg) (n= 5), (pGlu-Gln)CCK-8 (25 nmoles/kg) (n=5),  secretin (25 

nmoles/kg) (n=6) or RC160 (30 microg/kg) (n=6) for 6 weeks. These peptides, doses and 

regimen of administration were selected based on our extensive experience of gut peptide 

analogues or from the literature (13-16). Twelve 16-week-old NIH Swiss male mice (strain 

NIH/OlaHsd) were obtained from Envigo and randomly allocated into two groups that received 

once daily, by subcutaneous administration, saline (n=6) or a coadministration of [D-Ala²]GIP1-

42 (25 nmoles/kg) and xenin-25(Lys13PAL) (25 nmoles/kg) (n= 6) for 4 weeks. Sixteen-week 

old C57BL/6 male mice were obtained from the Department of Experimental Medicine at the 

University of Copenhagen and randomly allocated into two groups that received once daily 

saline (n=6) or xenin-25(Lys13PAL) (25 nmoles/kg, n=6) for 4 weeks.  

Animals were maintained in a 12 h: 12 h light: dark cycle and had free access to water and 

standard rodent diet (Diet A04, Safe, Augy, France). Mice received calcein (10 mg/kg bw; ip) 

10 and 3 days before being culled. Animals were overnight fasted (16h) before being sacrificed 

by intracardiac blood collection (~250µl) into EDTA-treated microtubes (Sarstedt) and cervical 

dislocation. Blood samples were then spun at 13,000g for 15 min, aliquoted and stored at -80°C. 

After necropsy, tibias and femurs were collected and cleaned of soft tissue. Left tibias were 

fixed in 4% formaldehyde for 24 hours and then stored in 70% ethanol for microCT and 

histomorphometry. Left femurs were wrapped in saline-soaked gauze and stored at -20°C until 
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three-point bending tests. Right tibias and femurs were immersed in RNAlater (Invitrogen, 

Illkirch, France) and snap-frozen in liquid nitrogen before being stored at -80°C until use.  

Identity of the mice and their treatment were not revealed until the end of all measurements. 

 

2.3. Biochemical analyses 

Plasma levels of C-terminal telopeptide of collagen type I (CTx-I – RatLaps, Immunodiagnostic 

Systems Ltd, Boldon, UK), N-terminal propeptide of type I collagen (P1NP - Rat/mouse P1NP, 

Immunodiagnostic Systems Ltd), Insulin-like growth factor-1 (IGF-1 – IGF-1 Quantikine, 

Biotechne, Lille, France), parathyroid hormone (PTH, Eurobio, Les Ulis, France), total 

glucagon-like peptide-1 (GLP-1, Merck Millipore, Molsheim, France) and total GIP (Merck 

Millipore) were measured according to the manufacturers’ recommendation.    

 

2.4. X-ray microcomputed tomography 

MicroCT analyses were performed using the left tibia with a Skyscan 1272 microtomograph 

(Bruker-Skyscan, Kontich, Belgium) operated at 70 kV, 100 μA, 340 ms integration time. The 

isotropic pixel size was fixed at 3.8 μm, the rotation step at 0.25° and exposure was performed 

with a 0.5-mm aluminum filter. Each 3D reconstruction image dataset was binarized using 

global thresholding. The trabecular volume of interest was located 0.5 mm below the growth 

plate and extended 2 mm down. The cortical volume of interest was located 3 mm below the 

growth plate and extended at a height of 1 mm. All histomorphometrical parameters were 

measured according to guidelines and nomenclature proposed by the American Society for 

Bone and Mineral Research (17).  

 

2.5. Bone histomorphometry 



8 
 

After microCT scans, left tibias were embedded, undecalcified in pMMA at 4°C to preserve 

enzyme activities. For each animal, four non serial longitudinal sections (~50 µm apart) were 

left unstained for the measurement of calcein-based parameters and four additional sections 

were stained for the osteoclastic tartrate resistant acid phosphatase (TRAcP), as previously 

described (18). Standard bone histomorphometrical nomenclatures, symbol and units were used 

as described in the guidelines of the American Society for Bone and Mineral Research (19). The 

identity of the sections was not revealed until the end of all measurements. 

 

2.6. Assessment of bone strength 

Whole-bone strength was assessed by 3-point bending on left femurs as described previously 

(8,20). Three-point bending strength was measured with a constant span length of 10 mm. Bones 

were tested in the antero-posterior axis with the posterior surface facing upward, centered on 

the support and the pressing force was applied vertically to the midshaft of the bone. Each bone 

was tested with a loading speed of 2 mm.min-1 until failure with a 500 N load cell on an Instron 

5942 device (Instron, Elancourt, France) and the load-displacement curve was recorded at a 100 

Hz rate by the Bluehill 3 software (Instron). Ultimate load, ultimate displacement, stiffness and 

work to fracture were calculated as indicated in (21). The yield load was calculated with the 0.2% 

offset method. Post-yield displacement was also computerized.   

Strength at the tissue level was assessed by nanoindentation of the tibia on pMMA blocks used 

for bone histomorphometry. Prior to nanoindentation, blocks were rehydrated for 24 h in saline 

at 4°C. Eight indents were positioned in cortical bone with a NHT-TTX system (CSM, Peseux, 

Switzerland) equipped with a Berkovich diamond probe as previously described (8). Indentation 

depth was fixed at 900 nm with a loading/ unloading rate of 40 mN/min. At maximum load, a 

holding period of 15 seconds was applied to avoid creeping of the bone material. Maximum 
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load, indentation modulus, hardness and dissipated energy were determined according to Oliver 

and Pharr (22). 

 

2.7. Quantitative backscattered electron imaging (qBEI) 

Quantitative backscattered electron imaging was done on the same blocks and regions as 

nanoindentation as previously reported (23). The cortical bone area was imaged at a 200× 

nominal magnification, corresponding to a pixel size of 0.5 μm per pixel. The region of interest 

corresponded to 2-mm centered in the midshaft femur (6 mm below the growth plate). The gray 

levels distribution of each image was analyzed with a lab-made routine using ImageJ. Three 

variables were obtained from the bone mineral density distribution: Capeak is the most frequently 

observed calcium concentration, Camean is the average calcium concentration and Cawidth is the 

width of the histogram at half maximum of the peak. 

