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Abstract

Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma,
we propose a novel mechano-transduction mechanism where the introduction of a chemothera-
peutic treatment induces mechanical changes at the cell level. We analyse the influence of these
individual mechanical changes on the properties of the aggregates obtained at the population
level. We employ a nonlinear volume-filling chemotactic system of partial differential equations,
where the elastic properties of the cells are taken into account through the so-called squeezing
probability, which depends on the concentration of the treatment in the extracellular microen-
vironment. We explore two scenarios for the effect of the treatment: first, we suppose that the
treatment acts only on the mechanical properties of the cells and, in the second one, we assume
it also prevents cell proliferation. We perform a linear stability analysis which enables us to
identify the ability of the system to create patterns and fully characterize their size. Moreover,
we provide numerical simulations in 1D and 2D that illustrate the shrinking of the aggregates
due to the presence of the treatment.

1 Introduction

Glioblastomas (GBM) are solid tumours characterised by intra- and inter-tumoural heterogeneity
and resistance to conventional treatments that result in a poor prognosis [36]. They are the most
common and aggressive primary brain tumour in adults. Standard treatments include surgical
resection (when possible) combined with radiotherapy and chemotherapy using the DNA alkylating
agent Temozolomide (TMZ) [54]. In fact, the overall survival of treated patients is about 15 months
versus 3 months without treatment, with fewer than 5% of patients surviving longer than 5 years
[53].

One reason behind this relative therapeutic failure is the poor response of GBM tumours to
this chemotherapeutic treatment, hypothesized to be due to their plasticity. Several studies have
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looked for the genetic compounds of TMZ-resistant cells focusing on the genes responsible for DNA
mismatch repair protein [56], while other studies focused on spatial and temporal variations in
signalling pathways, which lead to functional and phenotypic changes in GBM [43]. Despite all these
works, it remains difficult, from a biological and medical perspective, to investigate the connections
between clinically observable glioma behaviour and the underlying molecular and cellular processes.
The challenge is to integrate the theoretical and empirical acquired knowledge to better understand
the mechanisms and factors that contribute to GBM resistance to treatment. In this context,
mathematical models provide useful tools towards identifying links between different phenomena
and how they are affected by the different therapeutic strategies. Much effort has been dedicated
to the modelling of GBM formation and invasion of the surrounding tissue, as well as to improving
diagnosis and treatment. The exhaustive review [2] discusses different modelling approaches as well
as some of the main mechanisms that are observed in GBM formation and invasion.

Recent studies highlighted the role of the communication between the tumour cells and the Tu-
mor Micro-Environment (TME) and the properties of the Extra-Cellular Matrix (ECM) on tumour
evolution and invasion [18, 10, 64]. Cancer cells have been shown to respond to chemical and me-
chanical signals from components of the TME and vice versa, and the interaction of tumour cells
with the TME has been the subject of recent biological surveys [26, 22]. Many in vitro (and ex
vivo) experiments have shown that cells that are cultured on ECM often have a tendency to form
aggregate patterns that depend on the particular cell lines and physical properties of the media [24].
Biological evidence presented in [38, 34, 15] suggests that the formation of aggregates in glioma cells
can be explained through a chemotaxis process (i.e. the ability of cells to move along a chemical
gradient), rather than, e.g., cell-cell adhesion. Chemokines, cytokines and growth factors involved
in chemotaxis have been shown to be affected by the concentration of cells and therapies in most
cancers and in particular in GBM [50].

From a mathematical viewpoint, cell migration in the extracellular microenvironment and the
organisation of cells in response to chemical and mechanical cues are commonly studied using con-
tinuum descriptions based on differential equations [1, 47]. In a continuous setting, the chemotactic
behaviour of cells is often modelled using a Keller-Segel system of equations [32]. This model was
originally proposed for pattern formation in bacterial populations but turned out to be pertinent
to describe a wide variety of self-organisation behaviours [14, 9, 65, 33, 61]. Different variations
of the Keller-Segel model have been adopted in order to better understand the way cells aggregate
[12, 4, 45, 52, 19]. Chemotactic-driven formation of aggregates of GBM was also proposed in [6] to
reproduce experimental density profiles of GBM spheroids. Biomechanical mechanisms, chemotaxis
and cell-cell interaction have not been extensively studied in GBM. Nonetheless, recent results have
shown that intra-cellular contacts in GBM are crucial not only for migration and growth but also for
resistance to therapy [62]. However, the mechano-transduction signals behind these phenomena have
not been documented [11]. In this work we hypothesized that aggregation observed during GBM
treatment could be linked to physical/biomechanical phenomena related to cell-cell interactions and,
in particular, we focus on the possible role of cell mechanical properties.

Our hypotheses are based on recent results linking GBM biomechanics and resistance to treat-
ment. Foss et al. [21] provided evidence that GBM heterogeneity could also be associated with
mechanical phenotypes, since the physical properties of tumour tissue strongly influence aspects of
tumour progression including cell cycle regulation, migration and therapeutic resistance. In [28],
it was suggested that the over-expression of Metastasis Associated in Colon Cancer 1 (MACC1),
which promotes cell motility, proliferation and metastasis in various cancers, increases the elastic
modulus and migration and reduces adhesion of GBM cells. This occurs through increased amounts
of protrusive actin on laminin which prevents 3D aggregate formation.

