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Abstract 
A family of eight polymeric manganese (III) complexes with the general formula Mn(HL1,2)2X, 

(H2L1 = 2[(2–hydroxyethyl)iminomethyl]phenol, H2L2 = 2[(2–hydroxyethyl)iminomethyl]–6–

methoxy–phenol) while X = Cl (1, 5), Br (2, 6), I (3, 7), NCS (4, 8) for H2L1 and H2L2, 

respectively were obtained using “the direct synthesis” approach, i.e., the oxidative dissolution 

of the manganese powder in the presence of a Schiff base (SB), an ammonium salt and oxygen 

of the air. Single crystal X–ray diffraction studies for the new complexes 2, 3, 4 and 8 were 

compared with the previously reported crystallographic data for 1 and 7, showing that all 

complexes possess 1D polymeric structure. The main structural units in 1–7 are cationic chains 

[Mn(HL1,2)2]
 
n
n+ 

and anions X– linked together via electrostatic interactions and hydrogen bonds, 

while the complex 8 consists of polymeric chains of neutral [Mn(HL2)2(NCS)]n units. The SB 

ligands are mono–deprotonated as HL–, and coordinated by the metal atoms in a tridentate 

chelate–bridging fashion generating chains with Mn centers connected by double or single {–N–

C–C–O–} bridges for 1–7 and 8, respectively. In 8 bridging and pure chelate modes of HL2– 

occur. The intra–chain MnIII∙··MnIII distances vary from 5.700(2) Å for 1 to 6.6950(4) Å for 8. 

The High–Field EPR study reveals narrow ranges of the zero–field splitting parameters of the 

spin Hamiltonian, D and E (–3.22 cm–1 to –3.44 cm–1 and –0.16 cm–1 to –0.21 cm cm–1, 

respectively) and demonstrates a clear correlation between the degree of the structural distortion 

and the E parameter. The ab–initio CASSCF method was employed to calculate the zero–field 

splitting parameters. “Broken symmetry” DFT calculations were performed to estimate the 

magnitude of the Mn–Mn exchange interactions. 
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Introduction
The coordination chemistry of manganese (III) attracts persistent attention mainly for its 

principal role in the important catalytic cycles in Nature.1–3 In addition, a special interest in this 

subject has been caused by the discovery of SMM (single–molecule magnet) behavior in the 

mixed (III, IV) valence complex [Mn12O12(O2CCH3)16(H2O)4].4 The electronic configuration of 

Mn(III) centers with S=2 ground spin state t2g
3eg

1 and a strong axial magnetic anisotropy 

resulting from the Jahn–Teller effect, make them potentially good candidates for demonstration 

of SMM (single molecule magnet),5 SIM (single ion magnet)6–9 and SCM (single chain 

magnets)10–13 properties and, thus, for the creation of the high information density storage 

materials. At the same time, the development of the Mn(III) chemistry has not been satisfactory 

because of the synthetic problems associated with Mn(III) disproportionation processes and the 

formation of insoluble and very stable MnO2.14 Herein, we report a simple and effective 

synthetic route to a series of the cationic and molecular polymeric Mn(III) chain complexes 

{[Mn(HL1,2)2]X}n (1–7) and [Mn(HL2)2(NCS)]n (8), (H2L1 = 2[(2–

hydroxyethyl)iminomethyl]phenol, H2L2 = 2[(2–hydroxyethyl)iminomethyl]–6–methoxyphenol; 

X = Cl, Br, I, NCS) as well as a detailed investigation of the complexes by X–ray 

crystallography, FTIR and HF EPR methods, combined with density functional theory (DFT) 

calculations.
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Results and discussion

Synthesis, spectroscopic analysis and crystal structures of manganese complexes

The general synthetic route is depicted in Scheme 1. The Schiff base ligands H2L1 and 

H2L2 were prepared in situ by condensation of 2–aminoethanol with salicylaldehyde or o–

vanillin, respectively. Manganese complexes 1–8 were obtained via the “direct synthesis” (DS) 

approach, which is based on using regular metal powders instead of their salts as a source of 

metal. This method has been widely investigated by our group15,16 and it has been shown that in 

some cases there are advantages in exploiting DS conditions as compared to the traditional “wet” 

chemistry. For example, a better morphology of the crystal products and absence of 

contaminating anions were noticed. At the same time, there is a possibility to obtain complexes 

with the metals whose salts are very expensive or commercially unavailable as starting 

materials.17,18 It should be noted that a synthesis of complex 1 by using metal salt as a precursor 

was previously reported.19 All DS reactions were performed by heating and magnetic stirring in 

open air. Total dissolution of the metal powders indicated the reaction end. Crystals suitable for 

X–ray analysis were formed within few days when the resulting brown solutions were allowed to 

stand at room temperature. For the complexes [Mn(HL2)2]Cl (5) and [Mn(HL2)2]Br (6) the single 

crystals have not been obtained and their composition was confirmed by elemental analysis, 

FTIR and HF EPR methods. It is noteworthy that in the systems with an ammonium thiocyanate, 

two different complexes with the same composition Mn(HL1,2)2(NCS) but different crystal 

structure were obtained (Scheme 1).
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Scheme 1. Synthesis of manganese complexes 1–8.
The IR spectra of compounds 1–8 show similar absorption bands and confirm the presence 

of the Schiff base ligands. Very strong bands in the region 1599–1649 cm–1 were assigned to the 

double imino (C=N) bonds vibrations. The broad bands in the region 3400–3100 cm–1 indicate 

the presence of hydroxo groups, which are partially deprotonated in all complexes. Non–

coordinated and coordinated thiocyanate anion in 4 and 8 are confirmed by the presence of the 

intense peaks (C=N) at 2055 and 2071cm–1 and weak (C–S) vibrations at 760 and 784 cm–1, in 4 

and 8, respectively.