 

2.8. Fourier Transform Infrared Microscopy (FTIRM) 

FTIRM experiments were performed on 4 µm thick sections of the pMMA blocks used for 

nanoindentation. After sandwiching the sections between BaF2 optical windows, spectral 

analysis was performed using a Bruker Vertex 70 spectrometer (Bruker optics, Ettlingen, 

Germany) interfaced with a Bruker Hyperion 3000 infrared microscope equipped with a 

standard single element Mercury Cadmium Telluride (MCT) detector. Infrared spectra were 

recorded at a resolution of 4 cm−1, with an average of 32 scans in transmission mode in the 

same location as qBEI and nanoindentation as previously reported (8). For FTIRM analysis, 12 

spectra were acquired between double calcein labels (animal study only) and analyzed with a 

lab-made routine in Matlab R2016b. Briefly, Mie scattering contribution was removed using 

the RMieS-EMSC algorithm (kind gift from Prof Gardner, University of Manchester). Then, 

spectra were baseline fitted and second derivative spectroscopy was applied as reported 
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previously (24). The evaluated parameters were the mineral-to-matrix ratio (900-1200 cm-

1/Amide I) (25); mineral maturity (1030/1020 cm-1) (26); carbonate-to-phosphate ratio (820-

890cm-1 /900-1200 cm-1) (27); acid phosphate content (1127 cm-1/1096 cm-1) (28) and collagen 

maturity (1660/1690 cm-1) (25). Bone sections were then demineralized with EDTA during 7 

days as reported previously (29) and reanalyzed at the same locations to determine the  collagen 

glycation (1032 cm-1/Amide I) (24).  

 

2.9. Isolation and osteoclast generation from human peripheral blood mononuclear cells 

(PBMCs) 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from 3 buffy coats obtained at the 

Etablissement Francais du Sang (Angers, France) as previously described (30). To assess the 

extent of osteoclast formation and activation, isolated human PBMCs were cultured either in 

24-well plates or collagen-coated 24 well plates at a concentration of 2 x 106 PBMCs/ml in 

MEM containing 1g/L glucose, 100 UI/ml penicillin, 100 µg/ml streptomycin and 10% FCS 

(osteoclast medium) (31). After 2 h incubation, cultures were vigorously rinsed in medium to 

remove non-adherent cells, and then maintained in 1 ml osteoclast medium with 25 ng/ml 

recombinant human M-CSF, 30 ng/ml recombinant human sRANKL (added at day 7) and 

various concentrations of GIP or xenin. 

 

2.10. Osteoblast cultures 

MC3T3-E1 cells were purchased from American Type Culture Collection (ATCC, Teddington, 

UK) and grown as recommended in propagation medium containing αMEM supplemented with 

5% FBS, 5% bovine calf serum, 100 UI/mL penicillin, and 100 μg/mL streptomycin in a 

humidified atmosphere enriched with 5% CO2 at 37 °C. For differentiation studies, cells were 

detached with trypsin-EDTA, plated at a density of 1.5 × 104 cells/cm2 and grown to confluence 



11 
 

in propagation medium. At confluence, the propagation medium was replaced by the 

differentiation medium containing αMEM supplemented with 5% FBS, 5% bovine calf serum, 

100 U/mL penicillin, 100 μg/mL streptomycin, 50 μg/mL ascorbic acid and various 

concentrations of GIP or xenin. Osteoblast cultures were then fixed in absolute ethanol, 

scrapped off the culture dish and transferred onto BaF2 windows where they were air-dried. 

For FTIRM analysis, 20 spectra were acquired and analyzed as above.  Collagen maturity was 

determined. 

 

2.11. Gene expression 

Tibias were rapidly cleaned of soft tissues and fibula before the distal end was cut off. Tibias 

were then centrifuged for 20s at 16,000g at room temperature in nested microcentrifuge tubes 

as reported previously in detail (32). Total RNA was extracted by crushing bones in Nucleozol 

(Macherey-Nagel, Hoerdt, France) and purifying total RNA with Nucleospin RNA set 

nucleozol column (Macherey-Nagel) according to the manufacturer’s recommendations. Total 

RNA was reversed transcribed using iScript cDNA synthesis kit (Bio-Rad) and amplified by 

real-time PCR using SYBR Green PCR master mix (Bio-Rad). The expression level of each 

sample was normalized against gapdh mRNA expression.  

 

2.12. Statistical analysis 

Statistical analyses were performed with GraphPad Prism 6.01 (GraphPad Software, La Jolla, 

CA, USA). Two-tailed unpaired t-tests were used to compare differences between WT and GIP-

DT mice, WT and GIP-GFP-KI animals, C57BL/6 mice treated with saline or xenin, and Swiss 

mice administered with saline or both GIP and xenin analogues. Analyses of variance with 

Dunnett post-hoc test were employed to compare differences between saline and K-cell product 
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analogues groups in Swiss mice, and in in vitro experiments. Differences at p<0.05 were 

considered significant.   

3. RESULTS 

 

3.1. Ablation of K-cells results in normal bone phenotype despite absence of GIP secretion. 

First, we looked at the bone phenotype of mice deficient in K-cells (GIP-DT). These mice have 

been originally developed to study whether mice lacking K-cells were protected from obesity 

induced by a high fat diet.  As previously reported, the diphtheria toxin A chain gene was 

inserted in exon 2 of the Gip gene under control by the GIP promoter (12). These animals exhibit 

normal levels of other incretin hormones, GLP-1 and GLP-2 (12). These animals did not present 

any modifications of body weight or growth as compared with WT littermates (Supplementary 

Table 1). However, despite absence of GIP secretion, GIP-DT mice did not exhibit any 

alterations of bone strength at the whole-bone level (Figure 1A and Supplementary Table 1). 