In this paper, we follow the chemotactic approach to explain the formation of glioma aggregates,

2



and we suppose that GBM cells react through a mechano-transduction mechanism to the presence of
a drug. Inspired by experimental observations in 3D/organoid cultures derived from freshly operated
GBM, which reproduce in vivo behaviours as described in [42] (see Section 2 for more details), we
explore a simple setting where GBM aggregate formation is due to nutrient-limited cell proliferation
coupled with a chemotaxis-based cell movement. We propose a novel mechano-transduction approach
where cells are able to change their individual mechanical properties in contact with the drug, and
we study the influence of these individual mechanical changes on the characteristics of the aggregates
obtained at the population level.

We explore two scenarios: the case where the treatment only acts on the mechanical properties
of the cells, and the case where it also prevents cell proliferation as was experimentally observed in
[35]. We adopt a macroscopic approach where cells are represented by their macroscopic density and
are supposed to move in the environment via chemotaxis, i.e. towards zones of high concentrations
of a chemoattractant that is produced by the tumour cells. Moreover, cell proliferation is assumed
to depend on the local concentration of nutrients available. We remark that in this work, oxygen
is considered just as a nutrient like the others. In future models, it will be interesting to be able
to single out its particular roles. Finally, we suppose that when the treatment - represented by its
continuous concentration - is introduced, it diffuses in the environment and is naturally consumed
by the cells.

Under these hypotheses, we obtain a nonlinear volume-filling chemotaxis model for the cell den-
sity, coupled with reaction diffusion equations for the chemoattractant and treatment concentrations.
Moreover, we provide a linear stability analysis that enables us to study the ability of the system to
generate patterns, and we provide numerical simulations in 1D and 2D.

The paper is organised as follows. In Section 2 we describe the in vitro experiments and the
main experimental observations that motivated our model. Section 3 is devoted to the description
of the model for the first part of the experiments (without the treatment, Section 3.1) and the
second part, when the treatment is introduced (Section 3.2). In Section 4, we present the stability
analysis for each of these two parts, and Section 5 is devoted to numerical simulations. Section 5.2
presents the results in 1D including a discussion on the comparison between numerical experiments
and theoretical predictions of the stability analysis. Section 5.3 shows the 2D simulations. Finally,
we discuss the results and give some perspectives in Section 6.

2 Experimental results of TMZ effect on glioblastoma

To address the question of the response of GBM cells to TMZ treatment, we looked at recently
developed 3D biosphere experiments, using GBM patient-derived cultures in a simple 3D scaffold
composed of alginate and gelatin [44]. GBMG5 cells were cultured at a concentration of 4 × 106

cells/ml for 14 days until the formation of cell aggregates could be observed, corresponding to the
first part of the experiments, P1. Next, the cultures were treated with 100 µM of TMZ for two
hours once every week, which corresponds to the second part of the experiments, P2. Over the
30 days, the proliferation was determined counting 3 representative samples, and the cell number
was determined as follows. The biospheres were dissociated by incubation for 3 min in 100 mM
Na-Citrate and the cell number and cell viability were determined using the Countess optics and
image automated cell counter (Life Technologies). In addition, the aggregates were photographed to
analyse their morphology, and the diameter of the cell aggregates were measured from pictographs
using FIJI. To determine the diameters of these cell structures, more than 200 cell aggregates were
measured.

We show in Figure 1a the mean length (in µm) of the cell aggregates computed from the mi-
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(a) (b)

Figure 1: Biological experiments of GBMG5 cells cultured in 3D scaffolds with and without 100µM
TMZ. (a) Evolution of the mean cell aggregates diameter determined from the microscopic images as
function of time, without treatment (circle markers) and with a weekly TMZ (square markers). (A)
Typical microscopic image on day 24 of control cell aggregates without treatment, (B) microscopic
image at day 24 with 100µM of TMZ administrated weekly for 2 hours. (b) Evolution of the total cell
number in the biospheres as function of time, without treatment (circle markers) and with weekly
TMZ (square markers).

croscopic images without TMZ treatment (round markers), and with TMZ weekly administered
(squared markers). Figures 1a A) and B) show typical microscopic images of the spheroids at day
24, without and with weekly TMZ treatment, respectively. In Figure 1b we show the evolution of the
cell number as a function of time, where we do not observe significant changes in cell number with
and without TMZ, once the carrying capacity of the system is reached. Based on these observations,
we will suppose that TMZ acts as a non-cytotoxic drug, potentially inhibiting cell proliferation.

Using clinically relevant concentrations of TMZ [49], the total number of cells in the biospheres
does not seem to be significantly impacted by the TMZ treatment. However, the mean size of the
GBMG5 cell aggregates decreases when TMZ is introduced weekly as compared to control cultures
(Figure 1a), suggesting that in the presence of the treatment, GBMG5 cells tend to self-organize
into smaller and more compact cell clusters.