X–ray crystal structures were determined for the compounds 2–4 and 8 (Table 6), and those 

for 1 and 7 have been reported earlier.19,20 All complexes are 1D polymers based on Mn(III) 

centers. The crystal lattices of the halogenide complexes are similar and consist of the cationic 

chains [Mn(HL1,2)2
+
]n (Figure 1) and counter ions X– (Cl, Br, I), while the thiocyanate complexes 

possess both cationic (4) and neutral chain (8) structures depending on the ligand used (Figure 2–

3). In the case of compound 4 packing of above–mentioned chains containing inversion centers 

and acentric SCN– anions results in the chiral P212121 space group.

Figure 1. Crystal structure of the polymeric cation [Mn(HL1,2)2]n
n+

 in 1–4 and 7. Hydrogen atoms and methoxy 
groups are omitted. Symmetry operations: (i) –x, –y, –z; (ii) x, 1+y, z; (iii) –x, –1–y, –z.

The metal atoms are hexacoordinated with [N2O4] or [N3O3] environments typical for 

Mn(III) pseudo–octahedral (4+2) geometry. The deviation from ideal Oh symmetry relates 

mainly to linear parameters of the metal coordination polyhedra (the differences in the bond 

lengths being of more than 0.4 Å) and is negligible for angular parameters with maximal values 

observed for 8 (Table 1). The +3 manganese oxidation state is readily seen in the EPR spectra 

(see below), as signals of an S = 2 spin state are detected. This was also confirmed by 

comparison of coordination bond distances, existence of Jahn–Teller elongation, and bond 

valence sum calculation (Table 1). 
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Table 1. Comparison of geometrical parameters of the Mn coordination polyhedra in 1–4 and 8.

H2L1 H2L2

1* 2 3 4 7* 8
Mn—O (short), 

Å
1.866(2) 1.873(1) 1.871(1) 1.861(3) 

1.876(3) 

1.829(8) 

1.849(8) 

1.844(2)
1.864(2)

Mn—O (long), 

Å
2.287(2) 2.287(2) 2.288(1) 2.242(3) 

2.282(3)

2.247(8) 

2.315(8)

2.340(2)

Mn—N, Å 2.023(2) 2.029(2) 2.026(2) 2.037(4) 

2.049(4)

2.040(1) 

2.061(9)

2.031(2)
2.053(2)
2.231(2)

Δmax
**, Å 0.421(2) 0.414(2) 0.417(2) 0.421(4) 0.418(9) 0.496(2)

BVS*** 3.05 3.00 3.02 3.01 3.08 3.13

trans–angles, o 180 180 180 177.9(2) 

178.9(1) 

179.1(2)

179.0(4) 

179.2(5) 

179.5(5)

178.43(7)

173.02(7)

178.39(7)

Δmax, 
o 0 0 0 2.1(2) 1.0(5) 5.41(7)

cis–angles, 
o 87.29(7)–

92.71(7) 

86.97(6)–

93.03(6)

87.33(5)–

92.67(5)

87.5(1)–

93.6(1)

86.8(3)–

92.5(4)

84.78(6)–

93.89(7)

Δmax, 
o 5.42(7) 6.06(6) 5.34(5) 6.1(1) 5.7(4) 9.11(7)

*The crystallographic data for 1 and 7 were previously reported in 19 and 20, respectively.

** Δmax – the difference between a maximal and a minimal bond length or angle.

***BVS – bond valence sum for Mn atoms.21,22

The one–dimensional polymeric structure is achieved due to chelate–bridging function of 

the ligands, [2.0111112] by Harris notation.23 The cationic chains along with bridging X¯ anions 

located on inversion centers form H–bond based layers parallel to ab plane which are further 

interconnected by C–H…π bonds between HL¯ rings to yield a 3D supramolecular architecture 

(Figure 4; Table 2, 3). 
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(a)

(b)
Figure 2. Crystal structure of 4: (a) H–bonded layers; and (b) projection of crystal packing viewing along the [100] 
direction. Symmetry operations: (a) (i) 1.5–x, 1–y, 0.5+z; (b) Cg1′ is a centroid of C9...C14 benzene ring (i) 1–x, 
0.5+y, 0.5–z.

