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Introduction

Constraint Satisfaction Problems (CSP) can generally be used to easily model combinatorial problems (Rossi et al., 2006). A CSP consists of a set of variables (generally given with their domains or candidate values) and and maximum are also finite domain variables that other constraints can use. We found them of great utility for breaking symmetries (e.g., for ordering several sets) and reducing sets.

• A new set of stronger rules (⇒ red ) for reducing CSP models during the propagation process:

• Every rule in this set corresponds to a reduction function [START_REF] Apt | Principles of Constraint Programming[END_REF] for finite domain variables and sets.

Thus, the fixed point application of these rules defines a propagation algorithm.

• The reduction depends on the computing of lower and upper bounds for the analyzed sets as well as their minimum and maximum cardinalities (whereas that presented in [START_REF] Lardeux | From Set Constraint Models to SAT Instances[END_REF] employed only upper bounds). This reduction is similar to the one introduced by [START_REF] Azevedo | Constraint Solving over Multi-valued Logics -Application to Digital Circuits[END_REF].

• The new proposed reduction scheme is much stronger than that previously presented in [START_REF] Lardeux | From Set Constraint Models to SAT Instances[END_REF]. It is stronger than bound consistency for set constraints (e.g., [START_REF] Gervet | Conjunto: Constraint Propagation over Set Constraints with Finite Set Domain Variables[END_REF], and weaker than the one presented by [START_REF] Yip | Checking and filtering global set constraints[END_REF]. This choice is discussed and justified in Section 9.

• Last but not least, we have also added some rules for manipulating disjunctions of constraints. We are thus able to remove some tautologies (i.e., some complete disjunctions may vanish), and some contradictions (i.e., some disjuncts of a disjunction may vanish). To our knowledge, this had never been proposed in a CSP set solver.

• Some more efficient encoding rules (⇔ enc ) for translating CSP models into propositional satisfiability instances:

• Additional rules complete those presented in [START_REF] Lardeux | From declarative set constraint models to "good" sat instances[END_REF]. They permit to convert the new set constraints implemented in this paper.

• These additional rules apply to constraints without or after propagation, and without generating useless clauses (as it was sometimes the case in our previous work). Succinctly, the process is the following for each type of constraint: for every set participating in a given constraint and for every element of the universe, we consider three mutually exclusive membership cases: * The element is in the lower bound of the set, i.e., the element is effectively in the set. * The element is not in the lower bound of the set, but it is in the upper bound, i.e., the set could eventually contain the element. * The element is not in the upper bound of the set, i.e., the set definitively does not contain this element.

Hence, for a single ternary constraint (e.g., A = B ∩ C), 27 cases should be considered. After applying our new reduction rules (⇒ red ), some of these cases may never be fulfilled. Hence, our new encoding rules do not generate any clauses in these cases, and consequently, the generated SAT instances are smaller.

We applied our technique successfully to diverse classic problems, including Sudoku, n-queens, car sequencing, and WhoWithWhom. To illustrate this paper, we have decided to use two challenging problems: the Social Golfer Problem (SGP) [START_REF] Harvey | CSPLib problem 010: Social golfers problem[END_REF] and the Sports Tournament Scheduling problem (STS) [START_REF] Walsh | CSPLib problem 026: Sports tournament scheduling[END_REF]. The complexity of our automatically generated propositional satisfiability instances is similar to that of other improved and handwritten SAT instances. Moreover, our SAT instances appear to be much smaller than the ones we used to generate before. Thus, larger problems can be tackled, even problems which used to cause memory overflow problems. Furthermore, solving our automatically generated SAT instances by using a standard propositional satisfiability solver (e.g., MiniSAT reported in [START_REF] Eén | An Extensible SAT-solver[END_REF]) could produce very competitive results compared to other SAT solving methods. For instance, our approach can match the global performance of the algorithm reported in [START_REF] Hamiez | A note on a sports league scheduling problem[END_REF] for the STS problem, which is, as far as we know, the most efficient algorithm for the STS problem.

This algorithm was specially devised for solving the STS problem. However, it may produce unsatisfiable instances given its over-constrained problem definition.

The following section (Section 2) gives an overview of our method and some motivations. Section 3 presents the notion of set CSP and our set constraint language. In Section 4, we present some of our reduction rules, over finite domain variables, sets, and disjunctions. In Section 5, we then discuss some implementation issues to obtain a more efficient constraint propagation process. The rules for encoding CSP instances into SAT instances are described in Section 6. Section 7 illustrates the use of set constraints for modeling the STS and SGP problems. These two problems are also used in Section 8 to evaluate our approach by considering the efficiency of reduction rules and SAT preprocessing. We analyze the methods in the literature and their limits, and then we show how our method can overcome some of these problems in Section 9. We finally conclude in Section 10.

Overview of the approach

Our main goal is to provide expressive techniques for generating propositional satisfiability instances, which can be then solved by an existing SAT solver. To this end, we work at the level of models, instances, and model and instance transformations and conversions. In this article, our approach is made up of the following steps (Figure 1 gives a simplified view):

1. A problem is modeled with CSP set constraints: this gives a CSP model. The CSP model can be generated by a modeler, such as Savile Row [START_REF] Nightingale | Savile Row[END_REF] or MiniZinc [START_REF] Nethercote | MiniZinc: Towards a Standard CP Modelling Language[END_REF][START_REF] Stuckey | The MiniZinc challenge 2008-2013[END_REF]. However, our language evolves continuously. For example, we are currently experimenting with some specific partitioning constraints and patterns of conjunctions of constraints which have special reduction and encoding rules. Thus, we preferred to use standard languages to keep flexibility, either C++ or Prolog (SWI-Prolog proposed by [START_REF] Wielemaker | SWI-Prolog[END_REF]. The CSP models are thus Prolog or C++ programs that formulate the variables and the constraints.

We consider usual sets constraints (such as ∪ and ∩), constraints enforcing minimum and maximum values of sets (such as in [START_REF] Correas | Enhancing set constraint solvers with bound consistency[END_REF]), and minimum and maximum cardinality of sets. These minimum and 
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Solving ( 6) Solving ( 6) Solving ( 6 maximum values and cardinality are finite domain variables. These constraints did not exist in our previous work.

2. A CSP model, together with some data, leads to a CSP instance. For example, let us consider we have the Social Golfer model. Then, this CSP model (Model CSP ) and the number of players set to 5, the number of groups set to 3, and the number of weeks set to 4 leads to the CSP instance 5-3-4 of the Social Golfer.

Since XCSP3 [START_REF] Boussemart | XCSP3: an integrated format for benchmarking combinatorial constrained problems[END_REF] was not released when we started this work, we designed our XML-like format for CSP instances. Thus, the Prolog and C++ programs that represent CSP models (and data) generate the CSP instances in our XML-like format.

3.

A CSP instance is reduced by a propagation process in order to get a reduced CSP instance. The propagation process computes a fixed point of our reduction rules, leading to a reduced CSP instance. CSP R is the CSP instance reduced by all the rules. CSP models can also lead directly to CSP R instances using dynamic reduction (see Section 5.4 for details). Reduction without rules for disjunction constraints leads to CSP R\D instances. For finite domain variables, we use arc-consistency like in [START_REF] Mackworth | Constraint satisfaction[END_REF]. A reduction rule tries to push up lower bounds and to push down upper bounds of set variables using the current bounds, and the minimum and maximum cardinalities. This consistency for sets has been defined in [START_REF] Azevedo | Constraint Solving over Multi-valued Logics -Application to Digital Circuits[END_REF] (see Section 4 for details). We complete this reduction by removing constraints that become tautologies: indeed, these useless constraints can generate extra variables and clauses in the SAT instances.

Another novelty is also to treat the disjunctions of constraints (CSP R). This reduction consists in detecting disjunctions that are tautologies to remove them. Disjuncts that are contradictions are also detected and removed.

This simplification can drastically reduce some instances. More details are given in Section 4.4. Note that our new reduction is much stronger than the one of [START_REF] Lardeux | From declarative set constraint models to "good" sat instances[END_REF] which only treated upper bounds of sets.

A CSP instance (reduced or not

) is encoded into a SAT instance. Our new encoding is more efficient than the one of [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF]. Indeed, we can now consider either reduced or non-reduced CSP instances as input, without generating useless SAT variables and clauses (see Section 6). We then respectively obtain reduced SAT models (SAT CSP R ) or SAT models (SAT CSP ).

SAT instances (SAT CSP

) can be processed before being sent to the SAT solver. For example, one can perform unit propagation or some steps of resolution. In this article, we used the SatELite [START_REF] Eén | Effective Preprocessing in SAT Through Variable and Clause Elimination[END_REF] preprocessor. We report about its effects on resolution in Section 8.2. Note that SAT CSP UP, SAT CSP CM, and SAT CSP R are not necessarily the same. Reduction is processed before the SAT encoding for SAT CSP R and after for SAT CSP UP and SAT CSP CM. All SAT instances suffixed by UP correspond to SAT instances only preprocessed by unit propagation. Similarly, all SAT instances suffixed by CM correspond to SAT instances preprocessed by a complete CNF minimizer (see Section 8.2 for details).

6.

A SAT instance is solved with a SAT solver. In our case, we use MiniSAT because it is a standard, classical, and complete solver (i.e., if there is a solution, it finds the solution; otherwise, it proves the unsatisfiability of the instance). None of the processings modifies the solution space of the problem. However, we are interested in the first solution returned by the solving. Thus, each branch can lead to a different solution.

Some of these steps are not mandatory. We see later that we can skip Step 5: preprocessing SAT instances is not always beneficial (Subsection 8.2.2).