This lack of effect was corroborated by absence of significant changes in both trabecular and 

cortical microarchitectures, and in osteoblast activity and osteoclast counts (Figure 1B-D and 

Supplementary Table 1). No differences in either the bone matrix strength or the bone matrix 

composition were observed between GIP-DT mice and WT littermates (Figure 1E-F and 

Supplementary Table 1). These results suggested that genetic ablation of enteroendocrine K-

cell does not alter skeletal physiology.  

 

3.2. GIP is a potent and positive modulator of bone mass and quality 

Based on the previous investigation of GIPr KO animals, where alterations of bone mass and 

quality were evidenced (6,8), the lack of bone alterations in GIP-DT mice was surprising and 

unexpected. We therefore decided to explore further the role of the GIP/GIPr pathway in 

skeletal physiology by using a model of genetic GIP ablation. The GIP-GFP-KI mouse has a 

GFP cassette inserted in exon 3 of the GIP gene under the control of the GIP promoter. As a 



13 
 

result, these mice are defective in the expression and secretion of GIP but not of other gut 

hormones including GLP-1 and GLP-2 (33). KI animals did not present with any modifications 

of body weight or growth as compared with WT littermates (Supplementary Table 2). Whole 

bone strength was not significantly altered in these animals (Figure 2A and Supplementary 

Table 2), although a trend for lower stiffness (p=0.070) was noted. Trabecular and cortical 

microarchitectures were significantly altered following genetic ablation of GIP production as 

represented by lower BV/TV (-22%, p=0.0006), Tb.N (-21%, p<0.001) and Ct.Th (-13%, 

p=0.009), and higher Tb.Sp (8%, p=0.014) (Figure 2B-C and Supplementary Table 2). 

Osteoblast activity was not significantly affected although the bone formation rate exhibited a 

trend towards higher values, but importantly, osteoclast counts, and surfaces were significantly 

higher in KI mice (32%, p=0.015; 42%, p=0.015, respectively) (Figure 2D and Supplementary 

Table 2).  Bone matrix mechanical properties were also altered in KI animals as evidenced by 

lower values for indentation force (-16%, p=0.038) and hardness (-18%, p=0.053) (Figure 2E 

and Supplementary Table 2). Investigation of bone composition revealed a significant reduction 

in collagen crosslinking at bone formation sites as shown by a 23% reduction in collagen 

maturity (p=0.003). On the other hand, bone mineral quantity, distribution and properties were 

not significantly different between the two groups of animals (Figure 2F and Supplementary 

Table 2). These observations suggest that lack of GIP leads to an accelerated bone remodeling 

and loss of bone mass and quality, but also supports previous findings in GIPr KO animals (6-

8).  

 

GIP and xenin, but no other K-cell products, are important for bone physiology  

In light with the above skeletal observations following genetic ablation of GIP expression in 

GIP-GFP-KI mice, the skeletal phenotype of GIP-DT mice was striking. We hypothesized that 

an explanation could reside in the skeletal actions of another K-cell product. To investigate this 
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in more detail, we looked at whether receptors for other K-cell products, namely xenin, 

cholecystokinin, secretin and somatostatin, were expressed in bone tissues. Only GIPr was 

found in bone (Figure 3A).  However, the action of another K-cell product could be indirect 

and in order to investigate this, we administered stable analogues of K-cell products in normal 

Swiss NIH mice.  

As compared with saline controls, whole bone strength was only significantly modified in GIP- 

and xenin-injected mice as demonstrated by significant higher maximum bending load (+18%, 

p=0.021) and lower stiffness (-19%, p=0.024), respectively (Figure 3B and Supplementary 

Table 3). Trabecular but not cortical microarchitectures were significantly altered following 

GIP or xenin administration with opposite effects being observed with these two molecules 

(Figure 3C-D and Supplementary Table 3). Indeed, GIP administration resulted in a 26% higher 

trabecular bone mass and a better organization of the trabecular microarchitecture. Xenin-

treated mice presented with a lower trabecular bone mass and a disruption of the trabecular 

network. Osteoblast activity, determined by histomorphometry or serum markers of bone 

formation, was augmented in the presence of the GIP analogue and reduced in the presence of 

the xenin analogue (Figure 3E and Supplementary Table 3). On the other hand, osteoclast 

counts and activity were reduced by administration of both peptides (Figure 3E and 

Supplementary Table 3). However, ionized calcium, PTH and IGF-1 levels were not 

significantly different between saline-, GIP- or xenin-treated mice (Figure 3E). Gene expression 

in bone confirmed the above observations as GIP administration led to increased expression of 

osteoblast genes (Runx2, +275%; Atf4, +224%; Col1a1 +317%; Bglap2 +183%) and decreased 

expression of osteoclast genes (Nfatc1, -42%; Acp5, -31%; Ctsk, -28%; Mmp9, -36%). Xenin 

administration led to decreases in the expression of both osteoclast and osteoblast genes (Figure 

3F).  
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Investigation of bone composition revealed moderate modifications of the mineral phase in the 

presence of xenin, that resulted in lower (-40%) carbonate substitution (Figure 3G and 

Supplementary Table3). The organic phase was altered by GIP and xenin with higher (13%) 

and lower (-38%) collagen crosslinking, respectively. These results are in agreement with the 

gene expression profile of osteoblast genes implicated in bone matrix maturation (Figure 3H). 

None of the other K-cell products had any effect on either bone microarchitecture, bone cell 

activity or bone compositional parameters. Interestingly, xenin analogue administration did not 

alter GIP or GLP-1 secretion (Figure 3I). 

 

Co-administration of GIP and xenin analogues recapitulates the bone phenotype of GIP-

DT mice 

We next ascertained whether the effects of xenin was restricted to the Swiss strain or whether 

we could reproduce it in another strain such as C57BL/6. As compared with saline, 

administration of xenin analogue to C57BL/6 mice resulted in significant deteriorations of 

biomechanical responses, microarchitectures and bone tissue composition (Figures 4A-4E).  

