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Abstract (50 words) 21 
 22 
Iridoids are monoterpenes produced by various plants and used as chemical 23 

defenses. Lichman et al. described a timeline of molecular events that underpin the 24 

re-emergence of iridoid biosynthesis in an independent lineage of aromatic plants 25 

(catnip). This study represents a benchmark to study enzyme and metabolite 26 

evolution across lineages from the tree of life. 27 
___________________________________________________________________________________________________________________________________ 28 
 29 
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Core text (1,200 words) 32 

 33 

Understanding the origin and evolution of plant metabolites is fundamental to explain the 34 

distribution of natural products among plant families. These metabolites are produced by 35 

plants as a response to abiotic and biotic stress, to ensure inter- and intra-species 36 

communication and are also widely used by humans for medicine and agriculture. Mapping the 37 

presence and absence of plant metabolites across angiosperms has been undertaken for many 38 

years (1), but studying the molecular mechanisms and evolutionary processes of these 39 

metabolites still remains more challenging. To test whether a specific chemical family has 40 

evolved independently in different lineages or arisen from an ancestral pathway, the 41 

identification of genes and proteins involved in the biosynthesis of these natural products is an 42 

essential prerequisite. For example, in the biosynthesis of plant tropane alkaloids the enzymes 43 

responsible for the tropinone-reduction step are tough to have risen independently across 44 

angiosperm species (2). Conversely the norcoclaurine synthase in benzylisoquinoline alkaloid 45 

biosynthesis in angiosperms is suggested to be a monophyletic evolution prior to the 46 

emergence of eudicots (3). Deciphering the evolution of terpene synthases across plant 47 

lineages is challenging since terpenes are present in the oldest lineages of land plants that 48 

colonized terrestrial habitats (480-430 Mya) (4). Over time, terpene synthases have generated 49 

high terpenoid chemical diversity, which has played a major role in plant diversification and 50 

adaptation. In this respect, an impressive new study led by Lichman, Buell and O’Connor has 51 

shed new light on the evolution of a prominent class of monoterpenes, namely iridoids, in the 52 

well-known aromatic plants family (Lamiaceae) (5). This investigation is a tour de force 53 
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revealing the molecular mechanisms for the loss and re-emergence of iridoid biosynthesis in 1 

the Nepeta lineage. 2 

 3 

Iridoids are produced by several plant families and act as chemical defense against 4 

herbivores and plant pathogens. In the Lamiaceae (approximatively 200 genera, 7,000 5 

species) which is composed of seven major subfamilies, iridoids are widely distributed across 6 

all the subfamilies but are absent in a single subfamily, i.e. the Nepetoideae (Fig. 1A). 7 

Importantly, since iridoids are also present in the sister family of the Lamiaceae, i.e. the 8 

Verbenaceae, it is likely that genes involved in iridoid biosynthesis have evolved from a 9 

common ancestor while the capacity of producing iridoids has been lost in the clade of 10 

Nepetoideae. However, there is a noteworthy exception because iridoids are found in the 11 

Nepetoideae genus Nepeta. These plants are known as catmint or catnip, due to the euphoria-12 

inducing effect of the nepetalactone iridoids on the behavior of felines. The intriguing 13 

presence of iridoids in Nepetoideae thus raises the question are the same enzymes utilized or 14 

are novel enzymes involved that have led to the re-emergence of the biosynthesis of these 15 

metabolites (Fig. 1A).  16 

The structural core of iridoids is a cis- or trans-fused cyclopentanopyran. Unlike the 17 

biosynthesis of terpenoids generally resulting from the cyclization of a linear terpene 18 

carbocation by terpene synthase (TS), the key step to form the iridoid bicycle is a reductive 19 

cyclization of 8-oxogeranial by iridoid synthase (ISY) followed by either a Diels-Adler reaction 20 

or a Michael addition (6). ISY was originally discovered in the Madagascar periwinkle 21 

(Catharanthus roseus, Apocynaceae), a major source of anticancer drugs derived from iridoid 22 

monoterpene indole alkaloids (6,7). Interestingly, the sequence and crystal structure reported 23 

from the Madagascar periwinkle showed that ISY is not similar to TS but more closely related 24 

to the PRISE (progesterone 5-reductase/ISY) enzyme family, a short-chain NADPH-25 

dependent dehydrogenase (8,9). 26 

 To understand the evolution of ISY in aromatic plants, a novel chemical-genomic-27 

phylogenetic approach using the transcriptomes of 48 Lamiaceae species was recently 28 

published (10). Unexpectedly, the functional validation of these candidates revealed that 29 

although ISY activates 8-oxogeranial to give an enolic intermediate it does not catalyze the 30 

consecutive cyclization into nepetalactone (11). Instead, the newly identified class of 31 

nepetalactol-related short-chain dehydrogenase enzymes (NEPS) achieves the cyclization of 32 

the reactive intermediate and controls the stereoselectivity of the outcome products (12). 33 

Furthermore, biosynthetic gene clusters composed of ISY and NEPS were identified by mining 34 