Step 3 is optional: indeed, the approach presented in [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF] corresponds to Steps 1-2-4-6. However, we show in this paper that the reduction step is crucial, in terms of the size of produced SAT instances, and also in terms of the total solving time (Step 6). The method in [START_REF] Lardeux | From declarative set constraint models to "good" sat instances[END_REF] corresponds to 1-2-3-4-6, but with a much weaker reduction than the one we are using now. We also show that

Steps 2 and 3 can be achieved at the same time (see Section 5.4): in this case, CSP instances are reduced sooner, and some larger problems can be tackled and reduced. However, in this case, we do not have the raw initial CSP instance (but this is also the case with MiniZinc [START_REF] Nethercote | MiniZinc: Towards a Standard CP Modelling Language[END_REF][START_REF] Stuckey | The MiniZinc challenge 2008-2013[END_REF] which generates a FlatZinc instance, which is already transformed, for example, by some reductions, and modifications of variables.)

The advantages of our approach are:

• Problems are expressively modeled as CSPs, and we have a better expressiveness than before [START_REF] Lardeux | From declarative set constraint models to "good" sat instances[END_REF][START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF]. We have added disjunctions, finite domain variables, minimum and maximum cardinalities, and minimum and maximum of sets as variables. We now have the expressiveness of the set constraint language of Cardinal [START_REF] Azevedo | Cardinal: A finite sets constraint solver[END_REF] plus disjunction. Symmetry breaking techniques can be easily added as extra constraints.

• This technique is less error-prone than hand-written propositional satisfiability instances. For instance, in [START_REF] Triska | An improved SAT formulation for the social golfer problem[END_REF] the authors had to revise the model for the Social Golfer Problem presented in (Gent & Lynce, 2005), since they found some corrections to the ranges of different disjunctions (∨) and conjunctions (∧) composing the clauses of the hand-written SAT instances.

• The generated SAT instances are even more compact than those presented in [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF]. In the particular case of the SGP, the SAT instances generated with our new technique are smaller (in terms of clauses)

than the instances presented in [START_REF] Triska | An improved SAT formulation for the social golfer problem[END_REF].

• Our generated SGP instances are more appropriate for SAT solvers, as they can be solved faster than those reported in [START_REF] Triska | An improved SAT formulation for the social golfer problem[END_REF]. Concerning the STS problem (Section 7.2), the proposed approach attains a performance that successfully compares with that of the best-known ad hoc solver [START_REF] Hamiez | A note on a sports league scheduling problem[END_REF], which has the disadvantage of producing an over-constrained model that leads to a loss of solutions (unsatisfiable instances).

• The reduction process (which is stronger than before [START_REF] Lardeux | From declarative set constraint models to "good" sat instances[END_REF] is an overhead which is generally compensated by faster solving times. When instances contain a huge number of disjunctions, the reduction is efficient in terms of SAT instance size but may become inefficient in terms of expended CPU time (see Section 8).

• The model is reduced before generating SAT instances, and the encoding process is more efficient than before (it does not generate useless clauses or variables). Hence, generated SAT instances are consequently smaller, and SAT solvers can now handle larger problems (that could not be treated before because of their size).

To show the difference with our previous work, Figure 2 illustrates the processes presented in [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF].

CSP set constraints

In this section, we define the set constraint language that we consider in the remaining sections: notion and declaration of variables, universe, and set constraints.

Set-CSP

Definition 1 (Set-CSP). A Set-CSP is a four-tuple (U, X, F, C) such that:

• U denotes the universe, i.e., a finite set of integers. • X = {x 1 , . . . , x n } is a set of variables, where each variable x i ∈ X has a finite domain

D x i ⊆ U. The Cartesian product D x 1 × . . . × D x n is represented as D.
• F is a set of set variables, and for each F ∈ F:

• Ḟ ⊆ U, which denotes the greatest lower bound of F, is a set that contains elements of the universe that are necessarily in F.

• Ḟ ⊆ U, which denotes the lowest upper bound of F, is a set that contains elements of the universe that may be in F.

• Also, F ∈ N, F ∈ N represent the minimum and maximum cardinality of F, respectively.

Given a set F with cardinality |F|, then the following conditions are fulfilled:

Ḟ ⊆ F ⊆ Ḟ, F ≤ |F| ≤ F , | Ḟ| ≤ F , and F ≤ | Ḟ|.
• C is used to express a set of constraints relating variables defined over the Cartesian product

D |X| × U |F| . Ḟ \ F ? =
Ḟ represents those elements required in F, while F ? = Ḟ \ Ḟ stands for the elements that could be eventually in F. Hence, Ḟ ⊆ F ⊆ Ḟ, as well as the solutions for F, belong to the powerset 2 Ḟ . Moreover, they include all the elements in the greatest lower bound (that also always pertain to the least upper bound), and their cardinality is an integer in the interval [ F .. F ].

Elementary set constraints

In this work, the constants and the variables are defined as follows:

• Let U :: be the universe, with representing a set.

• Let x :: D x defines a finite domain variable x with domain D x being a set of elements.

• Let F :: ( Ḟ, Ḟ, F , F ) be a set variable, with the sets of elements Ḟ, Ḟ denoting its lower and upper bounds, and the integer values F , F representing its minimum and maximum cardinalities.

• Let ∅ :: (∅, ∅, 0, 0) represent a set variable having no elements (empty).

Assume that F, G, H, and F i (i ∈ [1..n]) are set variables. Assume also that x is a finite domain variable. Our modeling language contains the following usual set constraints: finite domain (dis)equality x = y (x y)

finite domain (strict) inequality x ≤ y (x < y) (non)membership x ∈ F (x F) set (dis)equality F = G (F G) inclusion F ⊆ G (F G) difference H = F \ G intersection F = n i=1 F i union F = n i=1 F i partition F = n i=1 F i set cardinality x = |F| set variable minimum x = min(F) set variable maximum x = max(F)
Note that F = n i=1 F i is equivalent to F = n i=1 F i , and F i ∩ F j = ∅ for all i j.

Constraints are linked by conjunctions and disjunctions (and thus implication). We also include quantification (∃, and ∀) over closed sets, which are syntactic sugar (respectively disjunctions and conjunctions).

Example 1. ∀i ∈ [1.

.n] G i ⊆ G i+1 enforces a chain of included sets G j .

G :: ({1, 2, 3, 4}, {1, 2, 3, 4}, 4, 4) ∧ J :: (∅, {1, 2, 3, 4, 5, 6, 7, 8}, 3, 3) ∧ ∀p ∈ G, p J creates a closed set G = {1, 2, 3, 4}, a set J of cardinality 3 which contains three elements among 1, 2, 3, 4, 5, 6, 7, 8. Then, elements of G are forced not to be in J.

Reduction rules

Rules are an elegant way to describe and formalize changes to be applied to an object (either a simple object or a complex structure). Furthermore, this formalism is rather classic for expert systems and constraint transformations.

See, for example, [START_REF] Frühwirth | Constraint Handling Rules[END_REF]; [START_REF] Ftulis | Rule-based constraints programming: application to crew assignment[END_REF]; [START_REF] Lee | ES * : An expert systems development planner using a constraint and rule-based approach[END_REF]; [START_REF] Topaloglu | Rule-based modeling and constraint programming based solution of the assembly line balancing problem[END_REF]. That is the reason why we formalize our reduction algorithm as the fixed point of a set of transformation rules.

The goal of the reduction rules (⇒ red ) is to bring down the size of the CSP search spaces. A constraint propagation method for reducing sets, as well as finite domains, is defined by a fixed point application of these rules. Every reduction rule may:

• Add (respectively eliminate) some elements to lower bounds (respectively from upper bounds) of set variables.

• Increase (respectively decrease) minimum cardinalities (respectively maximum cardinalities) of set variables.

• Eliminate integers from the domains of finite domain variables.

• Lead to failure cases when there is no solution (e.g., when a domain is empty, or a minimum cardinality is bigger than a maximum cardinality).

• Also, remove some constraints that became tautologies, and thus useless.

Note that it is not mandatory to have reduction rules for each constraint: their role is only to simplify the encoding and, thus, the work of the SAT solver. However, we have rules for each of the constraints presented above. The fixed point application of our reduction rules enforces bound consistency with cardinality [START_REF] Azevedo | Constraint Solving over Multi-valued Logics -Application to Digital Circuits[END_REF][START_REF] Azevedo | Cardinal: A finite sets constraint solver[END_REF]. In the next subsections, we present a selection of our reduction rules. Classical logical operators as ← or | = are also used to define ⇒ red .

Finite domains

When the domain of a variable x is empty, there is no solution for the CSP:

D x = ∅ ⇒ red f ail (1)
If we declare twice a variable x, both declarations are contracted into a single one:

x :: D x , x ::

D x ≡ red x :: D x ∩ D x (2)

Sets

Some rules may add some elements to the set Ḟ that may not belong to Ḟ. Thus, Rule ( 4) is essential because it leads to a failure in these circumstances. Rules (3), ( 5), and ( 6) are similar: they are beneficial when modifications are made to the lower or upper bound of a set cardinality.

F > F ⇒ red f ail (3) Ḟ Ḟ ⇒ red f ail (4) | Ḟ| > F ⇒ red f ail (5) | Ḟ| < F ⇒ red f ail (6) 
If F = 0, then F corresponds to a set having no elements (moreover, if Ḟ ∅, then applying Rule (4) results in a failure):

F = 0 ⇒ red Ḟ = ∅ (7)
Rule ( 8) fixes the set F when the upper bound cardinality equals its minimum cardinality. Respectively, Rule (9)

fixes the set F when the lower bound cardinality equals its maximum cardinality.