The maximum similarity of the crystal structure is observed for the halide complexes with 

H2L1 (1–3), nevertheless they are not isostructural. There is a direct correlation between the size 

of the halogen atom and the intra–chain Mn∙··Mn distance as increasing the radius of the ion 

halide in the sequence Cl¯(1.81Å) < Br¯(1.97Å) < I¯(2.23Å)24 leads to the interatomic distance 

increase by approximately 0.02 Å (Table 3). But for the complex 4 with NCS¯, which is the 

largest anion in the sequence, the Mn∙··Mn distance is somewhat smaller than expected which 

can be explained by a different way of crystal packing with C–H∙··π interactions between the 

aromatic rings of H2L1 (Figure 2, Table 3).
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(a)

(b)

(c)
Figure 3. Crystal structure of 8: (a) molecular structure with labeling scheme; (b) fragment of 

polymeric chain [Mn(HL2)2(NCS)]n and (c) projection of crystal packing viewing along [010] 

direction. Symmetry operations: (a) (i) 1.5–x, –0.5+y, 1.5–z; (c) (i) 1–x,1–y, 2–z.
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(a)  

(b) 

   

     

(c)
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Figure 4. Crystal structure of 2: (a) H–bonded layers; (b) projection of crystal packing viewing along [010] 
direction; (c) layers based on C–H…π bonds. Symmetry operations: (a) (i) –x, –1+y, 0.5–z; (ii) –0.5–x, –1.5–y, –z; 
(b) Cg1′ is a centroid of C1...C6 benzene ring (i) x, 1–y, –0.5+z.

The presence of a bulky methoxy group in the benzene ring of H2L2 has a noticeable effect on the 

packing of the iodide complex 7, where the polymeric cations and iodide anions form H–bonded 

chain supramolecular frame unlike the layer found in the halide complexes with H2L1 (Figure 5).

The most drastic differences are observed when replacing the SB ligand in the thiocyanate 

complex: instead of the cationic complex [Mn(HL1)2]NCS 4, a neutral complex of the analogous 

composition [Mn(HL2)2(NCS)] 8 was obtained (Figure 3). In 8 the {MnN3O3} chromophore is 

formed by two monodeprotonated SB ligand molecules with different coordination modes (N,O–

chelated and O,N,O’–bridging–chelate) and N–coordinated thiocyanate group. The metal atom 

shifted from the equatorial plane by ca 0.07Å towards NNCS. The manganese atoms in {Mn}n 

chains are arranged in a zigzag fashion with Mn∙··Mn distance of 6.7 Å and the Mn–Mn–Mn 

angles of 121.3°.

 Each non–coordinated S–donor atom from the NCS group forms two H–bonds with OH 

groups from aminoalcohol arms of the bridging SB ligand (intra–HB) and the chelate ligand 

(inter–HB) (Figure 3, Table 2).

Figure 5. Projection of crystal packing of 7 viewing along the [010] direction. Symmetry operations: (i) x, 1+y, z, 
(ii) –x, 1–y, 0.5+z; Cg1′ is a centroid of C1...C6 benzene ring (iii) 0.5–x, –2+y, –0.5+z.

Table 2. Hydrogen bonds parameters in 1–4, 7, 8.

1
D—H∙∙∙A H∙∙∙A D∙∙∙A D—H∙∙∙A

O2—H10∙∙∙Cl 2.299(1) 3.057(2) 164(2)

2
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O2—H10∙∙∙Br1′ 2.42(1) 3.265(2) 173(3)

3
O2—H5∙∙∙I1′ 2.66(1) 3.508(1) 172(3)

4
O3—H5∙∙∙N3 1.88(4) 2.706(5) 162(8)

O4′ —H6′ ∙∙∙S1 2.31(6) 3.154(3) 175(9)

7
O5″ —H5″ ∙∙∙I1A 2.863(1) 3.488(8) 131(6)
O6′ —H6′ ∙∙∙I1B 2.620(4) 3.477(9) 173(6)

8
O5—H29∙∙∙S1′ 2.66(3) 3.426(2) 155(3)
O6′—H15′∙∙∙S1′ 2.60(3) 3.347(2)    167(3)

Symmetry transformations used to generate equivalent atoms: (2) (i) –x, –
1+y, 0.5–z; (3) (i) –0.5+x, –0.5+y, z (4) (i) 1.5–x, 1–y, 0.5+z (7) (i) x, 1+y, 

z, (ii) –x, 1–y, 0.5+z; (8) (i) 1–x,1–y, 2–z.

Table 3. Selected C–H∙··π interactions and Mn∙··Mn distances in 1–4 and 7, 8.

H2L1 H2L2

1(Cl) 2 (Br) 3 (I) 4 (NCS) 7(I) 8(NCS)
C–H∙··π ,Å 2.806(1) 3.2020(2) 3.3206(1) 2.5930(1) 3.4252(3) –
Mn∙··Mn, Å 5.700(2) 5.7196(3) 5.7552(2) 5.7247(9) 5.898(4) 6.6950(4)

High–Field EPR Spectra

The ground state of the Mn(III) ion is the even–spin S=2 state and complexes containing Mn(III) 

exhibit typically large zero–field splitting with the D parameter of the spin Hamiltonian (1) of a 

few cm–1, making them very difficult to investigate by standard EPR, as the small microwave 

quantum energy cannot cause transitions between the MS levels 

         (1)

Interestingly, there is one exception to this: the MS=2 and MS= –2 levels of the S=2 state are split 

very little in the absence of the magnetic field (approximately 3E2/D) and a nominally 

“forbidden” MS=4 transition sometimes appears in X–Band EPR at an effective g value of 

~8.2,25–29 The transition under question is however only weakly sensitive to the D parameter. 