Nepeta genomes (5). Interestingly, these clusters also include major latex protein-like genes 35 

(MLPL) whose biochemical characterization showed they react in a similar manner to NEPS to 36 

form cis-trans nepetalactone stereoisomer (Fig. 1B). 37 

 38 

 With these key pieces in hand, Lichman et al. investigated the loss and re-emergence of 39 

iridoid biosynthesis during the evolution of Nepetoideae. Firstly, genome resources of Nepeta 40 

cataria and Nepeta mussinii were compared with those of the iridoid non-producer Hyssopus 41 

officinalis (indicated by a red asterisk in Fig. 1A) and confirmed that the absence of iridoids 42 

results from the loss of the ISY gene in this last species as in other Nepetoidae for which 43 

omics data are available. Surprisingly, it also directly correlates nepelactone biosynthesis to a 44 

regain of ISY in N. cataria and N. mussinii. Furthermore, phylogenetic analyses clearly indicate 45 

that ISY genes of Nepeta form a distinct clade in the Lamioideae subfamily, which strongly 46 

suggests a distinct and parallel evolution of ISYs. Secondly, the evolution of ISY in Nepeta was 47 

assessed using ancestral sequence reconstruction to infer the PRISE phylogeny. This 48 

comparative phylogenetic method was then combined with positive selection analysis and 49 
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screening of in vitro activities of extant and predicted ancestral PRISE. Overall, the key finding 1 

of the re-emergence of ISY supports the hypothesis that an ancestral enzyme with a minor 2 

side ISY activity gradually evolved into a novel iridoid biosynthetic enzyme with high ISY 3 

activity, following gene duplication and selection (Fig. 1C). 4 

 The tour de force was to compare the evolution and diversification of NEPS with the 5 

emergence of ISY activity and to elucidate the chronology events leading to the assembly of 6 

the nepetalactone gene cluster. By comparing PRISE and NEP chronograms, the authors 7 

predicted that the gain of the most recent common ancestor of the NEPS gene was 8 

concomitant to the second gene duplication of the ISY ancestor (around 25 Ma ago), while the 9 

NEPS family expansion occurred at the same time that ISY relative activity dramatically 10 

increased and P5R activity is was lost (20 to 9 Ma ago). Ultimately, a dispersed duplication 11 

event allowed ISY to integrate into the NEPS locus while the original copy at the PRISE locus 12 

was pseudogenized since redundant (9 Ma ago, today). These discoveries strongly suggest 13 

that ISY and NEPS catalytic activities have coevolved with strong interplay between 14 

corresponding genomic regions (Fig. 1C). 15 

 16 

 The evolution of iridoids in Lamiaceae thus stands out as a fascinating example for tracing 17 

the origins of plant metabolites and the re-emergence of their biosynthesis in Nepeta. The 18 

present study provides unprecedented insights suggesting that this phenomenon relies on 19 

repeated and innovative evolution further widening our knowledge of the production of 20 

nepetalactones compared to iridoids in the rest of the mint family. The proposed chronology of 21 

enzyme selection and diversification also suggests that the formation of gene clusters may not 22 

drive metabolic innovation but rather organize following enzyme evolution under strong initial 23 

pressure. Now highlighted, this twisted evolutionary story raises new puzzling questions 24 

ranging from the role of protein-protein interactions between ISY with NEPS/MLPL during the 25 

stereoselective formation of nepetalactones, to the biotic and abiotic factors responsible for 26 

the co-evolution of ISY and NEPS. Additionally, since iridoids also occur across different insect 27 

taxa, the comparison of plant and insect iridoid synthases is a crucial entry point to address 28 

the evolutionary convergence for producing these common compounds (13). The evolution of 29 

iridoids represents a remarkable model to further study enzyme and metabolite evolution 30 

across the tree of life. 31 

 32 
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Figure caption 15 

Figure 1. Investigating the molecular basis of the re-emergence of iridoid biosynthesis in the Nepeta lineage. 16 
(A) Detection of iridoid metabolites in Nepeta. Iridoids are widely distributed in Lamioideae but are absent in the single 17 
subfamily Nepetoideae. However, there is a noteworthy exception because iridoids are found in Nepetoideae in the Nepeta 18 
genus. The phylogenetic tree represents the current understanding of the relationships of the Lamiaceae lineages, according 19 
to (12). The red asterisk corresponds to the iridoid non-producer Hyssopus officinalis. (B) Iridoid biosynthetic pathway in 20 
Nepeta. Knowledge of nepetalactones biosynthesis in Nepeta were reported in (3,10). This pathway involves geraniol 21 
synthase (GES), geraniol 8-hydroxylase (G8H), 8-hydroxygeraniol oxidoreductase (HGO), iridoid synthase (ISY). Finally, 22 
nepetalactol-related short-chain dehydrogenase enzymes (NEPS) or major latex protein-like enzyme (MLPL) achieves the 23 
cyclization of the reactive intermediate and controls the stereoselectivity of the outcome products. (C) Proposed chronology 24 
of events that have likely occurred in Nepeta for the re-emergence of nepetalactone biosynthesis.  25 