Another observation supporting a tendency for GBM cells to form more compact structures with
higher intracelluar adhesion under this type of treatment is the increased expression of claudin, a
marker of tight junctions formed between cells. In Figure 2 we show GBMG5 cells that were cultured
for 14 days until the formation of cell aggregates could be observed, and the cultures were treated
with different doses of TMZ until day 23. Furthermore, cell aggregates were fixed then labeled
with an anti-claudin antibody. The degree of staining was determined in a double-blind experiment.
From Figure 2 (left), the cell aggregates seem to be smaller and more compact when TMZ is present,
panel d), compared to the control group in a). These cultures are associated with higher levels of
claudin (see Figure 2, right).

Inspired by these observations and results presented in [38, 34, 15], we propose a general model
for the chemotaxis-driven formation of cell clusters and shrinking of the aggregates via the action of
a non-cytotoxic drug. We propose a novel approach based on a mechano-transduction mechanism,
where GBM cells have the ability to change their mechanical properties in contact with the non-
cytotoxic drug. We also consider a second scenario where the treatment would also affect cell
proliferation and compare the results obtained.
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Figure 2: Claudin expression marking the tight junctions between the cells.

3 Mathematical model

Motivated by the experiments described in Section 2, we assume that glioma cells have a chemo-
tactic behaviour, i.e. they move in response to some signaling chemical (chemoattractant), which
is secreted by themselves and diffuses in the environment. The chemotactic movement of cell popu-
lations plays a fundamental role for example in gastrulation [20], during embryonic development; it
directs the movement of immune cells to sites of infection and it is crucial to understand tumour cell
invasion [17] and cancer development [65]. Motivated by these applications, chemotaxis and related
phenomena have received significant attention in the theoretical community, see the reviews [27, 29].

We suppose that without treatment (part P1 of the experiments described in Section 2), tumour
cells proliferate and move via chemotaxis as described before. We suppose that cell proliferation is
limited by the nutrients available in the environment, i.e. cell proliferation is only active as long as
the local density does not exceed a given threshold corresponding to the carrying capacity of the
environment. Moreover, in order to take into account the finite size of cells and volume limitations,
cell motion is only allowed in locations where the local cell density is much smaller than another
threshold value corresponding to the tight packing state. Without treatment, cells are supposed to
behave as rigid bodies in the sense of [48]. In stressed conditions however, (P2 of the experiments
described in Section 2) we suppose that cells respond to the chemotherapeutic stress, induced by
the presence of the treatment, by changing their mechanical properties.

These hypotheses are modelled via a system of partial differential equations (PDEs) which corre-
sponds to a volume-filling chemotaxis equation [48] for the first part (to describe the self-organisation
of cells into aggregates), and an “semi-elastic” volume-filling chemotaxis approach [60] for the second
part, when the treatment is introduced.

For convenience, we denote the density of the population of cancer cells in P1 by u(x, t) and
in P2 by w(x, t). Here x ∈ Ω ⊂ R2 where Ω is a bounded domain. The time t ∈ [0, T ], where
T = T1 +T2 represents the total time corresponding to the first and second parts of the experiments.
The main difference between these two populations is the change in the mechanical properties of the
cells due to the presence of the treatment. If the concentration of the treatment is zero, u(x, t) =
w(x, t). Cells follow a biased random walk according to the distribution of the chemoattractant of
concentration c(x, t) that is secreted by the cells. We start by detailing the different components of
the mathematical models corresponding to P1 and P2 described in Section 2.
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Logistic growth model for cell proliferation As previously described in the Introduction, in
order to take into account the nutrient-limited population growth, cell proliferation is modelled by
a logistic growth process. At the population level, we consider a source term f(u) in the PDE for
the evolution of the cell density, which depends nonlinearly on the local cell density u and reads:

f(u) = ru
(

1− u

umax

)
. (1)

Here, r > 0 is the proliferation rate and umax corresponds to the maximum density of the population,
also referred to as the carrying capacity of the environment. Alternative cell kinetics could be con-
sidered. For example, we can assume that the proliferation is also mediated by the chemoattractant
concentration such that f(u, c) = ruc(1−u/umax) [48]. Here we only consider the case given by (1).

Chemoattractant dynamics We suppose that cell aggregates spontaneously emerge as the result
of a self-organisation phenomenon of chemotaxis type. To this aim, we suppose that the cells
themselves produce the signaling chemical (chemoattractant) that drives their motion. The chemical
secreted is therefore supposed to be continuously produced by the cells at rate α > 0 and diffuses in
the surrounding environment with diffusion coefficient d2 > 0. It is further assumed that the chemical
has a finite lifetime and degrades at rate β > 0. The evolution of the chemical concentration c(x, t)
is therefore given by the following reaction-diffusion equation

∂tc = d2∆c+ αu− βc , (2)

where u is the cell density.

Treatment dynamics We assume that the treatment is introduced at the beginning of P2. This
treatment is supposed to diffuse in the environment with diffusion coefficient d4, and to be consumed
by the cells at rate δ. This is modelled by a reaction-diffusion equation for the drug concentration
M(x, t):

∂tM = d4∆M − δw ,

where w(x, t) represents the cell density corresponding to the second part of the experiments. Fol-
lowing [7], we suppose that the TMZ natural degradation rate in vitro is very small compared to
diffusion and absorption by the cells and neglect this term.

We consider different initial conditions for the drug: uniformly distributed in the simulation do-
main, introduced in the center as a very steep Gaussian function or introduced through the boundary
of the domain (see Section 5).