F = | Ḟ|, Ḟ ⊂ Ḟ, F ≤ F ⇒ red Ḟ ← Ḟ, F ← F (8) F = | Ḟ|, Ḟ ⊂ Ḟ, F ≤ F ⇒ red Ḟ ← Ḟ, F ← F (9)
Moreover, Rules ( 10) and ( 11) can only be triggered once to match the different fields of a set declaration:

| Ḟ| > F ⇒ red F ← | Ḟ| (10) | Ḟ| < F ⇒ red F ← | Ḟ| (11)

Set constraints

Rule ( 12) allows us to reduce three different set variables, F, G, and H, which are related by a set difference constraint. It is important to remark that in the right-hand side of a rule, multiple assignments (←) are achieved at the same time. We mean that sets on the right-hand side (respectively left-hand side) of an assignment are the values of the set before (respectively after) applying the rule. Thus, if a set S appears several times on the right hand-side of some assignments, it always has the same value (i.e., its value before applying the rule). Note also that min{a 1 , . . . , a n } (respectively max{a 1 , . . . , a n }) returns the smallest (respectively the biggest) integer a i .

H = F \ G ⇒ red                                                                                        Ḣ ← ( Ḣ ∩ Ḟ) \ Ġ Ḟ ← Ḟ ∩ ( Ḣ ∪ Ġ) Ġ ← Ġ \ Ḣ Ḣ ← Ḣ ∪ ( Ḟ \ Ġ) Ḟ ← Ḣ ∪ Ḟ Ġ ← Ġ H ← max{ H , | Ḣ ∪ ( Ḟ \ Ġ)|} F ← max{ F , | Ḣ ∪ Ḟ|} G ← G H ← min{ H , |( Ḣ ∩ Ḟ) \ Ġ|} F ← min{ F , | Ḟ ∩ ( Ḣ ∪ Ġ)|} G ← min{ G , | Ġ \ Ḣ|} (12)
Once Rule (12) has been applied, if F ? ∩ Ġ = ∅ then H = F \ G always evaluates to true. Hence, this constraint is useless and can vanish. Such conditions are evaluated for every class of constraints: they can scale down the CSP instance size, and in consequence, the size of the generated propositional satisfiability instance.

We have also integrated some redundant rules that do not impact the reduction strength of our method. These rules are specializations of some other generic rules, and they apply faster. For example, the generic rule for the constraint

H = F ∩ G is: H = F ∩ G ⇒ red                                                                                        Ḣ ← Ḣ ∩ Ḟ ∩ Ġ Ḣ ← Ḣ ∪ ( Ḟ ∩ Ġ) Ḟ ← Ḟ ∪ Ḣ Ġ ← Ġ ∪ Ḣ Ḟ ← Ḟ \ ( Ġ \ Ḣ) Ġ ← Ġ \ ( Ḟ \ Ḣ) F ← max{ F , | Ḟ ∪ Ḣ|} G ← max{ G , | Ġ ∪ Ḣ|} H ← max{ H , | Ḣ ∪ ( Ḟ ∩ Ġ)|} F ← min{ F , | Ḟ \ ( Ġ \ Ḣ)|} G ← min{ G , | Ġ \ ( Ḟ \ Ḣ)|} H ← min{ H , F , G , | Ḣ ∩ Ḟ ∩ Ġ|} (13)
When H = ∅, the rule is much simpler but still equivalent. Practically, less computation steps and less tests are needed:

∅ = F ∩ G ⇒ red                          Ḟ ← Ḟ \ Ġ Ġ ← Ġ \ Ḟ F ← min{ F , | Ḟ \ Ġ|} G ← min{ G , | Ġ \ Ḟ|} (14)

Disjunctions

Disjunctions may be practical for modeling problems since they introduce even more expressivity. However, their treatment in terms of propagation quickly becomes tedious.

Consider a CSP given as

V ∧ C ∧ (d 1 ∨ . . . ∨ d n )
where V represents variable declarations (set and finite domain variables), C and the d i 's are formulas built with conjunctions and disjunctions of set constraints. We consider that each d i does not contain any variable declaration (this is not a restriction: declarations in each d i can raise to V).

Propagation from V ∧ C to (d 1 ∨ . . . ∨ d n ) thus only consists of removing constraints. Propagation from d 1 ∨ . . . ∨ d n to V ∧ C is not correct in the general case. Consider d 1 ∨ . . . ∨ d n ≡ d ∧ (d 1 ∨ . . . ∨ d n ).
Then, propagation from d to V ∧ C can apply. However, we consider that in such a case, d can raise to C.

We are thus concerned here with propagation from V ∧ C to (d 1 ∨ . . . ∨ d n ) to remove constraints, either complete disjunctions or just some disjuncts:

1. If V ∧ C | = d i , then d 1 ∨ . . . ∨ d n can be replaced by true 2. If V ∧ C | = ¬d i , then d 1 ∨ . . . ∨ d n can be simplified into d 1 ∨ . . . ∨ d i-1 ∨ d i+1 ∨ . . . ∨ d n
The first case always works, while the second case is tractable when we have the negation of the constraint (e.g., =

and its negation ). In our case, only set difference and disjoint union constraints do not have direct negation.

Each type of constraint d i requires its proper rules for testing

V ∧ C | = d i or V ∧ C | = ¬d i and treating disjunction.
In the following, we give disjunction reduction rules for the non-membership constraint ( ).

The first rule enables us to remove a disjunct (which is a constraint) from a disjunction. The c i 's are conjunctions and disjunctions of set constraints. If the domain of x is included in the lower bound of G, then, x G is always false and it can be removed from the disjunction:

c 1 ∨ . . . ∨ c i-1 ∨ x G ∨ c i+1 ∨ . . . ∨ c n , D x ⊆ Ġ ⇒ red (15) c 1 ∨ . . . ∨ c i-1 ∨ c i+1 ∨ . . . ∨ c n
The next rule replaces a disjunction by true. When the domain of x does not have any value in common with the upper bound of the set G, then the constraint x G is always true, and consequently, the disjunction c 1 ∨ . . . ∨ c n can be replaced by true:

c 1 ∨ . . . ∨ c i-1 ∨ x G ∨ c i+1 ∨ . . . ∨ c n , D x ∩ Ġ = ∅ ⇒ red (16) 
true

Some implementation considerations for the reduction rules

In this section, we present some aspects of the implementation of the reduction rules. The whole software is composed of 3 separate parts:

1. The modelization module, which is written in SWI-Prolog [START_REF] Wielemaker | SWI-Prolog[END_REF].

2. The reduction module, which is written in CHR [START_REF] Frühwirth | Constraint Handling Rules[END_REF]. Note that we use the SWI-Prolog version of CHR.

3. The encoding module, which is written in C++.

The reduction module thus consists of CHR rules (corresponding to our ⇒ red rules) and some Prolog predicates. We present here 4 aspects of the reduction module:

1. The input syntax.

2. The structure we used for domains.

3. The splitting of ⇒ red rules into several CHR rules for efficiency reasons.

4. The dynamic reduction to apply ⇒ red rules as soon as a new constraint of the model is formulated; this overcomes some memory problems.

Syntax

Without loss of expressivity, we restrict CSP instances to be of the form V ∧ C where D is a conjunction of set, and finite domain variable declarations and C is a conjunction of basic constraints or disjunctions of basic constraints, i.e., C = c 1 ∧ . . . ∧ c n where c i is either a basic constraint or a disjunction of basic constraints c i = ∨ j c i, j . If this syntax is not respected, this is not a problem, and the encoding still works. However, propagation will be less efficient and will treat only a part of the CSP (constraints respecting this format). For efficiency reasons, it is thus advised to put disjunctions at the end of the model (once again, this is not mandatory). To simplify modeling, we plan to automate constraint re-ordering in the future.

Domains

To represent domains of finite domain variables and domains of set variables, we need to represent sets. A representation in extension of sets (e.g., with some Prolog lists) is enough. However, our reduction rules require applying numerous set operations (e.g., ∪ or ∩) on these domains either to perform some tests before triggering some rules or to achieve computation inside the rule (e.g., new lower and upper bounds, and new variable domain). These operations are very costly for sets given in extension. Thus, we use the concept of s interval for lower and upper bounds of sets and domains of variables. Set operations (e.g., ∪ or ∩) are more efficient over this structure:

• An interval I of integers is denoted by n..m where n and m are integers; I = n..m represents every integer between n and m; the lower bound of I is denoted I and the upper bound I.

• An s interval is an ordered sequence of disjoint intervals:

2 Li = (L 1 , . . . , L l )
The empty s interval is denoted by ⊥. An s interval I = (I 1 , . . . , I n ) is included in an s interval J = (J 1 , . . . , J m ) if each integer appearing in I also appears in J:

I ⊆ J ⇔ ∀I i , ∀v ∈ [I i ..I i ], ∃J k , J k ≤ v ≤ J k
The cardinality |I| of an s interval I = (I 1 , . . . , I n ) is given by: |I| = n i=1 (I i -I i + 1). The minimum min(I) (respectively maximum) of an s interval I = (I 1 , . . . , I n ) is min(I) = I 1 (respectively max(I) = I n ). Other operations (such as ∪, ∩, . . . ) on s intervals are defined similarly. Note that these operations can be implemented simply by reasoning on bounds of intervals.

Splitting rules

Constraint Handling Rules (CHR) [START_REF] Frühwirth | Constraint Handling Rules[END_REF] have been employed to implement the ⇒ red rules. CHR is a declarative, rule-based language whose concrete syntax depends on the host language, in our case SWI-Prolog. A CHR program, then, consists of rules that manipulate a multi-set of terms, called the constraint store: terms may be added or removed from the store. In our implementation, terms either represent variables (set or finite domain variables) together with their domains or constraints over these variables. Reducing the domain of a variable thus consists in removing the previous declaration of the variable, and adding a new declaration containing the reduced domain.