We also investigated whether co-administration of GIP and xenin analogues in Swiss mice 

could recapitulate the bone phenotype of GIP-DT mice. As compared with saline-treated 

animals, co-administration of [D-Ala²]GIP1-42 and xenin-25(Lys13PAL) resulted in no apparent 

bone phenotype (Figures 4F-I). These observations support dual and opposite actions of two 

different K-cell-produced hormone in skeletal physiology and could explain the absence of 

bone phenotype in GIP-DT mice.  

 

GIP but not xenin exerts direct effects on bone cell cultures  

In order to determine whether the observed actions of GIP and xenin were exerted directly or 

indirectly on bone cells, we looked at the effects of adding these peptides to osteoblast and 
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osteoclast cultures. The expression of the Gipr gene was confirmed in RANKL-derived human 

osteoclasts and in MC3T3-E1 osteoblasts. However, the presence of a functional receptor for 

any of the other K-cell products was negative in both cell types. The number of newly generated 

osteoclasts (N.Oc/well) was significantly reduced when GIP was added to the cultures at 

concentrations of 1 nmol/L and greater (-12%, p=0.036). These findings were confirmed by the 

decrease in specific osteoclast gene expression such as Acp5, Nfatc1, Ctsk and Mmp9. On the 

other hand, the administration of xenin did not have any effect on the number of osteoclasts or 

specific osteoclast gene expression.  

In osteoblast cultures, GIP administration resulted in significant increases in collagen maturity 

at a concentration equal to or greater than 100 pmol/L (+108%, p<0.0001) and in specific 

osteoblast gene expression of Alpl, Col1a1, Lox and Plod2. On the other hand, xenin did not 

affect any of these parameters (Figure 5). These results support a direct action of GIP on bone 

cells. However, the lack of modifications in any of the above parameters with xenin rule out a 

direct action on bone cells and suggest that the observed in vivo modifications of skeletal 

phenotype were due to indirect action on bone.  

 

4. DISCUSSION 

A gut-to-bone axis has previously been proposed based on observed changes in the pattern of 

circulating bone remodelling markers after feeding. Oral glucose exerts a greater decrease in 

bone resorption than intravenous glucose administration and food fractionation has been shown 

to increase bone mass (1,2,34). Among all possible intestinal signalling pathways, enteroendocrine 

K-cells represent a good candidate for mediating these effects based on the profile of GIP 

secretion and action that matches the temporal reduction in bone resorption. Previous studies 

attempting to decipher the role of the GIP/GIPr in modulating bone physiology in rodents have 

led to contradictory results, with some studies reporting positive and others negative effects on 
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bone (6-8). In the present study, we clearly demonstrated that GIP is crucial in order to obtain an 

optimal bone strength, and that the action of this pathway might be at least partly mediated 

through direct actions on bone cells. Termination of GIP secretion in mice resulted in clear, 

negative effects on bone at the molecular level, as represented by lower collagen maturation, 

but also at the structural level, with bone loss and abnormal trabecular bone microarchitecture. 

The consequences of these alterations are compromised bone strength and hence a higher 

fracture risk. These data are supported by recent human studies where a higher prevalence of 

non-vertebral fractures have been encountered in humans with a single amino acid substitution 

(rs1800437) in the GIPr that resulted in a decreased receptor activity (35,36).   

Consistent with this, transgenic GIP-GFP-KI mice with defective expression and secretion of 

GIP (11) exhibited clear abnormalities in bone physiology. Similar disturbances have been 

reported in GIPr KO mice (6-8,37). However, no such abnormalities were observed in transgenic 

GIP-DT mice, deficient in GIP due to total ablation of K-cells (12). It is worth noting that K-cell 

depletion in GIP-DT mice does not result in any changes in gut hormones expression secreted 

by other entero-endocrine cells (12). 

This discrepancy suggested the possibility that K-cells produce other secretory products that 

might counter the effects of GIP deficiency. In examining other such peptides, we evidenced 

that xenin is involved in the control of bone remodelling and quality, exerting an action that is 

opposed to GIP. Xenin is a 25 amino acid peptide structurally related to neurotensin (38) and 

previous studies suggest that xenin binds the neurotensin receptor 1 (39,40). Xenin is mainly 

secreted by K-cells although recent evidences suggested that a subset of enterochromaffin cells, 

located in the proximal small intestine, express xenin (10,41). However, it is worth noting that 

previously we evidenced that GIP-DT mice had reduced circulating levels of GIP and xenin 

following oral glucose challenge (42).  
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Although relatively poorly explored, xenin principal action is believed to be modulation of 

satiety and gastrointestinal transit, with possible additional regulatory effects on insulin and 

glucagon secretion (43). The observed anorexigenic effect of xenin are mediated through the 

neurotensin receptor 1 (44) and as such it is plausible that xenin acts as a bone catabolic hormone 

in order to maintain calcium homeostasis.  To date, neurotensin receptors have not been found 

at the surface of bone cells and gene expression analysis in the present study confirmed these 

findings. The neurotensin receptor 1 null mice exhibit a hyperphagic and overweight 

phenotype, but possible skeletal alterations in these mice have not yet been studied (45,46).  

Furthermore, addition of xenin in osteoblast or osteoclast cultures did not alter the physiology 

of these cells, suggesting that the observed effects of xenin on bone in vivo results from indirect 

actions. Xenin has been postulated to exert its effects through neural pathways in the 

ventromedial hypothalamus (47-49). A heterogeneous population of neurons is found in the VMH, 

nevertheless, VMH-residing SF-1 and Htr2c neurons have already been implicated in the 

control of bone remodeling by lowering bone resorption through enhanced sympathetic nervous 

system tone or reducing bone formation and increased bone resorption through AP1 blockade 

(50,51). The bone phenotype observed in xenin-administered mice in the present study suggests 

a primarily inhibition of anabolic pathways (35% reduction in circulating P1NP levels) with 

lower magnitude effects on catabolic pathways (25% reduction in CTx levels). However, 

further investigations will be required to assess whether or not these effects are related to the 

VMH.  