Cell mechanical properties We introduce the so-called squeezing probability, which describes
the probability that a cell finds an empty space at a neighbouring location before moving and it
incorporates the cell-cell interactions [60]. The squeezing probability takes the form

q(u(x, t)) =

1−
(
u
ū

)γ(M)

, for 0 ≤ u ≤ ū ,
0, otherwise ,

(3)

where u(x, t) is the cell density, γ(M) ≥ 1 is the squeezing parameter, M ≡ M(x, t) ≥ 0 denotes
the concentration of the treatment, and ū is the crowding capacity which corresponds to the tight
packing state of the cells. The function q(u) satisfies the following properties,

q(ū) = 0 , 0 < q(u) ≤ 1 , and q′(u) ≤ 0 for 0 ≤ u < ū . (4)
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Figure 3: Squeezing probability for different values of γ(M) for ū = 1.

Moreover, |q′(u)| is bounded and q′′(u) ≤ 0.

The exponent γ(M) is chosen to be

γ(M) = (γ̄ − 1)M + 1 , (5)

where γ̄ is a positive constant, M = 0 when there is no drug in the environment (part P1 of the ex-
periments), and M ≡M(x, t) when the drug is introduced (part P2, described bellow). Such choice
of γ(M) enables to take into account different forms of the squeezing probability, corresponding to
different mechanical behaviours of the cells. In Figure 3, we plot the squeezing probabilities as a
function of the cell density, corresponding to different values of γ(M). We see that when there is
no treatment present in the environment (M = 0, γ(M) = 1, blue curve in Figure 3), the squeezing
probability decreases linearly with the local cell density, corresponding to cells modelled as solid
particles.

However, for larger values of γ(M) (when the treatment is present, M > 0 and γ(M) > 1, red
and yellow curves in Figure 3), the squeezing probability becomes a nonlinear function of the cell
density, modelling the fact that in the presence of a drug, cells change their mechanical state to
behave as semi-elastic entities that can squeeze into empty spaces.

We refer to [59, 60] for more details on the link between the cells elastic properties and the
squeezing probability. In particular, in [59], the authors consider three different cell types leading
to different squeezing probabilities:

• If cells behave like a fluid, they can fill all open spaces and cells interactions no longer have an
impact on the squeeze probability, corresponding to the asymptotics γ(M)→∞.

• If cells are solid blocks, the squeezing probability is proportional to the number of occupants,
i.e. linearly dependent on the cell density, corresponding to the particular choice γ(M) = 1.

• If cells are elastic, they can adapt their configuration to squeeze into open spaces, leading
to a nonlinear squeezing probability, piecewise higher than for solid blocks, corresponding to
γ(M) > 1. We will refer to this regime as semi-elastic.
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3.1 Volume-filling approach for chemotaxis: first part P1

The classical Keller-Segel system of equations [32] describes how cells move along the gradient to
local maxima of the chemoattractant. At the same time, this chemical, which is produced by the
cells, promotes aggregation leading to the so-called “overcrowding scenarios”, and eventually, the cell
density may blow up in finite time (see the comprehensive reviews [27, 55] and references therein).

In this paper, in order to take into account volume limitations and the finite cell size, we consider
a modified version of the Keller-Segel model called the volume-filling approach for cell motion. This
approach was introduced in [48], where the authors provided a detailed derivation in one dimension
as well as a comprehensive numerical study of the model.

For convenience of notation, for the case without treatment P1, we define

q1(u(x, t)) = 1− u

ū
. (6)

The Keller-Segel model built with this specific squeezing probability (6) has been widely studied in
the literature, from modelling [48, 59], analytic [63, 25, 37, 19] and numerical [31] perspectives.

Complete PDE system for the first part P1 Taking into account all the previous ingredients,
the complete PDE system for part P1 (when no treatment is present in the environment) reads:

∂tu = ∇ · (d1D1(u)∇u− χuφ1(u)∇c) + f(u) ,

∂tc = d2∆c+ αu− βc ,
(7)

where the first equation describes the evolution of the cell density u and the second is the reaction-
diffusion equation for the chemoattractant, previously introduced. The equation for u describes the
volume-filling chemotactic motion associated with the squeezing probability q1(u). This equation has
been obtained as the hydrodynamic limit of the continuous space-time biased random walk model
that corresponds to the squeezing probability q1(u). In the hydrodynamic limit, the cell density
evolves according to a nonlinear transport diffusion equation with source term, which corresponds to
a volume filling Keller-Segel model with logistic growth. The density-dependent diffusion coefficient
D1(u) and the chemotactic sensitivity φ1(u) relate to q1(u) via

D1(u) = q1(u)− q′1(u)u , φ1(u) = q1(u)u .

For P1, where q1(u) is given by (6), these coefficients take the values D1 = 1 and φ1(u) = u(1−u/ū).
In equation (7), d1, χu, α, β are all positive parameters and f(u) is the logistic growth source term
previously defined in (1).