When added to the store, a constraint is active. This means that each rule where it matches the left-hand side is tried again. For efficiency reasons, it is thus crucial to change (remove, and then add) variable declaration only when the change is effective (otherwise, the system spends much time doing the same useless work again). Most of our reduction rules eventually reduce several sets or finite domain variables at once. For example, Rule (13) for the constraint H = F ∩ G may reduce H, F, and G. Such rules are split into several rules, one for each set that it eventually reduces. For example, Rule (13) is implemented as 3 rules (one for reducing H, one for reducing F, and one for G). Moreover, some guards verify that the rule effectively reduces the set or finite domain variables before being triggered. Thus, rules are applied only when they effectively reduce a (set or finite domain) variable. The CHR rule for reducing the set H with an intersection constraint H = F ∩ G is as follows: This rule is triggered when it encounters: a set constraint between 3 sets (H = F ∩ G where H, F, and G are abstract names) in Line 1, the declarations of the sets F and G together with their domains (Lines 2 and 3), and the declaration of the set H (Line 4). The declaration of the set F is given by set(F,support(Fs,FS),card(_Fc,FC)) where F is the name of the set, support(Fs,FS) gives the lower bound (Fs) and upper bound (FS) of F, and card(Fc,FC)

1 set_intersection(H,F,G), 2 set(F,support(Fs,FS),card(Fc,FC)), 3 set(G,support(Gs,GS),card(Gc,GC)) \ 4 set(H,
gives its minimum cardinality (Fc) and maximum cardinality (FC). Lines 5 to 14 defines a guard (between <=> and |), i.e., a condition that must be fulfilled to trigger the rule. Here, this guard specifies that either the lower bound, or the upper bound, or the maximum cardinality of H must effectively be modified to trigger the rule. We can see that the new upper and lower bounds and maximum cardinality of H are computed in the guard. In this rule, the constraint H = F ∩ G, as well as the definitions of F and G cannot be altered. Only the declaration of the set variable H is effectively modified when the rule is triggered (the declaration of H in Line 4 appears after the backslash "\"). Thus, if the rule matches and is triggered, a new declaration of H (with at least its lower or upper bound or its maximum cardinality modified) is added to the store (line 18).

Some other rules can also be split. For example, Rules ( 15) and ( 16) can be specialized when the finite domain variable x is closed (i.e., its domain is reduced to a singleton). In this case, some less costly tests (membership instead of inclusion) can be performed in the guard before applying the rules.

Dynamic reduction

When instances are enormous, our CHR implementation for constraint propagation becomes less and less efficient, and memory problems can appear (see, for example, large instances of the SGP problem in Section 8). We thus propose a way to bypass this problem: while we generate the CSP model with data, we also dynamically reduce it.

Each time we generate a new constraint of the CSP instance, the reduction is triggered. Hence, the reduced CSP instances that we obtain are the same, making propagation dynamically on the CSP model or applying it to the CSP instance. However, we have a gain of memory: by reducing sets and variables and removing useless constraints on the fly, we can reduce the instances sooner, and hence tackle larger instances.

The difference is even more evident with disjunctions by applying Rules ( 15) and ( 16) on the fly. Indeed, tautologies and false disjuncts are immediately removed dynamically. For example, consider the Social Golfer instance 1 shows the difference between the reduced and the non-reduced instances in terms of the number of sets, variables, constraints, and disjunctions.

However, reduction discards the original CSP instances. This is also the case with MiniZinc [START_REF] Nethercote | MiniZinc: Towards a Standard CP Modelling Language[END_REF][START_REF] Stuckey | The MiniZinc challenge 2008-2013[END_REF], which generates FlatZinc instances that are already transformed by some reductions or modifications of variables. This may not be a problem, except if some more tools have to process the instances or if the user wants to trace the whole transformation chain.

Encoding rules

The main objective of encoding rules (⇔ enc ) is to translate set constraints from the original CSP model into propositional satisfiability clauses. There must be a translation for each type of constraint; otherwise, a generated SAT instance would be a kind of relaxation of the original problem. It is worth noting that the rules presented in the following subsection can apply to reduced set constraints, but also non-reduced ones. We only present a selection of the complete set of encoding rules.

Finite domain variable

The finite domain variable encoding rule is designed to enforce the condition that every finite domain variable is associated with one and only one value from its corresponding domain:

v :: D v ⇔ enc x∈D v (∧ y∈D v ,x y (¬y v ) ∧ x v )
Thus, in CNF the rule becomes:

v :: D v ⇔ enc x,y∈D v ,x y (¬x v ∨ ¬y v ) ∧ x∈D v x v |D v |
2 binary clauses and one |D v |ary clause

The number of generated Boolean variables is |D v |.

Set variable

For encoding a set F :: ( Ḟ, Ḟ, F , F ), some Boolean variables have to be created, and all variables of the lower bound Ḟ are set to true. For a given constant x from the universe, the creation of a variable expressing that it is part of a set F is denoted by x F .

F :: ( Ḟ, Ḟ, F , F ) ⇔ enc          ∀x ∈ Ḟ, a Boolean variable x F is available 0 clauses x∈ Ḟ x F
| Ḟ| unit clauses Thus, for each variable of the upper bound, we create a variable x F . If it is also in the lower bound, we force it to be true by adding the unit clause x F .

Set intersection constraint

To be extensive and clear, we must consider all the possible cases with regards to the sets Ḣ, Ḣ, Ḟ, Ḟ, Ġ, and Ġ. We denote useless and impossible cases with the "-" symbol.

H = F ∩ G ⇔ enc ∀x ∈ U                                                                                                                                                                                                              x ∈ Ḣ                                                                x ∈ Ḟ                  x ∈ Ġ true x ∈ G ? x G | Ḣ ∩ Ḟ ∩ G ? | unit clauses x Ġ f alse x ∈ F ?                  x ∈ Ġ x F | Ḣ ∩ F ? ∩ Ġ| unit clauses x ∈ G ? x F ∧ x G | Ḣ ∩ ( Ḟ \ Ḟ) ∩ G ? | binary clauses x Ġ f alse x Ḟ                  x ∈ Ġ f alse x ∈ G ? f alse x Ġ f alse x ∈ H ?                                                                x ∈ Ḟ                  x ∈ Ġ x H |H ? ∩ Ḟ ∩ Ġ| unit clauses x ∈ G ? x H ↔ x G |H ? ∩ Ḟ ∩ G ? | ×2 binary clauses x Ġ ¬x H |H ? ∩ ( Ḟ \ Ġ)| unit clauses x ∈ F ?                  x ∈ Ġ x H ↔ x G |H ? ∩ F ? ∩ Ġ| ×2 binary clauses x ∈ G ? x H ↔ x F ∧ x G |H ? ∩ F ? ∩ G ? | ×3 binary clauses x Ġ ¬x H |H ? ∩ (F ? \ Ġ)| unit clauses x Ḟ                  x ∈ Ġ ¬x H |H ? ∩ Ġ \ Ḟ| unit clauses x ∈ G ? ¬x H |H ? ∩ G ? \ Ḟ| unit clauses x Ġ ¬x H |H ? \ Ḟ \ Ġ| unit clauses x Ḣ                                                                x ∈ Ḟ                  x ∈ Ġ f alse x ∈ G ? ¬x G | Ḟ ∩ (G ? \ Ḣ)| unit clauses x Ġ - x ∈ F ?                  x ∈ Ġ ¬x F |F ? ∩ Ġ \ Ḣ| unit clauses x ∈ G ? ¬x F ∨ ¬x G |F ? ∩ G ? \ Ḣ| binary clauses x Ġ - x Ḟ                  x ∈ Ġ - x ∈ G ? -
x Ġ -

Set cardinality constraint

The set cardinality constraint x = |F| links the cardinal of the set F to the finite domain variable x. Some efficient encodings of this global constraint have already been proposed, see for example [START_REF] Abío | Encoding Linear Constraints with Implication Chains to CNF[END_REF][START_REF] Abío | A parametric approach for smaller and better encodings of cardinality constraints[END_REF] or [START_REF] Bailleux | Efficient CNF Encoding of Boolean Cardinality Constraints[END_REF]. The encoding presented in [START_REF] Bailleux | Efficient CNF Encoding of Boolean Cardinality Constraints[END_REF] is based on the unary representation of integers3 and the use of two essential elements.

The first one is a balanced binary tree called the totalizer. It associates an auxiliary output variable to each input variable involved in the cardinality constraint and permits to sort these new auxiliary variables by giving priority to those having a true value. A set of internal variables, called linking variables, is employed to associate the input and output variables. Each internal node N in the totalizer represents the union of its corresponding children, C 1 and C 2 , which are sets of Boolean variables. The α-th variable of the set C 1 is denoted as C 1 α . Moreover, the input and output variables are in the leaves and the root of the binary tree, respectively. The following propositional satisfiability clauses are required to encode each node of the totalizer binary tree:

0≤α≤|C 1 |, 0≤β≤|C 2 |, 0≤γ≤|N|, α+β=γ ¬C 1 α ∨ ¬C 2 β ∨ N γ ∧ C 1 α+1 ∨ C 2 β+1 ∨ ¬N γ+1 , with C 1 0 = C 2 0 = N 0 = 1, and C 1 |C 1 |+1 = C 2 |C 2 |+1 = N |N|+1 = 0.
The second essential element of the encoding presented in [START_REF] Bailleux | Efficient CNF Encoding of Boolean Cardinality Constraints[END_REF] is the comparator. It forces k to take a value equal to the cardinal of the set by fixing the value of the first k output variables of the totalizer binary tree, denoted as s i . The following expression can be used to encode the comparator: • n + n i=1 2u n i (

u n i 2 + 1)( u n i 2 + 1) -( u n i 2 + 1) clauses,
• n i=1 u n i variables.

with u n n = 1, u n 1 = n and u n i = u n 2i-1 + 2u n 2i + u n 2i+1 .