In addition, Xenin potentiates GIP-mediated insulin secretion partially through a local 

cholinergic relay (42,52). Indeed, although, coadministration of GIP and Xenin, in GIP-DT mice, 

enhances plasma insulin levels by 5.5-fold, the addition of atropine sulfate, a competitive 

antagonist of muscarinic acetylcholine receptors resulted only in a 1.8-fold decrease in this 

parameter (42). This observation suggests the existence of another way of action of Xenin that 
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potentially could also affect bone remodeling. Expression of muscarinic receptors has been 

found in osteoblasts and osteoclasts and activation of these surface receptors lead to higher bone 

formation while there was a lack of effect on osteoclast cultures (53,54). These actions do not fit 

with the bone phenotype observed after Xenin administration and it is unlikely that higher 

cholinergic tone is responsible for the Xenin-mediated bone phenotype observed in the present 

study. Previously, the action of gut-derived dopamine, on beta cells of the pancreas and on 

diabetic osteoblasts, has been shown to be part of a negative feedback control of GIP-stimulated 

insulin secretion and GIP-stimulated LOX expression and bone mass (55,56). The kinetics of gut-

derived dopamine production or secretion coincides with the postprandial rise of GIP plasma 

levels (56). As such one could postulate that Xenin might potentialize the secretion of dopamine 

from the gut. Although, we did not measure dopamine plasma levels in Xenin-treated mice, this 

scenario seems unlikely with respect to the additive action of Xenin and GIP on insulin 

secretion (42,52). Clearly, more research is needed to decipher how this peptide exerts its negative 

action on bone.  

 

The opposite action of GIP and Xenin on bone metabolism may appear contradictory with their 

cooperative action on insulin secretion (42,52). However, it is worth noting that xenin has already 

been shown to exert biphasic response, as for example a rapid relaxation followed by a slower 

contraction of the jejunum musculature in guinea pig, by action on distinct neural pathways (39).  

A recent growing body of evidences suggest that enteroendocrine cells secrete more than one 

active hormone product (57). For example, L-cells secrete PYY as well as neurotensin, GLP-1, 

GLP-2 and oxyntomodulin derived from differential processing of proglucagon  (58,59). Together 

these peptides exert several actions including inhibition of feeding, regulation of endocrine 

pancreatic function and promotion of intestinal growth (60-62). There is evidence that PYY, GLP-

1 and neurotensin are stored in separate secretory vesicles and are released with non-identical 
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dynamics, suggesting the possibility that the stimuli triggering their secretion or the molecular 

pathways are different (58,63). Differences in plasma half-life and clearance of these peptides also 

result in different temporal hormonal responses following feeding.  If the same proves to be 

true in K-cells for GIP and xenin, and with the biphasic action of xenin observed on the jejunum 

musculature, then it is possible to envisage a scenario wherein early secretion and elevation of 

GIP exerts positive action on bone and that subsequent later action of xenin forms part of a 

natural negative feedback mechanism (Figure 6). Further studies are clearly needed to test this 

hypothesis and establish the broader physiology of xenin.  

Interestingly, none of the other possible K-cell peptide products, namely cholecystokinin, 

secretin and somatostatin were able to modulate bone physiology at the structural or even the 

compositional levels. These findings allow us to narrow our focus on relatively few hormones 

regarding the regulation of bone remodelling by enteroendocrine cells.  

A limitation to this study is that we did not investigate whether the same phenotype was 

encountered in female animals. However, we previously demonstrated that no sexual 

dimorphism was present in the bone phenotype of GIPr KO mice (7). Furthermore, previous 

investigation in metabolic disturbances observed in GIP-DT mice did not evidence either a 

sexual dimorphism (12,42). As such it is unlikely that the observed bone phenotype described in 

the present study is restricted only to male animals.  

 

In conclusion, the present study clearly demonstrated that secretory products of enteroendocrine 

K-cells play an important role in the modulation of bone physiology. Further studies are 

required to better understand the involvement of GIP, xenin and other K-cell products in bone 

turnover and in bone disorders.  
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7. FIGURE LEGENDS 

 

Figure 1:  Bone phenotype in K-cell-deficient mice (GIP-DT mice). (A) Bone strength at the 

whole bone level was evaluated by destructive 3-point bending test. Maximum bending load 

and bending stiffness were not significantly different between animals. (B) Three dimensional 

microCT reconstruction of the proximal tibia metaphysis 800µm below the growth plate. (C) 

Bone microarchitecture estimated by microCT at the proximal tibia metaphysis in 16-week-old 

male mice. BV/TV: Trabecular bone volume, Ct.Th: Cortical thickness. (D) Number of 

osteoclasts (N.Oc/B.Pm) and bone formation rate (BFR/BS) were determined by 

histomorphometry at the proximal tibia metaphysis. (E) Bone strength at the bone matrix level 

estimated by nanoindentation. The nanoindentation force required to penetrate the diamond 
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Berkovich tip up to 900 nm (force) and indentation modulus (EIT) are presented. (F) Mineral-

to-matrix ratio (M/M ratio) and collagen maturity (XLR) were determined at bone formation 

site by Fourier transform infrared microspectroscopy. All results are presented as a boxplot 

(median, interquartile range). Statistical analyses have been performed with an unpaired two-

tailed t-test. n = 7 mice in wild-type (WT) group, n = 8 mice in GIP-DT group.  