The PDE system is supplemented with the following zero-flux boundary conditions

(d1D1(u)∇u− χuφ1(u)∇c) · η = 0 , d2∇c · η = 0 , (8)

where η is the outer unit normal at ∂Ω. The initial conditions are given by

u(x, 0) = u0 , c(x, 0) = c0 . (9)

3.2 PDE system including the treatment: Part P2

We now describe the dynamics of the cell population when the drug is introduced (part P2 of the
experiments described in Section 2). As previously mentioned in Section 2 and motivated by the
observations in [44], where the treatment TMZ does not seem to induce cell death, we suppose that
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the drug only affects the mechanical properties of the cells. For a cell density w(x, t) the squeezing
probability of part P2 is

q2(w(x, t),M) = 1−
(w
ū

)γ(M)

. (10)

Note that we have supposed that the crowding capacity ū, which corresponds to the tight packing
state, remains unchanged from P1 to P2. This corresponds to the hypothesis that the treatment
does not modify the volume of the cells but only changes their elastic properties.

The complete PDE system corresponding to the second part of the experiments therefore reads:

∂tw = ∇ · (d3D2(w,M)∇w − χwφ2(w,M)∇c) + f(w) ,

∂tc = d2∆c+ αw − βc ,
∂tM = d4∆M − δw .

(11)

Here, f(w) is again the logistic growth source term given by (1), and the first equation has been
derived using the squeezing probability q2(u) defined by (10). Note that the carrying capacity umax

remains unchanged in the two parts of the experiments: we have supposed here that the drug does
not interact with the nutrients. Analogous to (7), the movement of the cells is described by a
chemotactic system where, in this case, the diffusion and chemosensitive coefficients depend also on
the concentration of the treatment. These modified coefficients will lead to changes in the size of the
aggregates as shown in the numerical experiments in Section 5. The evolution of the concentration
c is the same as in (7) where, in this case, the chemoattractant is produced by the new population
w. Including proliferation also in this second part allows us to assess the effect of the treatment in
the population at earlier times, while the population of cells is still growing and aggregates are still
forming.

Different initial conditions for the cell density and concentration of the treatment will be con-
sidered as described in Section 5. Each initial condition for P2 will correspond to a density profile
solution of the system P1 at a given time, i.e. w(x, 0) = u(x, T1) for some given T1. We will
consider cases where the treatment is introduced on already formed and stable aggregates (steady
state of (16)), but also cases where it is introduced at earlier times (during the formation of the
aggregates, see Section 5). The initial condition for the drug concentration is considered to be ei-
ther homogeneously distributed in the simulation domain, introduced in the center or through the
boundary.

Remark 3.1. In both parts of the experiments, we assume that the crowding capacity ū is larger
than the carrying capacity umax. From a biological viewpoint, this hypothesis amounts to consider
that the maximal local number of cells that can be supplied with enough nutrients/oxygen to survive,
umax, is smaller than the purely mechanical density which corresponds to the optimal packing state
of the cells. In a nutrient-unlimited environment cells would aggregate until maximally packed, while
we suppose here that there is a limited amount of nutrients/oxygen in the environment which is not
sufficient to support all the cells in a tight-packing state.

4 Linear stability analysis and pattern formation

The system (7) without source term is well known in the literature as the volume-filling Keller-Segel
model, for which emergence of patterns has been characterised and is now well documented. Pattern
formation refers to the phenomenon by which, after varying a bifurcation parameter, the spatially
homogeneous steady state loses stability and inhomogeneous solutions appear. In the following, we
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investigate in which parameter region we can expect instability of homogeneous solutions, corre-
sponding to the formation of patterns. The linear stability analysis followed here is classical and
follows the lines of [48, 60, 40].

We first recall the two systems associated with the dynamics described in P1 and P2. Using the
fact that in P1 the squeezing probability is chosen to be q1(u) = 1− u

ū , we have{
∂tu = ∇ · (d1∇u− χuφ1(u)∇c) + ru

(
1− u

umax

)
,

∂tc = d2∆c+ αu− βc ,
(12)

where
D1 = 1 , and φ1(u) = u

(
1− u

ū

)
. (13)

For part P2, when the squeezing probability function is given by (10), the system writes
∂tw = ∇ · (d3D2(w,M)∇w − χwφ2(w,M)∇c) + r̃w

(
1− w

umax

)
,

∂tc = d2∆c+ αw − βc ,
∂tM = d4∆M − δw ,

(14)

with diffusion and chemotactic coefficients given by

D2(w,M) = 1 + (γ(M)− 1)
(w
ū

)γ(M)

and φ2(w,M) = w
(

1−
(w
ū

)γ(M))
. (15)

4.1 Dimensionless model

To get a deeper insight of the system’s behaviour we introduce the characteristic values of the
physical quantities appearing in the models. Denoting by X and T the macroscopic units of space
and time, respectively, such that x̄ = x

X , t̄ = t
T , then we choose

(x̄, t̄) =

(√
β

d2
x,

βd1

d2
t

)
.

Using these new variables, the dimensionless system for part P1 writes{
∂tu = ∇ · (∇u−Aφ1(u)∇c) + r0u

(
1− u

umax

)
,

ζ∂tc = ∆c+ u− c .
(16)

Similarly, we obtain for P2
θ∂tw = ∇ · (D2(w,M)∇w −Bφ2(w,M)∇c) + r̃0w

(
1− w

umax

)
,

ζ∂tc = ∆c+ w − c ,
m∂tM = ∆M − δ0w ,

(17)

where

A =
χu
d1

, r0 =
d2r

d1β
, ζ =

d1

d2
, θ =

d1

d3
,

B =
χw
d3

, r̃0 =
d2r̃

d3β
, m =

d3

d4
, δ0 =

δ

d1
.