Disjunction constraint

The disjunction constraint is a "meta-constraint" working with several constraints:

constraint 1 ∨ . . . ∨ constraint n
To generalize the encoding of the disjunction constraint into SAT, we reuse the classical transformations of the constraints into CNF. However, the raw encoding does not provide a formula in CNF. We have thus to apply the wellknown De Morgan's laws that increase the number of clauses exponentially. If each constraint c ∈ C used in the disjunction is composed of n c clauses, then n = c∈C n c clauses are generated by the encoding. However, this encoding generates the same number of variables as if the constraints were handled separately.

Models

In this section, we propose some models for two well-known problems: the Social Golfer Problem and the Sport Tournament Scheduling problem.

Social golfer problem

The Social Golfer Problem, listed as problem number 10 in the CSPLib [START_REF] Harvey | CSPLib problem 010: Social golfers problem[END_REF], is defined as follows.

There exist q golfers that play every week during a period of w weeks. Golfers are split into g groups of p golfers, each one (q = p • g). The objective of the SGP is to construct a schedule of play for the q golfers, such that no golfer plays in the same group as any other golfer more than once. It is a very attractive problem since SGP, and closely related problems arise in different research areas like encryption and covering problems [START_REF] Hsiao | Orthogonal latin square codes[END_REF][START_REF] Stinson | Universal hashing and authentication codes[END_REF]. Furthermore, there exist various SGP instances that are still open [START_REF] Pegg | Social Golfer Problem[END_REF].

A set constraint model for this problem can be easily obtained. The universe is the set of players, i.e., the set containing the identification number of each golfer. To model the groups of golfers, we need w • g set variables.

• Universe (the golfers): U :: ([1, q], [1, q], q, q)

• The set of golfers: P :: U

• g groups of p golfers for w weeks:

∀i ∈ [1, w], ∀ j ∈ [1, g], G i, j :: (∅, U, p, p)
The constraints used to model the SGP are now detailed.

• There are exactly p golfers in each group on a given week:

∀i ∈ [1, w], ∀ j ∈ [1, g], |G i, j | = p (17) 
Note that this constraint is present in the initial definition of the SGP, but it is now redundant with the definition of G i, j variables.

• All the golfers play every week:

∀i ∈ [1, w] j∈[1,g] G i, j = P (18)
• During the same week, no one can play in two different groups:

∀i ∈ [1, w] j∈[1,g] G i, j = ∅ (19)
Nevertheless, given that Constraint ( 19) is implied by Constraints ( 17) and ( 18), then it is not necessary.4 

• A couple of golfers is not allowed to play together in two different weeks in the same group (socialization constraints): 20) means: given a couple of golfers currently playing in a group g 1 , if p 1 plays in another group g 2 , then p 2 cannot play in this group g 2 . We can alternatively define these constraints by using cardinality constraints in the following way:

∀w 1 , w 2 ∈ [1, w], p i , p j ∈ P, g 1 , g 2 ∈ [1, g], w 1 > w 2 ∧ i > j ∧ ( 20 
)
p i ∈ G w 1 ,g 1 ∧ p j ∈ G w 1 ,g 1 ∧ p i ∈ G w 2 ,g 2 → p j G w 2 ,g 2 Constraint (
∀w 1 , w 2 ∈ [1, w], g 1 , g 2 ∈ [1, g], w 1 > w 2 ∧ (21) |G w 1 ,g 1 ∩ G w 2 ,g 2 | ≤ 1
• Symmetry breaking

• The first week is fixed:

∀i ∈ [1, p], p i ∈ G 1,((i-1) div q)+1 (22) 
• The second symmetry breaking complements Constraint ( 22) by distributing the first group of p golfers (that have already played together during the first week) among distinct groups in the following weeks.

Note that the inequality g < p should always be satisfied; otherwise, there is no solution:

∀i ∈ [2, w], ∀ j ∈ [1, p], p j ∈ G i, j (23) 
• Ordering groups every week: groups can be ordered inside a week with respect to their first player. For the first p groups, Constraint (23) already does it.

∀i ∈ [1, w], ∀ j ∈ [1, g -1], min(G i, j ) < min(G i, j+1 ) (24) 
• Ordering weeks: weeks can be ordered with respect to the maximum element of each first group.

∀i ∈ [1, w -1], max(i, 1) < max(i + 1, 1) (25)

Sports tournament scheduling problem

The Sports Tournament Scheduling problem, listed as problem number 26 in the CSPLib [START_REF] Walsh | CSPLib problem 026: Sports tournament scheduling[END_REF], is defined as follows.

"The problem is to schedule a tournament of n teams over n -1 weeks, with each week divided into n/2 periods, and each period divided into two slots. The first team in each slot plays at home, while the second plays the first team away. A tournament must satisfy the following three constraints: every team plays once a week; every team plays at most twice in the same period over the tournament; every team plays every other team."

From this definition, it is easy to observe that an instance of the STS problem is fully specified by the unique input parameter n (number of sportive teams to be scheduled). In the following, we introduce a set constraint model for a total of w = n -1 weeks, each one of them divided into p = n/2 periods:

• Universe (the sportive teams):

U :: ([1, n], [1, n], n, n)
• The set of teams: T :: (U, U, n, n)

• For every week of the tournament, and every single period, games are specified as sets of two teams: ∀i ∈

[1, w], ∀ j ∈ [1, p], G i, j :: (∅, U, 2, 2)
The constraints used to model the STS are now detailed.

• Each week of the tournament, each team must play:

∀i ∈ [1, w], T = j∈[1,p] G i, j (26) 
• Each team must play at most twice during the same period of two different weeks:

∀q ∈ [1, p], ∀i ∈ [1, w -2], ∀ j ∈ [i + 1, w -1], ∀k ∈ [ j + 1, w], G i,q ∩ G j,q ∩ G k,q = ∅ (27)
• Each team must play every other team. As required above, in each of the n -1 weeks of the tournament, each team must play a match; it is thus enough to constrain that two matches cannot be equal:

∀i ∈ [1, w -1], ∀ j ∈ [i + 1, w], ∀p 1 , p 2 ∈ [1, p], G i,p 1 G j,p 2 (28) 
• Symmetry breaking

• We can fill the first week as follows: Teams 1 and 2 play together during the first period; Teams 3 and 4

play during the second one, and so on:

∀i ∈ [1, n], i ∈ G 1,((i-1) div 2)+1 ( 29 
)
• Starting from the second week, we can place the first team in "diagonal" during p weeks:

∀i ∈ [1, p], 1 ∈ G i+1,i (30) 

Experimental results

In this section, we analyze the resolution of SAT instances corresponding to CSP instances of the SGP and STS problems translated by our ⇔ enc rules. These instances are named by the triple g p w for SGP and by the number of teams for STS. For SGP, we test and compare the two ways of modeling the socialization constraint of the problem:

CARD and IMP models. The first one uses the cardinality Constraint (21) ("C") and the second one the implication Constraint (20) ("I").

For each instance of the studied problems (SGP and STS), the ⇒ red rules compute a reduced instance. Reduced instances for the STS problem are identified by adding the suffix " R" to its corresponding name, while those of the SGP are labeled "I R\D" (\D stands for treatment without the disjunction reduction rules proposed in Section 4.4).

The use of dynamic reduction (see Section 5.4) corresponds to the line with "DynI R".

The experiments presented in this work were run on a CPU Intel R Xeon R E5-2670 at 2.3 GHz, 16 GB of RAM with 64 bits Linux operating system (Ubuntu 18.04). For experiments with large instances of STS (Table 6), a huge RAM of 230 GB was available only to limit the tests by time. All times are CPU times in seconds. The ⇔ enc rules were coded in C++ and compiled with g++ (7.4.0) using the optimization flag -O3, while the ⇒ red rules were implemented as Constraint Handling Rules (CHR) [START_REF] Frühwirth | Constraint Handling Rules[END_REF] in SWI-Prolog 7.6.2. The propositional satisfiability solver employed for all our experiments is MiniSAT (version 2.2).

Models

We have presented two different models for the SGP problem corresponding to two ways for treating the socialization constraints: one based on cardinalities of intersections of an exponential number of sets (the CARD model), and one based on implications, and thus disjunctions of constraints (the IMP model). Both models give the same solutions.

We report two experiments to show the difference between the CARD and the IMP models. In Table 2, we illustrate our discussion by comparing two instances. The first column contains the name of the instance (groups players-pergroup weeks). The second one provides the satisfiability of the instance (S for satisfiable, U for unsatisfiable). The third one explains the encoding method (C for cardinality, I for implication, C R for cardinality with reductions, and I R\D for cardinality with reductions without disjunction). The next column provides the reduction time (n/a when no reduction is performed). The last three groups of columns correspond to model characteristics for the SAT instance (number of clauses (#cl) and variables (#var)), the encoding time, and finally the solving time (just for the SAT instance and for the global process (reduction, encoding and solving)). Here only raw instances (noted as Unrefined) are observed to highlight the impact of model choice. Tests are realized with the 7 2 11 and 7 2 15 instances: the first one is satisfiable, and the second one is unsatisfiable (U). For the 7 2 11 instance, the difference between the raw instance solving times (C for the CARD model and I for the IMP model) and the reduced instances solving times (C R and I R\D5 ) are still affordable. For the 7 2 15 SGP, the difference is already significant (1083.63 seconds for Whereas the CARD model is competitive for small instances (both in terms of solving time and instance size), it quickly becomes intractable as instances grow. Indeed, the number of variables for encoding the cardinality constraints in SAT quickly explodes. We thus focus on the IMP model for the SGP problem in the following.