High–field and high–frequency EPR (HFEPR) offers an effective remedy to these problems.30–33 

The microwave quantum energies available to us are up to ~20 cm–1 (~600 GHz) and allow 

observation of all possible transitions in Mn(III) systems. Complexes of Mn(III) tend to produce 

HFEPR spectra of good quality. Out of the eight complexes studied in this work, 1, 2, 4, 5 and 6 

behaved very well, while the two iodide–containing species 3 and 7 as well as complex 8, 

containing thiocyanate coordinated to Mn, posed problems (see below). Figure 6 shows spectra 

of 5 recorded at 15 K with various microwave frequencies.
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Figure 6. EPR spectra of 5 recorded at conditions indicated. Blue: experimental; red: simulated using parameters 
from Table 5. Labels x, y and z indicate the molecular orientation at which a transition occurs. The unlabeled 
features correspond to the off–axial turning points.

To determine the spin Hamiltonian parameters accurately, a large number of spectra were 

recorded and the resonance fields were plotted versus the microwave frequency (Fig. 7 for 

complex 5). The dependencies so obtained were fitted, resulting in the spin Hamiltonian 

parameters in Table 4. Taking into account the quartic parameters of spin Hamiltonian (1), B0
4 

and B4
4 had a very small effect on the fit quality and on other parameters. 
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Figure 7. Frequency dependencies of the resonance fields corresponding to the canonical transitions in 5. Circles: 
experimental resonance positions; green, blue and red lines: calculated X, Y and Z resonances, respectively. The 
lines with the highest slope represent the “allowed” MS=1 transitions. The plots of the “forbidden” transitions 
(MS>1) have lower slopes.
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An additional advantage of HFEPR is the easy D sign determination. The positions of the EPR 

transitions do not depend on the sign of D or E in eq. 1, but spectra taken at low temperatures 

exhibit an intensity pattern depending on the sign, resulting in complete freezing out of certain 

transitions, as shown in Fig. 8. This effect depends on the magnitude of the Zeeman energy 

rather than on the D magnitude and the sign of a small D can also be determined.34–36

Figure 8. HFEPR spectrum of 4. Blue: experimental; red: simulated using parameters from Table 4; green: 
simulated with the signs of D and E inverted.

Table 4. Experimental spin Hamiltonian parameters1 

Complex gx gy gz D (cm–1) E (cm–1) B4
0 (cm–1) B4

4 (cm–1)

12 (H2L1) 1.982(4) 1.985(4) 1.998(2) –3.231(2) –0.578(2) 0 –0.002(1)

2 (H2L1) 1.980(2) 1.974(2) 1.988(3) –3.223(3) –0.548(2) –0.0006(1) 0.003(1)

3 (H2L1) 1.984(4) 1.963(3) 1.998(5) –3.197(3) –0.525(3) 0

4 (H2L1) 1.998(1) 1.986(1) 1.992(2) –3.296(3) –0.662(2) –0.0003(1) –0.0019(1)

5 (H2L2) 2.001(2) 1.997(1) 1.998(2) –3.271(2) –0.663(1) –0.0001(1) –0.0034(5)

6 (H2L2) 1.999(1) 1.997(1) 2.000(1) –3.290(2) –0.699(2) –0.0003(1) –0.0006(3)

7 (H2L2) 1.999(9) 1.961(4) 1.990(6) –3.34(1) –0.76(1) 0 0

8 (H2L2) 2.00 (1) 1.97(1) 1.96 (1) –3.44(1) –0.77(1) 0 0
1 Zero values of B4

0 and B4
4 indicate that they have not been fitted. 2A 1–year old sample of 1 

exhibited slightly altered spin Hamiltonian parameters (see Fig. S1).

Complex 8 differs from other ones by having an SCN– anion coordinated to Mn, it is thus 

interesting to compare its spin Hamiltonian parameters to those of the remaining compounds in 

which the anions are non–coordinated. Unlikely most other systems (except for 7), difficulties 

were encountered in recording the EPR spectra of 8. The compressed powder samples exhibited 

too many features, which could not be explained within the monomeric Mn3+ model (Fig. S4). 

2 4 6 8 10 12 14

15 K, 295.2 GHz

Magnetic Induction, Tesla
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These features were also present when using eicosane pellets with dispersed powder of 8, thus 

eliminating the possibility that they were due to magnetic torquing. A subset of resonances could 

be found whose frequency dependencies allowed to determine the parameters of 8 in Table 4. 

Other spectral features may be due to weak interactions between the Mn(III) ions. The D value in 

8 was the largest in the series, but the differences along the series were not dramatic. The D 

parameter ranges from –3.197 to –3.44 cm–1 (Table 4), which is just a 7% change. The E 

parameter shows a larger relative variation, from –0.525 in 3 to –0.77 cm–1 in 8. The E parameter 

tends to be larger in the H2L2 ligand complexes, in agreement with the generally more distorted 

structures compared to those of H2L1 ligand.