(18)

The parameters ζ and m are assumed to be small since the chemoattractant and the chemother-
apeutic treatment diffuse faster than the cells. On the other hand, θ ' 1 since both population
densities u and w are assumed to diffuse at similar rates. In the following, we state the linear
stability for both systems in separate sections.
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4.2 First part: Formation of the aggregates

We first consider the system (16), which can be re-written in a more general form as

∂tu = ∇ · (∇u−Aφ1(u)∇c) + f(u) ,

ζ∂tc = ∆c+ g(u, c) ,
(19)

where φ1(u) is given in (13), f(u) = r0u(1 − u
umax

) and g(u, c) = u − c. This system is subject to
uniformly distributed initial conditions and zero-flux boundary conditions as in (8).

The main result in this section is the following theorem, which gives the pattern formation
conditions for the system (19).

Theorem 4.1. Consider (u∗, c∗) = (umax, umax) the spatially homogeneous steady state. Then
pattern formation for the system (19) with zero flux boundary conditions (8) is observed if the
following conditions are satisfied,

f∗u + ζ−1g∗c < 0 , f∗ug
∗
c > 0 , ζ−1g∗c + f∗u − ζ−1g∗uAφ1(u∗) > 0 ,

g∗c + f∗u + g∗uAφ1(u∗) > 2
√
f∗ug
∗
c .

(20)

The critical chemosensitivity is given by

Ac =
2
√
r0 + 1 + r0

umax

(
1− umax

ū

) , (21)

and for A > Ac patterns can be expected. The wavemodes k2 are in the interval defined by

k2
1 =
−m−

√
m2 − 4f∗ug

∗
c

2
< k2 < k2

2 =
−m+

√
m2 − 4f∗ug

∗
c

2
, (22)

where m = −(g∗c + f∗u + g∗uAφ1(u∗)).

Proof. See Appendix A for the proof of this theorem.

4.3 Second part: Treatment

We now consider the system (17) which corresponds to P2, when the treatment is introduced. The
parameter range where patterns are observed is summarised in the following theorem.

Theorem 4.2. Consider (w∗, c∗, M∗) = (umax, umax, Ms), where
Ms = |Ω|−1

∫
Ω

M(x, 0) dx, a spatially homogeneous steady state. Also, consider (17) with zero flux
boundary conditions given by

(d3D2(w,M)∇w − χwφ2(w,M)∇c) · η = 0 , d2∇c · η = 0 , d4∇M · η = 0.

Then, the critical chemosensitivity is given by

Bc =
2
√
r̄0D2(umax,Ms) +D2(umax,Ms) + r̃0

umax

(
1−

(
umax

ū

)γMs) ,

where

D2(umax,Ms) = 1 + (γMs − 1)
(umax

ū

)γMs
.
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Patterns can be expected if B > Bc and the wavemodes k2 are in the interval defined by

k2
1 =
−m̄−

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
< k2 < k2

2

=
−m̄+

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
,

for m̄ = −(D2(umax,Ms)g
∗
c + g∗wBφ2(umax,Ms) + f∗w).

Proof. The proof of this theorem can also be found in Appendix A.

Remark 4.1. For the case of 2 dimensions, we can rewrite the systems (16) and (17) using polar
coordinates (ρ, θ) where we use the transformation x = ρ sin θ, y = ρ cos θ and the Laplace operator

is now given by ∆p = 1
R
∂
∂ρ

(
ρ ∂
∂ρ

)
+ ρ2 ∂2

∂θ2 , where R is the radius of the domain. The eigenvalue

problem (29) is now written as −∆pψk = k2ψk with boundary conditions ∂ψk/∂ρ = 0 at ρ = R.
The eigenfunctions are obtained by separation of variables and are given by ψk(x, y) = R(ρ)Θ(θ).
Here Θ(θ) = eisθ = A cos(sθ) + B sin(sθ) for some s ∈ Z. The radial part R(ρ) is given in
terms of Bessel functions R(ρ) = Js(kρ) (see [51]) where k =

cs,p
R and cs,p denotes the pth zero

derivative of Js, which is a first kind Bessel function of order m. Finally we can write ψs,pk (ρ, θ) =
J
( cs,p
R ρ

)
(A cos(sθ) +B sin(sθ)) .