Efficiency of reduction rules and SAT preprocessing

A preprocessing can be used to decrease the size of CNF instances. Though those preprocessed instances are smaller than the original raw instances, they are not necessarily easier to solve. The preprocessing may remove easy to reach symmetrical solutions and keeps only farther solutions. It may also happen that the reduction changes the structure of the instance, and consequently changes the search space and position of solutions.

SatELite [START_REF] Eén | Effective Preprocessing in SAT Through Variable and Clause Elimination[END_REF] is a CNF minimizer that we have used for SAT preprocessing. SatELite can be applied either as a simple initial unit propagation process (UP S at ) or as a complete minimizer (CM S at ) achieving subsumption, self-subsuming resolution, and elimination of variables using substitution. We now use the term "unit propagation" for SatELite applied as a simple unit propagation process, and "CNF minimizer" as its complete process.

We compare these two different SAT reduction approaches over the two problems addressed in this paper (SGP and STS). Tables 3 and4 summarize the results. The three first columns of Table 3 provide the instance name, the satisfiability of the problem (S for satisfiable, U for unsatisfiable, and ? when MiniSAT cannot provide an answer), and the encoding type. In Table 4, the first column provides the name. The next column in both tables is the reduction time (n/a when there is no reduction). The next three blocks of columns are split in three, corresponding to the different models (unrefined, preprocessed by unit propagation, and preprocessed by CNF minimizer). Each block corresponds respectively to the model characteristics (number of clauses and variables), the encoding time, and the solving time (with a sum column corresponding to the total running time of all the process). Bold values correspond to the best values. Numerical values are replaced by the symbol "-" when an instance is not solved (because of time-out). Note that we refer to the model produced by the ⇔ enc encoding procedure as the unrefined one, and the total running time is limited to 3600 seconds.

I n/a - - - - - - - - - - - - - - - I R\D - - - - - - - - - - - - - - - - DynI R

Reduction rules

Tables 3 and4 show that reduction rules decrease the final size of the encoded instances. However, these reduction rules may provide an extra cost in terms of computational solving time. In the case of certain SGP instances (mainly those encoded by DynI R) and all small STS instances, the application of the reduction rules seems to consume most of the total running time needed for solving an instance. Furthermore, shorter solving times were also observed over these reduced instances (most of instances reduced by I R\D and DynI R for SGP, and all instances suffixed by R for STS). Recall that SGP models use disjunction constraints which do not appear in STS models. For large SGP instances that are reduced by all the reduction rules except those for disjunction (I R\D), the reduction process is even more interesting in terms of total solving times.

Reduction rules for disjunction constraints are time-consuming and do not help to provide faster results. For large instances, disabling the specific reduction rules for disjunction permits us to reach a good trade-off between the final size of the preprocessed SAT instance and the total solving time. Hence, only rules for reducing variable domains are triggered, and the SAT solver solves the disjunctions remaining in the encoded instances.

SAT preprocessing

Based on the results presented in Tables 3 and4, we now analyze the effect of SAT preprocessing on the resolution chain. In Table 5, we also summarize the comparisons of the non-reduced and unrefined instances (I -Unrefined) with all the other generated instances (I -UP S at , I -CM S at , I R\D -Unrefined, I R\D -UP S at , I R\D -CM S at , DynI R - Analysis based on Tables 3 and4.

In Tables 3 and4, it can be observed that unit propagation, as well as the CNF minimizer, are able to significantly decrease the size (in terms of the number of variables and clauses) of the analyzed unrefined instances. For both unrefined and reduced instances (i.e., the R instances), the application of unit propagation seems to provide instances of similar size.

As can be seen, the CNF minimizer always returns smaller or equal instances than unrefined or UP S at instances.

Therefore, we could deduce that CSP reduction rules do not avoid encoding numerous redundant or subsumed clauses.

Although the CNF minimizer and unit propagation reduce the size of instances, we mainly obtain the best resolution times without SAT preprocessing (either UP S at or CM S at ).

Analysis based on Table 5.

Table 5 proposes two types of analyses:

• Model characteristics: the average percentages of reduction (and the standard deviation into brackets) in terms of clauses and variables.

• Solving time: concerning the unrefined non-reduced instances (grey cells), the triplets "+;=;-" represent the number of instances respectively improving, equalizing, and deteriorating the solving time of the different solving chains. The cells "+%;=%;-%" are similar but in terms of percentages of instances.

Note that values presented in Table 5 include, in particular, the results of Tables 3 and4. They also include the broad set of experiments we realized on the SGP and STS problems but that we do not present in this paper.

Table 5 shows that reduction associated with SAT preprocessing reduces a lot the number of clauses and variables.

Instances I R\D -CM S at for SGP and instances I R -CM S at for STS produce the best reduction. However, the solving times of these instances are longer than for the unrefined instances without reduction (I -Unrefined). For the SGP instances I R\D -CM S at , only 2 improve, 3 equalize, and 6 deteriorate. For the I R -CM S at STS instances, only 2 improve the solving time, and the others deteriorate it.

The best results are obtained by instances I R\D -Unrefined for SGP, where 6 over the 11 instances improve the solving times. For the STS problem, instances I R -Unrefined and I R -UP S at improve 3 times and deteriorate only once. Unit propagation is very cheap to apply. However, it is a standard process of classic SAT solvers. Thus, it is not useful to apply it twice (i.e., as a preprocessing and in the SAT solver).

For efficiency reasons, it seems better only to apply our CSP reduction, since the SAT preprocessing seems to be too expensive compared to the gain of solving time.

Large instances

Table 3 shows that some large instances (in terms of groups, players, and weeks) of the SGP could not be solved.

In this section, the analysis focuses on solving large instances of the STS problem by applying our reduction rules.

Table 6 discloses the significance of our CSP reduction rules for propositional satisfiability encoding. The first column provides the instance name. The next two blocks correspond to non-reduced instances, followed by reduced instances. For the first block, the columns correspond to the number of clauses, the number of variables, the encoding time, the MiniSAT solving time (limited to 7200 seconds), and the total solving time. For the reduced instance block, we have the same columns preceded by the reduction time (also limited to 7200 seconds). Instances up to a size of 66 teams can be solved after applying our reduction rules, while the larger initial instance for which a solution can be computed has only 12 sportive teams (c.f. Table 4). In our experiments, some larger instances (68 to 72) could be encoded into SAT, but MiniSAT was unable to solve them.

As said in Section 8.2, it may be more complicated to solve smaller reduced instances than larger non-reduced ones. However, the CSP reduction rules proposed in this paper reduce the size of the instances, but they also seem to simplify the problem structure. For example, the non-reduced instance 16 of the STS problem is smaller than the reduced instance 18, but it is not solved, whereas instance 18 is solved.

MiniSAT immediately quits the solving process for instances from 68 to 72: this is due to the excessive total number of clauses and variables. Some ad hoc solvers were specially designed for this problem. For example, in [START_REF] Hamiez | A note on a sports league scheduling problem[END_REF], the authors over-constrained the problem by adding extra (eventually non-redundant) constraints. They removed some symmetrical, but also some non-symmetrical solutions which help them to solve instances up to a size of 70 teams. Nevertheless, we have observed that half of the instances became unsatisfiable because of the additional constraints used to remove non-symmetrical solutions.

• The only drawback of DynI R is that the raw instance is never generated; however, the raw instance could easily be generated using the modeler, and this is a very cheap task.

To summarize, the DynI R approach is much more efficient and faster than I R. Now, let us compare handling disjunctions at the level of CSP instances (see Section 5.4) or during the encoding (see Section 6.5). In Table 3, we can see that disjunction constraint reduction rules (both I R and DynI R) do not reduce the number of clauses. However, these rules reduce the size of some clauses as we show in this section. Indepth analyses of SGP instances were done, and all provided similar results. In Table 8, we illustrate these results with SGP instance 5-4-5. Each column corresponds to a different processing before encoding. There is a small difference between instances when treating disjunctions at the CSP level (I R and DynI R) or during the encoding (I R\D). The alldifferent constraints before using rewrite rules to translate them into SAT instances. However, in [START_REF] Lardeux | SAT Encoding and CSP Reduction for Interconnected Alldiff Constraints[END_REF], only those constraints related to the alldifferent constraint are treated.

To achieve the encoding of the cardinality global constraint into SAT, we used the results reported by [START_REF] Bailleux | Efficient CNF Encoding of Boolean Cardinality Constraints[END_REF].

By using cardinality as proposed by [START_REF] Azevedo | Constraint Solving over Multi-valued Logics -Application to Digital Circuits[END_REF], our constraint propagation process is stronger than the one of Conjunto [START_REF] Gervet | Conjunto: Constraint Propagation over Set Constraints with Finite Set Domain Variables[END_REF]. In [START_REF] Correas | Enhancing set constraint solvers with bound consistency[END_REF], the authors introduced some new types of constraints linking finite domain variables and set variables. The interest of these constraints is double: they allow more expressiveness as shown for scheduling problems, and they make finite domains and set domains cooperate by reducing the search space and improving the efficiency of the existing set solvers for some specific cases. We thus also followed the work of [START_REF] Correas | Enhancing set constraint solvers with bound consistency[END_REF] by introducing constraints for connecting the minimum and maximum elements of a set with the set itself. The result is a more expressive language and some more powerful reductions. They are handy for breaking symmetries and for obtaining some more powerful reduction rules, both for sets and finite domains.

In [START_REF] Correas | Enhancing set constraint solvers with bound consistency[END_REF], the authors show how to model some scheduling problems elegantly and how efficiently they are solved much faster than without these domain connecting constraints. [START_REF] Correas | Enhancing set constraint solvers with bound consistency[END_REF] also introduce a constraint enforcing all the elements of a set to be smaller than all the elements of a second set. This constraint is comparable to a global constraint (thus, with more reduction capacities) linking all the elements of the two sets. This constraint is also very powerful, and we plan to integrate it into our language in the future.