 

Figure 2: Bone phenotype in GIP-deficient mice (GIP-KI mice). (A) Bone strength at the 

whole bone level was evaluated by destructive 3-point bending test. Maximum bending load  

and bending stiffness were not significantly different between animals although a trend was 

observed for stiffness (p=0.07). (B) Three dimensional microCT reconstruction of the proximal 

tibia metaphysis 800µm below the growth plate. (C) Bone microarchitecture estimated by 

microCT at the proximal tibia metaphysis in 16-week-old male mice. BV/TV: Trabecular bone 

volume, Ct.Th: Cortical thickness. (D) Number of osteoclasts (N.Oc/B.Pm) and bone formation 

rate (BFR/BS) were determined by histomorphometry at the proximal tibia metaphysis. (E) 

Bone strength at the bone matrix level estimated by nanoindentation. The nanoindentation force 

required to penetrate the diamond Berkovich tip up to 900 nm (force) and indentation modulus 

(EIT) are presented. (F) Mineral-to-matrix ratio (M/M ratio) and collagen maturity (XLR) were 

determined at bone formation site by Fourier transform infrared microspectroscopy. All results 

are presented as a boxplot (median, interquartile range). Statistical analyses have been 

performed with an unpaired two-tailed t-test. n = 7 animals in each group.  

 

Figure 3: Effects of administration of K-cell peptide analogues on bone remodeling, 

microarchitecture and bone composition in Swiss NIH mice. (A) The expression of K-cell 

product receptors in bone by quantitative PCR in whole bone extracts. (B) Whole bone strength 

was determined in 21 week old male swiss NIH mice administered daily with saline, 25 
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nmoles/kg [D-Ala²]GIP1-42 (GIP), 25 nmoles/kg xenin-25(Lys13PAL) (xenin), 25 nmoles/kg 

(pGlu-Gln)cholecystokinin-8 (CCK-8), 25 nmoles/kg secretin or 30µg/kg RC160, a 

somatostatin receptor agonist for 6 weeks. (C) Three dimensional microCT reconstructions of 

the proximal tibia metaphysis 800µm below the growth plate. (D) Trabecular bone 

microarchitecture estimated by microCT at the proximal tibia metaphysis. BV/TV: Trabecular 

bone volume, Ct.Th: Cortical thickness.  (E) Serum markers of bone remodeling. The N-

terminal propeptide of type 1 collagen (P1NP), C-terminal type I collagen crosslinks (CTx-I), 

parathyroid hormone (PTH) and insulin-like growth factor-1 (IGF-1) levels were determined 

by ELISA. Ionized calcium was determined on an automated analyzer. (F) Osteoblast and 

osteoclast genes have been determined in whole bone extracts of saline-, [D-Ala²]GIP or xenin-

25(Lys13PAL)-treated mice. (G) Mineral-to-matrix ratio (M/M ratio), carbonate-to-phosphate 

ratio (C/P ratio) and collagen maturity (XLR) were determined at bone formation site by Fourier 

transform infrared microspectroscopy. (H) Expression of osteoblast genes involved in 

maturation of the bone matrix in whole bone extracts of saline-, [D-Ala²]GIP or xenin-

25(Lys13PAL)-treated mice. (I) Total GIP and total GLP-1 plasma levels were determined by 

ELISA in overnight fasted animals. All results are presented as a boxplot (median, interquartile 

range). Statistical analysis was performed by ANOVA, followed by Dunnett post-hoc test. n = 

6 in saline, GIP, CCK-8, secretin or RC160 injected group, n = 5 in xenin injected group. a: 

p=0.021, b: p=0.024, c: p=0.006, d: p=0.003, e: p<0.0001 , f: p=0.056, g: p<0.0001 , h: 

p=0.0002, i: p<0.0001 , j: p=0.023, k: p<0.0001 , l: p=0.009, m: p<0.0001, n: p=0.064, o: 

p<0.0001 , p: p=0.074, q: p=0.004, r: p=0.005, s: p=0.006, t: p=0.004, u: p=0.003, v: p=0.003, 

w: p=0.0003, x: p=0.0001, y: p<0.0001, z: p=0.041, aa: p<0.0001, ab: p<0.0001, ac: p=0.002, 

ad: p=0.015, ae: p=0.0005, af: p=0.002 and ag: p=0.0002. 
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Figure 4:  Effects of administration of xenin analogues or co-administration of GIP and 

xenin analogues on bone biomechanics, microarchitecture and bone composition (A and 

F) Bone strength was evaluated by destructive 3-point bending test. (B and G) Three 

dimensional microCT reconstruction of the proximal tibia metaphysis 800µm below the growth 

plate. (C and H) Bone microarchitecture estimated by microCT at the proximal tibia 

metaphysis. BV/TV: Trabecular bone volume, Ct.Th: Cortical thickness. (D) Number of 

osteoclasts (N.Oc/B.Pm) and bone formation rate (BFR/BS) were determined by 

histomorphometry at the proximal tibia metaphysis. (E and I) Mineral-to-matrix ratio (M/M 

ratio), carbonate-to-phosphate ratio (C/P ratio) and collagen maturity (XLR) were determined 

at bone formation site by Fourier transform infrared microspectroscopy. Bone parameters were 

evaluated in C57BL/6 (A-E) or Swiss (F-I) mice. All results are presented as a boxplot (median, 

interquartile range). Statistical analyses have been performed with an unpaired two-tailed t-test. 

n = 6 animals in each group. 

 

Figure 5: GIP but not xenin directly affects bone cell physiology. (A) Human PBMCs were 

cultured in the presence of M-CSF, soluble human RANKL and saline, 1 nmole/L [D-Ala²]GIP 

or xenin-25(Lys13PAL). Osteoclast numbers were counted per well at 18 days after TRAP 

staining. TRAP positive multinucleated cell (>3 nuclei) were counted as osteoclasts. In parallel, 

MC3T3-E1 cells were cultured with saline, 1 nmole/L [D-Ala²]GIP or xenin-25(Lys13PAL) for 

2 weeks and the extent of collagen maturity (XLR) was determined by Fourier transform 

infrared microspectroscopy.  (B) Gene expression in osteoclast and osteoblast cultures after 7 

days of treatment with saline, 1 nmole/L [D-Ala²]GIP or xenin-25(Lys13PAL).  Data represents 

3-5 independent experiments performed each in triplicate. All results are presented as a boxplot 