Calculations of the Zero–Field Splitting

The zero–field splitting (zfs) is a result of spin–orbit coupling and ligand field splitting of energy 

levels of a paramagnetic atom possessing spin larger than ½. Dependencies between the zfs 

parameters and the ligand–field energies for various electronic configurations are well known. 37–

39 The 5D term of the Mn(III) ion in an elongated tetragonal bipyramid gives rise to a 5B1g 

ground state and the D parameter is usually negative, with rare exceptions.40,41 The excited states 

contributing to the zero–field splitting via the spin–orbit coupling are 5Eg and 5B1g states, derived 

from 5D free–ion term, and the 3Eg state derived from the 3H term. The ligand–field splittings 

which are needed to relate the spin Hamiltonian parameters to the electronic spectra, are 

typically difficult to obtain due to the presence of intense –* and charge transfer bands. In 

more recent years, Density Functional Theory (DFT) and ab initio methods have been applied to 

get insight into the nature of the zero–field splitting.41–43 It is now believed that the contribution 

of the spin–spin interactions to the zero–field splitting is not necessarily negligible compared to 

the spin–orbit coupling contribution. We have attempted to calculate the spin–orbit coupling 

contribution to D and E in our complexes using the state–averaged complete active space self–

consistent field (CASSCF)41–43 approach, with four electrons in 5 orbitals. 5 quintet and lowest 

35 triplet states were taken into account, like in refs 41–43. Functional B3LYP was employed 

with TZVPP functions for Mn and all coordinated atoms and SVP functions for all remaining 

atoms. 44–46 Calculations were performed using the ORCA software package.47 The spin–spin 

contribution was calculated using the ‘coupled–perturbed’ scheme as implemented in ORCA 

(see also refs 41–43). A single molecule was cut out of the chain of each compound presented in 

Table 6 by inserting hydrogen atoms at appropriate positions. These entities bear charge +1 for 

all species except 8, which is neutral. The non–coordinated anions were not used, but for 1 

calculations were performed both for a 1+ cation and a 1– anion in which two Cl– ions closest to 

Mn were taken into account. The differences in the calculated zero–field splitting parameters 
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were minuscule (Table 5). It is interesting to compare species 4 to 8, because 8 has a coordinated 

SCN– ion, while in 4 SCN– is not coordinated, like anions in all other molecules. For 4, D = –

3.432 cm–1, and E = –0.528 cm–1 were obtained. The D and E found in this way compare well to 

the experimental values in Table 4. The spin–spin contributions to D and E were –0.453 cm–1 

and –0.046 cm–1, respectively, while the spin–orbit coupling related contribution were –2.978 

cm–1 and –0.482 cm–1, respectively. The direction of the largest component (Dzz) of the 

calculated D tensor was found 3.0 deg away from the long Mn–Oalcohol bond, or 1.9 deg away 

from the normal to the least–squares NNOO plane of the Schiff base donor atoms. For 8, the 

calculations produced D = –3.507 cm–1, E = –0.578 cm–1. The spin–orbit contributions to D and 

E were –3.064 cm–1 and –0.536 cm–1, respectively, while the spin–spin contributions were –

0.443 cm–1 and –0.042 cm–1. The replacement of an alcoholato ligand by SCN– thus does not 

cause the magnitude of D to change much. The calculated Dzz direction in 8 was found 1.7 deg 

away from the Mn–Nthiocyanate bond, or 3.2 deg from the Mn–Oalcohol bond (Fig. 9). The 

calculations, while reproducing well the experimental D magnitudes, fail to reproduce the 

substantially increased experimental E for 8 compared to 4. Similar calculations, the results of 

which are presented in Table 5, show a narrow range of slightly overestimated D and slightly 

underestimated E values.

The Mn–Mn interactions

The EPR spectra obtained in this work were in general of good quality, but were not as good as 

those previously obtained in this lab for some other Mn(III) systems.30,48,49 The reason for this 

may be the interactions between the Mn(III) ions. The bridges between the manganese ions are 

not likely to transmit significant exchange interactions. A fragment containing two Mn ions was 

cut out of the chain of 4 and a broken–symmetry calculation50–53 was performed. Similarly as in 

the calculations of D above, the ORCA software was employed using functional B3LYP with 

TZVPP functions for Mn and all coordinated atoms and SVP functions for all remaining atoms. 