The stability analysis reveals that several competing effects control the system’s ability to create
patterns (aggregates). The criteria obtained both in P1 or P2 show that the chemotactic sensitivity
must be large enough to compensate the smoothing effect of the diffusion term and of the logistic
growth. On the other hand, one can observe from the bifurcation formulae that the ratio umax

ū
(carrying capacity vs. density of the tight packing state) plays an important role in the emergence
of patterns: larger values lead to more aggregated states. These results show that the logistic
growth term has an intrinsic smoothing property, i.e., it tends to force the density to equate the
carrying capacity, while the chemotactic term acts as an attractive force and creates zones of higher
density (recall that umax < ū). The aggregates are an expression of a balance in between these two
competing effects, which are completely characterised by the stability criterion.
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Figure 4: Wavenumbers for different values of γ(M) when (a) r0 = 0.1, umax = u0 = 0.5; and for
(b) r0 = 0.05, umax = u0 = 0.1 . Circles indicate kc values.
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In order to give more insights about the size of the emerging patterns, we show in Figure 4 the
values of the inverse maximal wavenumber as function of the chemotactic sensitivity (denoted by A
for part P1 andB for part P2), for different values of the exponent γ(M). We recall that γ(M) = 1 in
P1, where cells act as rigid bodies, and γ(M) > 1 in the presence of the treatment, where cells behave
as semi-elastic entities (P2). Figure 4a shows the results for growth rate r0 = 0.1 = 0.8 day−1 and
carrying capacity umax = 0.5, Figure 4b for r0 = 0.05 = 0.4 day−1 (slower growth) and umax = 0.1
(lower carrying capacity). In both figures, the black circles indicate the critical values for the
chemotactic sensitivity above which the system is unstable. Here, the tight packing density is set to
ū = 1. The maximal wavenumber corresponds to the most unstable mode, i.e. the perturbed wave
that will grow the fastest. Therefore, the inverse of this maximal wavenumber is directly related to
the size of the emerging patterns.

As one can observe, an increase in the chemotactic sensitivity parameter correlates with a decrease
in the observed pattern size, suggesting that the aggregates are smaller: larger chemotactic sensitivity
leads to more aggregated clusters. Moreover, the aggregate size also decreases as cells pass from
rigid bodies to semi-elastic entities (when γ(M) increases). This is due to the fact that for larger
values of γ(M), cells are more easily deformed and can aggregate more efficiently than when they
behave as rigid spheres.

When we increase the ratio umax

ū (compare Figure 4a and 4b), we observe that the critical value
of the chemosensitivity above which patterns are generated is larger than for smaller ratios umax

ū .
These results highlight once again the smoothing effect of the logistic growth: when the cell tight
packing density is unchanged, decreasing the carrying capacity of the environment enhances cell
death in the aggregates formed by chemotaxis, where cells try to reach the tight packing state. In
this case, the critical chemosensitivity value must be large enough to compensate for the cell death
induced by the logistic growth. Moreover, we observe that larger ratios umax

ū induce less influence of
the function γ(M). The cell aggregation abilities are mainly driven by the chemosensitivity intensity
and not so much by the cell mechanical properties for large values of umax

ū .

5 Numerical simulations

In addition to the analytic results obtained in Section 4, we present numerical simulations for the
two problems (16) and (17). This allows us to investigate the behaviour of the model’s solutions for
different scenarios and range of parameters. It is well-known that a standard discretisation of the
Keller-Segel models can lead to nonphysical solutions due to the convective term. Here, we focus
on a numerical method that preserves the non-negativity of the cell density using the upwind finite
element method described in [13] for the simulation of the Cahn-Hilliard equation.

The calculation of the chemotactic coefficient follows the lines of [3]. Indeed, the finite volume
scheme proposed in [3] is identical to the numerical method presented in this paper in dimension
one. However, in higher dimensions, and since we also use a finite element method, the numerical
scheme presented in [3] differs from the one in this section, as detailed in Appendix B.

5.1 Biological relevance of the model parameters

Here, we comment on the choice of the model parameters that we will use for the numerical sim-
ulations and how they relate to experimental known data. As hypoxia-inducible factors (HIF) are
supposed to be responsible for the chemotaxis motion of GBM cells, we suppose that the diffusion
coefficient d2 and consumption rate β for the chemoattractant are linked to biological measurements
of the oxygen diffusion in human brain which were estimated in [57, 23] to d2 = 86.4 mm2 day−1 and
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β = 8640 day−1. For such values, and using the scaling of Section 4.1, one unit of time of our model
corresponds to 0.125 days, and one unit of space is 10−1 mm. In [23, 16], the proliferation rate for
well oxygenated glioma cells in vitro r, was shown to lie between 0.5 and 1 day−1. As the prolifer-
ation rate relies significantly on the nutrient, also smaller value seems to be biologically admissible
in real conditions and following [16], we choose r = 0.4 day−1 and r = 0.8 day−1 (corresponding to
the non-dimensionalised parameter r0 = 0.05 and r0 = 0.1). These values are in agreement with the
non-dimensional parameters in (18).

As we found no experimental data on the chemotactic coefficient χu of glioma cells in response to
chemoattractant concentration, the choice of this parameter is driven by the stability analysis and
we find that the interesting regimes are obtained for a dimensionless chemosensitivity in between
7 and 70, corresponding to a chemotactic coefficient χu ∈ [0.6, 6] mm2 day−1. Moreover, as no
measurements for glioma cells’ diffusion coefficient are available in the literature, the parameter d1

is arbitrarily chosen to be 100 times smaller than the chemoattratant diffusion speed and we choose
d1 ≈ d3 ≈ 0.086 mm2 day−1, i.e the non-dimensionalised parameter ζ = d1

d2
= 0.01.