(median, interquartile range).  Statistical analysis was performed by ANOVA, followed by 

Dunnett post-hoc test. 
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Figure 6: Schematic representation of a plausible scenario of GIP and xenin in a 

physiological context. K-cell (Blue cell) are embedded in the proximal gut epithelium and 

expressed several gut hormones that possibly could be stored in separate secretion 

granules/vesicles. Among them GIP (blue granules) and Xenin (green granules) have been 

shown in the present study to exert different effects on bone. A plausible scenario would be 

represented by an early response from entry of nutrients in the gut lumen that would stimulate 

the secretion of GIP into the blood capillaries of the lamina propria. GIP would then stimulate 

bone anabolic pathways to build bone and store calcium into the bone mineral. A slower 

response could be then triggered by xenin secretion, by action on an unidentified target that in 

return could stop GIP anabolic action.  
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Supplementary table 1: Bone strength, trabecular microarchitecture, histomorphometry and 

compositional parameters in 16-week-old GIP-DT mice.  

 Wild-type (n=7) GIP-DT (n=8) P values 

Morphological parameters 
Body mass (g) 27.0 ± 0.6 27.0 ± 0.5 0.946 
Femur length (mm) 13.6 ± 0.1 13.6 ± 0.1 0.920 

Whole bone strength (3-point bending) 
Maximum bending load (N) 16.0 ± 0.9 16.1 ± 0.8 0.880 
Maximum displacement (mm) 0.97 ± 0.10 0.95 ± 0.08 0.779 
Bending stiffness (N/mm) 73.6 ± 4.8 80.4 ± 3.8 0.280 
Work to fracture (N.mm) 8.4 ± 0.7 9.0 ± 0.5 0.445 
Bone matrix strength (Nanoindentation) 
Indentation force (mN) 8.7 ± 0.7 8.5 ± 0.3 0.778 
Indentation modulus (GPa) 10.2 ± 0.5 10.0 ± 0.3 0.727 
Hardness (MPa) 474 ± 58 459 ± 19 0.999 
Work of indentation (pJ) 2187 ± 144 2127 ± 67 0.999 
Trabecular microarchitecture (MicroCT) 
BV/TV (%) 21.8 ± 0.8 22.2 ± 1.2 0.830 
Tb.N (1/mm) 3.3 ± 0.2 3.4 ± 0.1 0.837 
Tb.Th (µm) 66 ± 1 65 ± 2 0.874 
Tb.Sp (µm) 185 ± 4 181 ± 3 0.299 
Bone histomorphometry 
MAR (µm/day) 3.1 ± 0.3 3.3 ± 0.2 0.607 
MS/BS (%) 32.6 ± 2.1 27.9 ± 1.5 0.142 
BFR/BS (µm/day) 1.0 ± 0.2 0.9 ± 0.1 0.662 
N.Oc/B.Pm (1/mm) 2.1 ± 0.2 1.9 ± 0.2 0.385 
Oc.S/BS (%) 9.6 ± 1.1 8.1 ± 0.9 0.211 
Bone mineral density distribution (qBEI) 
Camean (%Ca) 21.0 ± 0.2 21.2 ± 0.2 0.470 
Cawidth (% Ca) 3.1 ± 0.1 3.1 ± 0.1 0.918 
Bone composition at bone formation site (Fourier transform infrared microspectroscopy) 
Mineral/matrix ratio 3.0 ± 0.3 3.2 ± 0.1 0.508 
Carbonate/phosphate ratio 0.013 ± 0.002 0.013 ± 0.001 0.800 
Mineral crystallinity 1.11 ± 0.04 1.05 ± 0.01 0.179 
Acid phosphate content 0.49 ± 0.02 0.42 ± 0.02 0.071 
Collagen maturity 2.4 ± 0.1 2.5 ± 0.1 0.428 
Collagen glycation 0.004 ± 0.000 0.004 ± 0.000 0.722 

 

Data are presented as mean ± SEM. 

 

  



Supplementary table 2: Bone strength, trabecular microarchitecture, histomorphometry and 

compositional parameters in 16-week-old GIP-GFP-KI mice.  

 Wild-type (n=7) GIP-GFP-KI (n=7) P values 

Morphological parameters 
Body mass (g) 31.9 ± 0.4 32.1 ± 0.7 0.946 
Femur length (mm) 13.8 ± 0.1 14.0 ± 0.1 0.328 
Whole bone strength (3-point bending) 
Maximum bending load (N) 15.9 ± 0.5 14.9 ± 0.5 0.165 
Maximum displacement (mm) 0.95  ± 0.08 1.17  ± 0.12 0.503 
Bending stiffness (N/mm) 75.2  ± 1.7 68.0  ± 2.7 0.070 
Work to fracture (N.mm) 9.5  ± 0.6 9.4  ± 0.7 0.922 
Bone matrix strength (Nanoindentation) 
Indentation force (mN) 11.6 ± 0.5 9.7 ± 0.6 0.038 
Indentation modulus (GPa) 12. ± 0.4 12.3 ± 0.6 0.456 
Hardness (MPa) 636 ± 37 523 ± 32 0.053 
Work of indentation (pJ) 3006 ± 160 2521 ± 188 0.128 
Trabecular microarchitecture (MicroCT) 
BV/TV (%) 22.7 ± 1.1 17.7 ± 0.4 <0.001 
Tb.N (1/mm) 3.4 ± 0.1 2.7 ± 0.1 <0.001 
Tb.Th (µm) 67 ± 1 65 ± 1 0.375 
Tb.Sp (µm) 187 ± 3 202 ± 4 0.014 
Bone histomorphometry 
MAR (µm/day) 1.1 ± 0.1 1.2 ± 0.1 0.275 
MS/BS (%) 13.1 ± 1.9 15.4 ± 1.8 0.495 
BFR/BS (µm/day) 0.13 ± 0.02 0.20 ± 0.02 0.023 
N.Oc/B.Pm (1/mm) 1.9 ± 0.2 2.5 ± 0.2 0.015 
Oc.S/BS (%) 8.5 ± 0.7 12.1 ± 1.0 0.015 
Bone mineral density distribution (qBEI) 
Camean (% Ca) 21.0 ± 0.7 22.1 ± 0.7 0.275 
Cawidth (%Ca) 3.4 ± 0.1 3.5 ± 0.1 0.290 
Bone composition at bone formation site (Fourier transform infrared microspectroscopy) 
Mineral/matrix ratio 3.4 ± 0.2 2.8 ± 0.2 0.165 
Carbonate/phosphate ratio 0.008 ± 0.001 0.007 ± 0.001 0.603 
Mineral crystallinity 1.06 ± 0.04 1.02 ± 0.05 0.558 
Acid phosphate content 0.70 ± 0.05 0.78 ± 0.08 0.603 
Collagen maturity 3.1 ± 0.2 2.4 ± 0.1 0.003 
Collagen glycation 0.004 ± 0.001 0.004 ± 0.000 0.832 