The structures used for the broken–symmetry calculations are shown in the supplementary 

material. An exchange integral value J of just 0.02 cm–1 (antiferromagnetic, using the 

Heisenberg–Dirac–Van Vleck Hamiltonian in a form H = JS1S2) was obtained. The same value 

is obtained when calculating exchange interactions through the hydrogen bridges involving the 

SCN– ion in 4. For 8, J = 0.04 cm–1 was calculated although the Mn–Mn distance in the chain of 

6.695 A was larger than in 4 (5.725 A). It should be mentioned here that the magnitude of the 

exchange interactions depends less on the interatomic distance than on the nature of a bridge 

between the metal atoms. For example, a two orders of magnitude larger J of 2.9 cm–1 (translated 

to the notation used in this paper) was found in a Mn(III) dimer with slightly shorter Mn–Mn 
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distance than in our complexes, in which exchange is transmitted by a system of  bonds.54 We 

performed a broken symmetry calculation using the published structure to obtain J of 2.5 cm–1, 

in good agreement with experiment. It is noteworthy here, that the EPR spectra of 8 (Fig. S4) 

exhibit the most visible evidence of the metal–metal interactions in this series, in form of 

additional splittings observed on some resonances. Exchange interactions of this order of 

magnitude are indeed sufficient to split the EPR resonances in some Mn(III) dimers,55 while they 

are not detectable in magnetic susceptibility measurements. The Mn–Mn distances in chains 

which are of the order of 5.7 A give rise to the dipole–dipole interactions of some –0.03 cm–1, 

comparable to the exchange interactions estimated above. Both dipolar and exchange effects are 

likely to affect the EPR linewitdh, and may create additional spectral features. The metal–metal 

interactions in 8 occur in extended systems, unlike the discrete dimers studied in ref 55 and the 

problem seems impossible to be solved without using single–crystal EPR spectra. 

Figure 9. The structures of 4 (left) and 8 (right) used for the ORCA calculations and the D tensor axes directions 

resulting from calculations. 

Table 5. Experimental and calculated zero–field splitting parameters.

Complex Dexp,
cm–1

Eexp/Dexp Dcalc 
cm–1

Ecalc/Dcalc DSO 
1

cm–1
ESO 

1

cm–1
DSS 

2

cm–1
ESS 

2

cm–1

1 –3.231 0.18 –3.464 0.13 –3.006 –0.457 –0.458 –0.036

1+2Cl– –3.517 0.14 –3.065 –0.444 –0.452 –0.040

2 –3.223 0.17 –3.419 0.13 –2.958 –0.393 –0.461 –0.038

3 –3.197 0.16 –3.453 0.13 –2.991 –0.401 –0.462 –0.039

4 –3.296 0.20 –3.431 0.15 –2.978 –0.482 –0.453 –0.046

5 –3.271 0.20 –3.458 0.16 –3.005 –0.493 –0.453 –0.046

X

Y

Z

X

Y

Z
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8 –3.44 0.21 –3.507 0.18 –3.064 –0.576 –0.443 –0.042
1Spin–orbit coupling contribution. 2Spin–spin contribution. 

Experimental section

General Procedures

Reactions were carried out under air and using HPLC solvents. Тhе IR spectra were done on 

ATR Bruker Vertex 70 spectrophotometer in the 4000–400 cm−1 range. Elemental analyses were 

recorded using Flash 2000 Fisher Scientific Thermo Electron analyzer.

EPR. The high–field EPR spectra at temperatures ranging from ca. 3 K to 290 K were recorded 

on a home–built spectrometer at the EMR facility of the NHMFL.56 The instrument is equipped 

with a superconducting magnet (Oxford Instruments) capable of reaching a field of 17 T. 

Microwave frequencies over the range 52–630 GHz were generated by a phase–locked Virginia 

Diodes source, producing a base frequency of 13±1 GHz, which was multiplied by a cascade of 

frequency multipliers. The instrument is a transmission–type device and uses no resonance 

cavity.

Syntheses. 

{[Mn(HL1)2]Cl}n (1).2–Aminoethanol (0.36 ml, 6 mmol) and salicylaldehyde (0.56 g, 6 mmol) 

were added to 30 ml of methanol and stirred magnetically for 15 min until the colour of the 

solution turned in yellow. After manganese powder (0.11 g, 2 mmol) and NH4Cl (0.21 g, 4 

mmol) were added to the solution, the reaction mixture was stirred at 50°C for ca 2 h. Total 

dissolution of manganese powder was observed. The dark brown crystals were collected after 1 

day by filtration, washed with isopropanol and dried in air; yield 330 mg (39%, per Mn). The 

elemental analysis for C18H20N2O4ClMn (Mr = 418.76). Calcd: C, 51.63; H, 4.81; N, 6.69; Mn, 

13.12%. Found: C, 51.55; H, 4.74; N, 6.55; Mn, 13.00%. IR (ATR, cm–1): 3155 (br), 2924 (w), 

1612 (s), 1550 (s), 1441 (s), 1304 (s), 1218 (s), 1025 (m), 885 (m), 769 (s), 634 (m), 457 (s).

A different method of synthesis using manganese chloride tetrahydrate was reported 

previously.19

{[Mn(HL1)2]Br}n (2).This complex was prepared in a way similar to that of 1, but using NH4Br 

(0.39 g, 4 mmol) instead of NH4Cl. The dark brown crystals were collected after 1 day by 

filtration, washed with isopropanol and dried in air; yield 320 mg (35%, per Mn). The elemental 

analysis for C18H20N2O4BrMn (Mr = 463.20). Calcd: C, 46.67; H, 4.35; N, 6.05; Mn, 11.86%. 