It is possible to obtain stronger reduction mechanisms (e.g., [START_REF] Yip | Checking and filtering global set constraints[END_REF]) by using the length-lex order together with enhanced set representations. Even though the worst-case complexity of this class of constraint propagation methods is worse than for bound consistency, the length-lex order shows better performance than bound consistency over specific benchmarks [START_REF] Yip | Checking and filtering global set constraints[END_REF]. Nevertheless, in our work, we aim at obtaining a good reduction-genericity trade-off for our technique. Moreover, the length-lex order is stronger for a complete solver interleaving reduction and enumeration, but in our work, we only need reduction.

In [START_REF] Hawkins | Solving Set Constraint Satisfaction Problems using ROBDDs[END_REF], the authors employ Reduced Ordered Binary Decision Diagrams to compile set constraints. This structure is then exploited in the corresponding order to solve the problem at hand. It seems to be an efficient method, and the authors claimed that it could be adapted for working with multi-sets and integer numbers.

In our case, preserving the constraint structures is of the utmost importance to guarantee that these constraints can be handled with other existing tools different from the ones presented in this paper. Thus, our further work also consists of adding additional global constraints that do not require any specific internal structure. Finally, as already said, we are not interested in implementing a solver, but at transforming and making suitable models and instances to generate better SAT instances to be solved by a classic SAT solver.

Concerning efficiency, solving the STS problem with our method and tools is a competitive alternative to the best (as we know) ad hoc solver [START_REF] Hamiez | A note on a sports league scheduling problem[END_REF]. The largest instance size solved by this ad hoc STS solver is 70, whereas our tools only reached one of size 66. In terms of solving time, our method is faster. However, experimental conditions are different (CPU Intel R Xeon R E5-2670 at 2.3 GHz, 16 GB of RAM with 64 bits Linux operating system vs. CPU Intel R PIV processor at 2 GHz, 2 GB of RAM with 64 bits Linux operating system). For instance, the STS problem of size 66 is solved in 7500 seconds by the ad hoc solver and 5500 seconds by our tools. Note that this ad hoc solver was specifically and exclusively realized for the STS problem. Additionally, it consists of over-constraining the problem, and thus, some instances may become unsatisfiable.

We have shown in [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF] that our technique is competitive with hand-written SAT instances [START_REF] Triska | An improved SAT formulation for the social golfer problem[END_REF] for the SGP problem. With our new method and tools, our generated SAT instances are even smaller and solved more quickly with MiniSAT than in [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF].

Although our goal was not to compete with solvers off-the-shelf, we ran different classic constraint solvers for the SGP problem. We gave our CSP set models to the Conjunto solver [START_REF] Gervet | Conjunto: Constraint Propagation over Set Constraints with Finite Set Domain Variables[END_REF]. Only straightforward instances could be solved; for larger instances, it seems that the enumeration phase is a problem (with our system, we do not have this problem in the constraint programming part since the SAT solver is in charge of it). We also gave the same CSP set model to the well-known MiniZinc solver with its standard solver. It also got stuck quite quickly when instance size grows. We have tried other models with MiniZinc, i.e., models consisting of finite integer domains issued from the MiniZinc GitHub. 6 Once again, the results were not better than the ones we obtained and reported in this paper. Thus, our approach can be considered competitive with classic CSP solvers applied to the SGP.

Summary of the method and conclusions

In this paper, we presented a method and some tools to reduce and encode set constraints into SAT instances. We can sketch the process as follows:

1. The modeling is achieved using set constraints with a very high expressiveness and declarativity.

2. By adding data to the model, we obtain CSP instances.

3. The application of our ⇒ red rules reduces CSP instances.

4. Reduced CSP instances are automatically encoded (⇔ enc ) into SAT instances.

5. SAT instances may eventually be preprocessed.

6. Finally, a classic SAT solver solves the (preprocessed) SAT instances.

The proposed solution approach was illustrated in detail with two different hard problems: the SGP and the STS. We obtained some good results by applying reduction and encoding rules. For the STS problem, the results of our solution approach almost match those of the best-known solver designed explicitly for this problem (Hamiez
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 1 Figure 1: Models, instances, and their processing.

Figure 2 :

 2 Figure 2: Models, instances, and processing presented in Lardeux et al. (2015).

  Suppose that | Ḟ| = n, then the total number of clauses and variables generated by the constraint |G| = k are computed as follows:

Table 1 :

 1 Impact of reduction on the Social Golfer instance 5-4-5.

		Non-reduced Reduced
		instances instances
	sets	26	26
	variables	50	50
	constraints	98	20
	disjunctions of size 4	47 500	18 000
	disjunctions of size 3	0	0
	disjunctions of size 2	0	864
	5-4-5 (see Section 7). Table		

Table 2 :

 2 CARD vs. IMP for 2 SGP instances: explosion of the number of variables for the CARD models

				Reduction time	Model characteristics	Encoding time	Solving time
	Inst.	SAT	Enc.	⇒ red sec.	Unrefined #cl	#var	⇔ enc	sec.	Unrefined sec.	sum
			C	n/a	307	43 008		1.03	0.10	1.13
	7 2 11	S	I C R	n/a 0.92	272 117 238 676	5 278 30 426		0.93 0.82	0,07 0.38	1.00 1.82
			I R\D	0.37	166 686		4 096		0.53	0,05	0.95
			C	n/a	720 909	79 212		5.41	1 083.63	1 089.04
	7 2 15	U	I C R	n/a 1.04	504 819 469 084	7 182 58 422		1.64 4.88	249.82 425.65	251.46 431.57
			I R\D	0.66	324 562		5 712		1.08	54.70	56.44
	the C model and 425.65 seconds for the C R model). For larger instances, the CARD model cannot be solved (or even
	encoded) anymore.									

Table 3 :

 3 Results for SGP instances with the IMP model

					Model characteristics	Encoding or			Solving time
							Preprocessing time			
	Inst. SAT Enc.	⇒ red sec.	Unrefined #cl #var	UP S at #cl #var	CM S at #cl #var sec. sec. ⇔ enc UP S at CM S at sec.	Unrefined sec. sum	UP S at sec.	sum	CM S at sec.	sum
			I	n/a 175 894 4 068 96 250 1 672 83 060 1 122 0.57 1.81 3.19	2.61 3.18	7.67	10.05	1.43	5.19
	6 2 12 U	I R\D 0.39 104 130 3 084 96 074 1 562 76 824 1 078 0.37 0.28 1.98	1.10 1.86	1.10	2.15	1.68	4.42
			DynI R 2.31 104 130 3 084 96 074 1 562 82 958 1 078 0.40 0.23 1.86 54.02 56.73	2.53	5.47	42.05	46.62
			I	n/a 205 992 4 404 114 840 1 824 99 100 1 224 0.49 2.27 5.15	7.82 8.31	3.54	6.30	2.72	8.36
	6 2 13 U	I R\D 0.45 123 432 3 360 114 648 1 704 91 656 1 176 0.35 0.22 2.55 17.23 18.03	1.82	2.83	2.02	5.36
			DynI R 2.73 123 432 3 360 114 648 1 704 98 854 1 176 0.38 0.28 1.98	1.93 5.04	17.71	21.10	82.94	88.02
			I	n/a 280 981 6 498 123 500 2 905 123 500 2 905 0.36 5.10 5.56	-	-	-	-	-	-
	6 5 6 U	I R\D 0.58 140 300 4 585 123 260 2 840 123 260 2 840 0.19 0.37 0.40	-	-	-	-	-	-
			DynI R 3.94 140 300 4 585 123 260 2 840 123 260 2 840 0.16 0.31 0.31	-	-2 819.91 2 824.32 2 467.53 2 471.94
			I	n/a 379 550 6 230 225 144 2 616 200 771 1 824 1.30 5.39 8.32	0.10 1.40	0.04	6.73	0.07	9.69
	7 2 13 S	I R\D 0.46 239 108 4 904 224 796 2 472 184 464 1 680 0.55 0.62 3.71	0.08 1.10	0.04	1.68	0.06	4.79
			DynI R 5.82 239 108 4 904 224 796 2 472 194 152 1 680 1.20 0.56 5.85	0.08 7.11	0.07	7.66	0.06	12.93
			I	n/a 504 819 7 182 308 280 3 052 274 705 2 128 1.64 13.72 20.58 249.82 251.46 1 205.26 1 220.62 436.83 459.05
	7 2 15 U	I R\D 0.66 324 562 5 712 307 874 2 884 252 560 1 960 1.08 0.92 9.02 54.70 56.44 234.23 236.89 411.10 421.86
			DynI R 8.81 324 562 5 712 307 874 2 884 265 659 1 960 0.74 0.78 8.35 675.06 684.60	39.79	50.11 509.21 527.10
			I	n/a 445 154 8 120 221 508 3 672 220 525 3 258 2.17 12.61 11.37	-	-	-	-	-	-
	7 4 7 U	I R\D 0.57 244 180 5 992 221 172 3 576 179 203 2 808 2.25 0.73 4.60	-	-	-	-	-	-
			DynI R 5.19 244 180 5 992 221 172 3 576 217 424 2 904 2.46 0.58 1.46	-	-	-	-1 671.73 1 680.84
	7 7 7	?								

Table 5 :

 5 Percentage of reduction in terms of clauses, variables, and solving time w.r.t. the unrefined instances without reduction (grey cells). UP S at , and DynI R -CM S at ).