 

Data are presented as mean ± SEM.  

 

 

  



Supplementary table 3: Bone strength, trabecular microarchitecture, histomorphometry and 

compositional parameters after 6 weeks treatment with saline, [D-Ala2]GIP1-42, Xenin-25(Lys(13)PAL), 

(pGlu-Gln)CCK-8, secretin or RC160 in NIH Swiss mice. 

 

 Saline GIP Xenin CCK-8 Secretin RC160 

Morphological parameters 
Body mass (g) 26.9 ± 1.1 26.0 ± 1.4 25.1 ± 1.7 25.0 ± 1.0 25.8 ± 1.3 26.2 ± 1.6 
Femur length (mm) 16.3 ± 0.1 16.4 ± 0.1 16.3 ± 0.1 16.3 ± 0.1 16.3 ± 0.1 16.3 ± 0.1 
Whole bone strength (3-point bending) 
Maximum bending load (N) 19.1 ± 0.9 22.5 ± 1.0 17.0 ± 0.6 18.3 ± 1.3 18.1 ± 0.5 17.9 ± 0.9 
Maximum displacement (mm) 0.6 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 
Bending stiffness (N/mm) 86 ± 6 84 ± 7 70 ± 2 82 ± 8 82 ± 5 83 ± 5 
Work to fracture (N.mm) 7.0 ± 1.1 8.5 ± 1.2 6.8 ± 1.1 6.7 ± 0.8 7.0 ± 0.8 6.1 ± 0.8 
Trabecular microarchitecture (MicroCT) 
BV/TV (%) 18.8 ± 1.0 23.7 ± 1.2 16.3 ± 0.6 19.7 ± 1.0 19.7 ± 0.7 18.2 ± 1.3 
Tb.N (1/mm) 3.0 ± 0.1 3.5 ± 0.1 2.4 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.8 ± 0.2 
Tb.Th (µm) 65 ± 1 65 ± 1 66 ± 2 67 ± 1 66 ± 1 64 ± 1 
Tb.Sp (µm) 240 ± 9 189 ± 6 276 ± 13 234 ± 8 240 ± 8 250 ± 12 
Bone histomorphometry 
MAR (µm/day) 2.9 ± 0.3 3.5 ± 0.2 2.7 ± 0.2 3.0 ± 0.2 3.0 ± 0.3 2.7 ± 0.3 
MS/BS (%) 51.7 ± 1.6 61.2 ± 2.1 43.5 ± 1.4 52.8 ± 1.6 49.9v 1.6 49.4 ± 2.4 
BFR/BS (µm/day) 1.5 ± 0.2 2.1 ± 0.1 1.1 ± 0.1 1.6 ± 0.1 1.5 ± 0.2 1.3 ± 0.1 
N.Oc/B.Pm (1/mm) 0.75 ± 0.15 0.25 ± 0.04 0.49 ± 0.09 0.78 ± 0.14 0.82 ± 0.16 0.81 ± 0.16 
Bone matrix strength (Nanoindentation) 
Indentation force (mN) 12.2 ± 0.4 13.2 ± 0.5 14.3 ± 0.3 12.3 ± 0.4 12.3 ± 0.4 12.0 ± 0.5 
Indentation modulus (GPa) 14.0 ± 0.4 15.3 ± 0.5 16.1 ± 0.4 13.9 ±  0.5 14.4 ± 0.6 14.8 ± 0.5 
Hardness (MPa) 717 ± 10 735 ± 8 877 ± 43 705 ± 9 703 ± 9 697 ± 8 
Work of indentation (pJ) 2724 ± 159 3078 ± 249 2902 ± 71 2796 ± 289 2748 ± 307 2524 ± 161 
Bone composition at bone formation site (Fourier transform infrared microspectroscopy) 
Mineral/matrix ratio 3.5 ± 0.1 3.7 ± 0.1 3.3 ± 0.2 3.4 ± 0.1 3.5 ± 0.1 3.4 ± 0.1 
Carb./phosphate ratio (x103) 12.3 ± 0.6 13.7 ± 0.4 7.4 ± 0.6 11.7 ± 0.5 11.6 ± 0.6 12.2 ± 0.9 
Mineral crystallinity 1.02 ± 0.01 1.02 ± 0.01 1.16 ± 0.10 1.02 ± 0.02 1.01 ± 0.02 1.01 ± 0.01 
Acid phosphate content 0.73 ± 0.04 0.66 ± 0.04 0.83 ± 0.13 0.72 ± 0.08 0.70 ± 0.06 0.68 ± 0.09 
Collagen maturity 4.0 ± 0.1 4.5 ± 0.2 2.5 ± 0.1 4.0 ± 0.1 3.9 ± 0.2 3.8 ± 0.2 

 

Data are presented as mean ± SEM. Significant modifications as compared with saline-treated animals 

(p<0.05) are highlighted in bold, and statistical trends (p values between 0.05 and 0.1) are in 

italic.n=6 mice/group except for xenin-25(Lys(13)PAL)-treated animals where 5 mice/group were used.  

 

 