Found: C, 46.54; H, 4.14; N, 5.85; Mn, 11.50%. IR (ATR, cm–1): 3151 (br), 2929 (w), 1607 (vs), 

1546 (s), 1445 (s), 1300 (s), 1215 (s), 1025 (m), 884 (m), 767 (s), 638 (m), 456 (s). 

{[Mn(HL1)2]I}n (3).This complex was prepared in a way similar to that of 1, but using NH4I 

(0.58 g, 4 mmol) instead of NH4Cl. The dark brown crystals were collected after 1 day by 
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filtration, washed with isopropanol and dried in air; yield 410 mg (40%, per Mn). The elemental 

analysis for C18H20N2O4IMn (Mr = 510.20). Calcd: C, 42.37; H, 3.95; N, 5.49; Mn, 10.77%. 

Found: C, 42.15; H, 3.83; N, 5.24; Mn, 10.46%. IR (ATR, cm–1): 3149 (br), 2915 (w), 1607 (vs), 

1544 (s), 1439 (s), 1305 (s), 1218 (s), 1030 (m), 890 (m), 760 (m), 640 (m), 449 (s). 

{[Mn(HL1)2]NCS}n (4). This complex was prepared in a way similar to that of 1, but using 

NH4NCS (0.31 g, 4 mmol) instead of NH4Cl. The dark brown crystals were collected after 1 day 

by filtration, washed with isopropanol and dried in air; yield 220 mg (25%, per Mn). The 

elemental analysis for C19H20N3O4SMn (Mr = 441.38). Calcd: C, 51.70; H, 4.57; N, 9.52; S, 

7.26; Mn, 12.44%. Found: C, 51.65; H, 4.28; N, 9.36; S, 7.15; Mn, 12.25%. IR (ATR, cm–1): 

3145 (br), 3056 (w), 2924 (w), 2071 (s), 1599 (vs), 1543 (s), 1444 (s), 1293 (m), 1219 (m), 1025 

(m), 885 (m), 757 (s), 683 (m), 456 (s). 

{[Mn(HL2)2]Cl}n (5). This complex was prepared in a way similar to that of 1, but using o–

vanillin (0.94 g, 6 mmol) instead of salicylaldehyde. The dark brown precipitate was collected 

after 1 day by filtration, washed with isopropanol and dried in air; yield 212 mg (43%, per Mn). 

The elemental analysis for C20H24N2O6ClMn (Mr = 487.81). Calcd: C, 50.17; H, 5.05; N, 5.85; 

Mn, 11.47%. Found: C, 50.05; H, 4.97; N, 5.74; Mn, 11.35%. IR (ATR, cm–1): 3434(br), 3396 

(w), 3186 (br),2936 (w), 1607 (vs), 1551 (m), 1469 (s), 1300 (m), 1249 (s), 1029 (m), 864 (s), 

744 (s), 640 (m), 453 (m). 

It should be noted that that 5 can be also obtained by the ordinary method of synthesis using 

manganese chloride tetrahydrate instead of manganese powder and ammonium chloride.

{[Mn(HL2)2]Br}n (6). This complex was prepared in a way similar to that of 5, but using NH4Br 

(0.39 g, 4 mmol) instead of NH4Cl. The dark brown precipitate was collected after 1 day by 

filtration, washed with isopropanol and dried in air; yield 320 mg (31%, per Mn). The elemental 

analysis for C20H24N2O6BrMn (Mr = 523.26). Calcd: C, 45.91; H, 4.62; N, 5.35; Mn, 10.50%. 

Found: C, 45.75; H, 4.52; N, 5.27; Mn, 10.35%. IR (ATR, cm–1): 3437 (br), 3393 (w), 3184 (br), 

2931 (w), 1610 (vs), 1548 (m), 1473 (s), 1315 (m), 1239 (s), 1019 (m), 867 (s), 746 (s), 645 (m), 

455 (m). 

{[Mn(HL2)2]I}n (7). The synthesis of the complex 7, was previously reported by our group.17

[Mn(HL2)2(NCS)](8). This complex was prepared in a way similar to that of 1, but using o–

vanilin (0.94 g, 6 mmol) instead of salicylaldehyde and NH4NCS (0.31 g, 4 mmol) instead of 

NH4Cl. Yellow crystals were collected after 1 days by filtration, washed with isopropanol and 

dried in air; yield 300 mg (30%, per Mn). The elemental analysis for C21H24N3O6SMn (Mr = 

501.43). Calcd: C, 50.30; H, 4.82; N, 8.38; S, 6.39; Mn, 10.96%. Found: C, 50.16; H, 4.64; N, 

7.98; S, 6.12; Mn, 11.30%.FT–IR (KBr, νmax cm–1):3420 (br), 2919 (w), 2071 (vs), 1616 (vs), 

1553 (m), 1475 (s), 1452(s), 1399 (m), 1353(w), 1303 (vs), 1227(s), 1193(m), 1112 (w), 
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1086(m), 1055(m), 1024(m), 979 (m), 902 (w), 864 (s), 784 (w), 742(s), 639(s), 590(w), 528(w), 

471(w).