				Unrefined			UP S at			CM S at
			cl	var	time	cl	var	time	cl	var	time
			avg. % (s.d.) avg. % (s.d.)	+;=;-+ %;= %;-%	avg. % (s.d.) avg. % (s.d.)	+;=;-+%;=%;-%	avg. % (s.d.) avg. % (s.d.)	+;=;-+ %;= %;-%
		I				49.66 (7.87) 57.37 (1.97)	1;3;7 9;27;64	52.50 (5.49) 63.41 (7.17)	0;3;8 0;27;73
	SGP	I R\D DynI R	44.60 (6.59) 25.96 (4.00)	6;3;2 55;27;18 2;3;6 18;27;55	49.74 (7.88) 58.93 (2.37)	4;3;4 36;28;36 3;2;6 27;18;55	57.82 (5.73) 66.91 (6.01) 53.09 (5.13) 66.29 (6.37)	2;3;6 18;27;55 3;1;7 27;9;64
	STS	I I R	25.92 (4.71) 15.83 (2.02)	3;0;1 75;0;25	38.46 (2.82) 25.93 (3.33) 42.19 (1.68) 28.56 (1.89)	1;1;2 25;25;50 3;0;1 75;0;25	61.21 (8.74) 68.04 (10.04) 82.36 (4.60 ) 86.56 (4.04)	0;1;3 0;25;75 2;0;2 50;0;50
	Unrefined, DynI R -						

Table 7 :

 7 SGP: I R vs. DynI R

		Reduction ⇒ red		Model characteristics		
	Inst	I R	DynI R	Unrefined	UP S at		CM S at	
		sec.	sec.	#cl	#var	#cl	#var	#cl #var
	4 3 2	0.10	0.00	793	218	362	98	287	65
	4 3 3	3.30	0.00	2 141	388	1 327	196	1 100 130
	4 3 4	22.38	0.00	4 092	558	2 895	294	2 408 195
	4 3 5	86.59	0.06	6 646	728	5 066	392	4 256 260
	4 3 6	151.93	0.11	9 803	898	7 840	490	6 613 325
	4 4 3	17.47	0.01	3 624	560	2 384	312	2 334 256
	4 4 4	92.04	0.04	7 060	808	5 232	468	5 138 384
	4 4 5	343.23	0.13 11 600 1 056	9 184	624	9 054 512
	4 4 6	501.90	0.58 17 244 1 304 14 240	780 14 059 640
	4 4 7	997.76	0.36 23 992 1 552 20 400	936 20 160 768
	5 2 7	333.58	0.20 15 124 1 072 12 660	540	9 463 318
	5 2 8	574.15	0.31 20 144 1 244 17 276	630 12 917 371
	5 2 9	869.15	0.26 25 880 1 416 22 608	720 16 954 424
	5 2 10 1 197.05	0.37 32 332 1 588 28 656	810 21 499 477
	5 2 11 1 862.15	0.61 39 500 1 760 35 420	900 26 634 530
	5 3 5	472.36	0.19 16 016 1 252 12 920	712 11 298 504
	5 3 6	1 201.21	0.36 24 220 1 550 20 365	890 18 004 630
	5 3 7	1 685.81	0.54 34 110 1 848 29 496 1 068 26 283 756

Consider I = a..b, and J = c..d. Then, I and J are disjoint iff b < c or d < a, and I ≺ J iff b < c.

An integer k ∈ [0..n] is defined by a sequence of k ones followed by a sequence of nk zeros.

Moreover, we did some experiments, and Constraint (19) does not allow more reduction and does not speed up propagation.

As the CARD model did not use disjunction constraints, we only analyze the reduced instances without reduction rules corresponding to the disjunction constraints.

https://github.com/MiniZinc/minizinc-benchmarks
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In Table 7, we show some comparative executions of two ways of treating disjunctions in the CSP instances: I R (instantiation, then reduction) and DynI R (instantiation with dynamic reduction), as described in Section 5.4. They lead to the same CSP R instances (see Figure 1). Based on Table 7, we can draw the following conclusions:

• The reduction time of DynI R is much shorter than the one of I R. When instances are larger (increasing either the number of groups, weeks, or players), the difference can be of several orders of magnitude.

• I R cannot be used for large instances. encoding can benefit from the CSP domain reduction to detect tautologies and contradictions as well, except some few cases that would require more work to be detected. For example, in Table 8, the encoding generates 864 clauses that are 4-ary with I R\D and only 2-ary with I R or DynI R. We can see this difference in the number of literals (here only negative literals), which differs by 1728 (2×864) between I R (or DynI R) and I R\D.

In terms of CPU time, as can be seen in Table 7, dealing with disjunction during encoding is much faster. However, it can be interesting to manage the disjunction during the CSP reduction: this is the case when SAT encoded instances become too large to be read by the SAT solver, see for example the 7 4 7 SGP instance in Table 3: only the CSP treatment of disjunctions enable to generate a SAT instance that can be read and solved using the SatELite preprocessing and MiniSAT.

8.5. Which is the "best" solving combination?

To summarize, for both the STS and SGP problems, the "best" solving combination consists in reducing variable domains at the CSP level, in handling disjunctions during the encoding, and to avoid the use of SAT preprocessing.

Figure 3 shows this solving chain (it is one path of Figure 1). Remember that the different processes do not modify the solution space of the problem. However, since we keep only the first solution returned by the solving chain, each branch can lead to a different solution in Figure 1.

Comparisons with previous works

In comparison with our previous published work [START_REF] Lardeux | Set constraint model and automated encoding into SAT: application to the social golfer problem[END_REF], the advantages of the approach presented in this paper are: • The modeling language has been enhanced and enables the use of finite domain variables for modeling problems. Finite domain variables can now be associated with set variables through the use of the minimum, maximum, and cardinality constraints. It is an improvement of the language both for expressiveness, intuitiveness, and facility of use.

• The constraint propagation process became stronger than before. It produced smaller search spaces thanks to two new additions in the reduction rules: a) the use of upper and lower bounds of sets, and b) the implementation of minimum and maximum cardinalities of sets.

• Handling disjunctions now enables us to remove some complete tautologies and certain contradictions inside disjunctions. Consequently, the generated SAT instances contain a smaller number of clauses.

• The new ⇔ enc encoding rules became more general than the former ones. Moreover, they may apply to reduced as well as original raw CSP set constraints. Finally, they can produce SAT instances of a much smaller size.

To sum up, more problems can now be modeled, they can be solved more efficiently, and finally, larger instances can be tackled.

Let us now make some comparisons concerning other existing techniques for SAT encoding from the literature reported in [START_REF] Bacchus | GAC Via Unit Propagation[END_REF] and [START_REF] Bessière | Local Consistencies in SAT[END_REF]. These works link the solving process of both CSP and SAT for some properties (e.g., local consistencies for finite domain CSP). In contrast, the present work considers a distinct class of constraints (set constraints). Some solving chains are designed to produce SAT instances that are as small as possible, and as suitable as possible to be efficiently solved by classic SAT solvers. Moreover, the works reported in [START_REF] Bacchus | GAC Via Unit Propagation[END_REF] and [START_REF] Bessière | Local Consistencies in SAT[END_REF] lack of reduction mechanisms similar to our ⇒ red rules presented above.

The approach presented in [START_REF] Lardeux | SAT Encoding and CSP Reduction for Interconnected Alldiff Constraints[END_REF] is analogous to the methodology that we propose in this paper. [START_REF] Lardeux | SAT Encoding and CSP Reduction for Interconnected Alldiff Constraints[END_REF] propose to expressively handle the alldifferent global constraints, as well as the overlapping & Hao, 2014). Furthermore, unlike this existing ad hoc solver, our solution approach prevents losing any solutions (unsatisfiable instances) by avoiding the production of over-constrained models.

We can observe several advantages when using our method and tools:

• Compared with direct SAT modeling, the proposed approach offers higher expressiveness, is relatively simpler to apply, and is independent from the selected solver (considering both CSP and SAT solvers).

• Our approach is less susceptible to include errors than direct hand-written propositional satisfiability encodings.

• CSP instances are made smaller (reduction of the search space, and withdrawal of useless constraints) with a propagation process applying reduction both on set and finite domain variables. We also treat disjunctions by removing some tautologies (useless constraints and tautology disjunctions), and contradictions inside disjunctions.

• The automatically generated SAT instances contain a smaller number of clauses and variables. They can undergo a preprocessing (e.g., with SatELite) before resolution in a standard SAT solver (MiniSAT in our case).

From our experiments, it appeared that these automatically generated SAT instances are suitable for being solved by MiniSAT.

• Adding our reduction process to the generation in most cases produces a total running time (which includes the reduction time, the encoding time, as well as the resolution time) smaller than that for non-reduced instances.

Although we have already pushed back the limits of our system in this paper, some limitations still exist:

• We have introduced some new constraints for finite domain variables, but some arithmetic constraints are still missing. In the future, we will focus on complementing the language with finite domain arithmetic constraints.

To achieve it, a series of new reduction rules and encoding rules are necessary.

• Although powerful, our reduction process may sometimes not be worth it with regards to the total solving time.

We thus plan to speed it up. To this end, we have already started some work about more powerful reductions for constraints such as the partitioning constraint. We are also considering special reductions for some patterns of conjunctions of set constraints. Last but not least, a new implementation in a language faster than CHR could also be considered.

• Encoding can still lead to too huge SAT instances, and thus it may cause memory problems. We think of several cardinality constraint encodings, each one with some specific advantages.

• The last point concerns the syntax of our models. Our XML-like syntax is convenient because we can enlarge it each time we want to try a new constraint. However, it would be interesting to use a standard format (such as XCSP3 [START_REF] Boussemart | XCSP3: an integrated format for benchmarking combinatorial constrained problems[END_REF]) to re-use already designed models.