X–ray structure determination

Single crystal X–ray diffraction data were collected on an Agilent Technologies SuperNova 

diffractometer equipped with AtlasCCD detector and micro–focus Cu–Kα radiation (λ=1.54184 

Å). The structures were solved by direct methods and refined on F2 by full matrix least–squares 

techniques using SHELX97 (G.M. Sheldrick, 1998) package. All non–H atoms were refined 

anisotropically and multiscan empirical absorption was applied using CrysAlisPro program 

(CrysAlisPro, AgilentTechnologies, V1.171.38.41r, 2015). The hydrogen atoms were included in 

the geometrically calculated position and refined riding on the corresponding atom. A summary 

of the crystallographic data and the structure refinement is given in Table 6. CCDC 1842146 (1), 

1842148 (2), 1842149 (3), 1842147 (4), 1854314 (8) contain the supplementary crystallographic 

data for this paper. This data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 6. Crystallographic data, details of data collection and structure refinement parameters

 2 3 4 8
Formula C18H20N2O4BrMn C18H20N2O4IMn C19H20N3O4SMn C21H24N3O6SMn

M [g∙mol−1] 463.20 510.20 441.38 501.43
T [K] 150.00(10) 150.01(10) 150.00(10) 295.65(10)
Crystal system monoclinic monoclinic orthorhombic monoclinic
Space group C 2/c C 2/c P 212121 P 21/n
a [Å] 18.5786(9) 19.3631(5) 5.7247(3) 10.8561(6)
b [Å] 5.7196(3) 5.7552(2) 16.7646(7) 11.6732(5)
c [Å] 18.1494(10) 17.9767(5) 20.4425(8) 17.5981(9)
α [°] 90 90 90 90
β [°] 105.278(5) 102.470(3) 90 96.457(5)
γ [°] 90 90 90 90
V [Å3] 1860.44(17) 1956.04(10) 1961.91(15) 2215.98(19)
Z 4 4 4 4
ρcalcd [g∙cm−3] 1.654 1.732 1.494  1.503
μ [mm−1] 8.513 18.096 6.733 6.104
Goodness–of–
fit on F2

1.043 1.036 1.087 1.035

F(000) 936 1008 912 1040
θmin/θmax, (deg) 4.935/72.279 4.678/72.593 3.409/72.241 4.4640/73.1450
Final R1/wR2 [I 
> 2σ(I)]

0.0256/0.0641 0.0192/0.0469 0.0373/0.0918 0.0333/0.0824

R1/wR2 (all 
data)

0.0303/ 0.0672 0.0207/0.0477 0.0408/0.1003 0.0401/0.0871
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largest diff. 
peak and hole 
(e Å–3)

0.346/–0.244 0.379/–0.422 0.304/–0.394 0.259/–0.330

Conclusions
A series of chain polymeric complexes with the general formula MnIII(HL)2X, where H2L 

ligands are Schiff bases derived from salicylaldehyde or o–vanillin and 2–aminoethanol and X 

are Cl, Br, I and NCS, were prepared via simple and productive “direct synthesis” approach 

based on one–pot reaction between manganese powder, ammonium salt and organic ligand 

formed in situ in methanol solution. X–ray analysis revealed two types of chain polymeric 

crystal structure for the obtained complexes: (1) the cationic chain structure consisting of the 

polymer cations [Mn(HL1,2)2]n
+ and counter ions X–, in compounds 1–7, and (2) the molecular 

chain structure built of neutral polymeric molecules [Mn(HL2)2(NCS)]n, in 8. The metal centers 

inside the cationic chain are bridged through two {–NCCO–} fragments with linear {Mn}n 

arrangement while in the molecular chain they are linked with one NCCO–bridge forming the 

zig–zag metal atom arrangement. High–field EPR spectroscopy was used to determine 

accurately the zero–field splitting parameters and was supported by DFT calculations. The data 

obtained are correlated with crystallographic results and demonstrate that the generally more 

distorted structures in compounds of ligand L2 compared to L1 give rise to larger E parameters 

in the former. The DFT calculations suggest presence of very weak antiferromagnetic exchange 

interactions between Mn ions, which are stronger in complex 8 (0.04 cm–1), containing 

coordinated SCN–anions, than in other compounds (like J =0.02 cm–1 in 4). They are presumably 

transmitted by the hydrogen bonds and seem to affect the HF EPR spectra of 8, but they cannot 

make our compounds single chain magnets because of their expected antiferromagnetic 

character.

Supporting Material Available: 
The Supporting Information is available free of charge on the ACS Publications website at 

DOI:xxx, which include: HFEPR spectra of 1–3, and 5–8, the arrangements of the Mn moieties 

used to calculate the exchange integrals in 4 and 8. 
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Mn(III) Chain Coordination Polymers assembled by Salicylidene–2–

ethanolamine Schiff Base Ligands: Synthesis, Crystal Structures and HFEPR 

Study

Oleh Stetsiuka, Nataliya Plyutaa,c, Narcis Avarvaria
, Evgeny Goreshnikb, Vladimir Kokozayc, 

Svitlana Petrusenko*c, and Andrew Ozarowski*d

Syntheses, crystal structures and high-field EPR measurements of Mn(III) polymeric complexes 

are discussed. Theoretical calculations suggest presence of weak antiferromagnetic exchange 

interactions between Mn ions.
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