5.2 Numerical results for a one dimensional case

For all numerical computations we choose the packing capacity ū = 1. We consider different prolifera-
tion rates r0 = 0.1, 0.05 and different initial conditions and carrying capacities umax = u0 = 0.1, 0.5.
The nondimensional parameters given in (18) are ζ = m = 0.01 and θ = 1 since we assume that the
chemoattractant c and the treatment diffuse much faster than the cells, while the motility of the cells
is not affected by the treatment, so d1 ≈ d3. The initial condition for the cell density u0 is assumed
to be randomly distributed in space. We similarly define the initial chemoattractant concentration
c0.

In this section we start by solving the systems (16) and (17) on the interval [0, L] with homoge-
neous non-flux boundary conditions using the method described in Appendix B. In Appendix C we
investigate the effect of the size of the domain as well as the effect of the parameters A and B on
the formation and evolution of patterns. Moreover, using (17) we study the effect of the treatment
using the solution of (16) at the final time T1 as initial condition. We explore the case when we
introduce the treatment at earlier stages of the formation of the aggregates.

We consider two different scenarios for the evolution of the concentration of the treatment. First,
we assume that the treatment diffuses very fast in the whole domain so that the concentration is
homogeneous from time T2 = 0. The other two cases we consider, which are closer to real experi-
ments, start with a high concentration of the drug, either in the centre or at the boundary of the
domain, and this concentration diffuses over time according to the third equation in (17).

Comparison with the linear stability analysis In order to quantify the aggregate sizes and
compare it to the ones predicted by the stability analysis, we use the Fourier transform of the
numerical solution and extract the frequency that corresponds to the maximal Fourier mode. For
the sake of this analysis, periodic boundary conditions are therefore considered. To this aim, we
compute the discrete Fourier transform F [u](x, t) = û(λ, t) and define

kmax = arg max
λ

(|û(λ)|) = arg max
λ

(√
Re(û(λ))2 + Im(û(λ))2

)
,

which corresponds to the frequency of the largest Fourier mode. The inverse (kmax)
−1

of this max-
imal frequency relates to the pattern size. This maximal frequency of the Fourier transform of the
solution is expected to correspond to the maximal wavenumber predicted by the stability analysis.
We show in Figure 5 the values of (kmax)

−1
computed from the numerical solution (blue dotted line)
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compared to the predictions of the stability analysis (red curve), as function of the chemosensitiv-
ity, for γ(M) = 1 (Figure 5a) and γ(M) = 5 (Figure 5b). As one can observe, we obtain a very
good agreement between the numerical values and the predictions of the stability analysis, and we re-
cover the critical value of the chemosensitivity parameter above which the system generates patterns.
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Figure 5: Comparison of the wavelength obtained analytically, using (39) and (40), and numerically,
using the Fourier transform of the solution for (a) γ(M) = 1 and (b) γ(M) = 5.

Introduction of the treatment on already-formed aggregates In this part, we aim to study
the influence of the treatment on already formed aggregates. For this, we let the system run in
P1 (without treatment, M = 0, γ(M) = 1) until time T1 = 25 days, and introduce the treatment
uniformly in the domain (M = 1, γ(M) = 5).

In Figure 6 left and middle panels, we choose values of the chemosensitivity very close to the
critical values corresponding to kc, where the wavenumbers are very different for the cases γ(M) = 1
and γ(M) = 5 as we see in Figure 4a. In Figure 6, the blue curves describe the formation of
aggregates for a time T1 = 25 days without the treatment, while the cells are proliferating with rate
r0 = 0.1 = 0.8 day−1. We consider two different scenarios when introducing the treatment: either
cells stop proliferating (red curves), or they continue with the same rate as before r0 = 0.8 day−1

(yellow curves).
When we introduce the treatment for values of A and B close to the instability threshold (A =

B = 7, Figure 6 left), we observe that the aggregates become steeper and the density in each
aggregate reaches the packing capacity ū = 1. This clearly leads to more compact aggregates as a
result of the nonlinearity introduced in (11) by the function γ(M). The main physical difference
between changing the function γ(M) and changing the chemosensitivity coefficients A or B is the
following. By changing A or B depending on the concentration of the treatment, we are enhancing
aggregation over diffusion, essentially we are changing the motility of cells. By changing γ(M)
the motility, as well as the elastic properties of the cells in the aggregates are affected. When we
introduce the treatment while cells keep proliferating, aggregates tend to merge together since the
density is growing, as we can observe in the middle panel of Figure 6 by comparing the solution
without treatment (blue curve) and with TMZ drug (yellow curve).

It is noteworthy that for large values of the chemosensitivity parameter (A = B = 70, Figure 6
right panel), the treatment does not impact the aggregate dynamics. In this case, cell aggregation
is mainly driven by the chemotactic term and the cell mechanical properties have little influence.
These observations are in agreement with the stability analysis, which shows that the function γ(M)
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has more influence when the chemotactic sensitivity is close to the instability threshold.
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Figure 6: Aggregation pattern when A = B for A = 7 (left), A = 12 (middle) and A = 70 (right).
The blue curves are solutions of P1 at T1 = 25 days. The red and yellow curves are solutions of P2
at T = T1 + 25 days when the treatment is introduced uniformly and r0 = 0 or r0 = 0.1 = 0.8 day−1

respectively.
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Figure 7: Solution for A = B = 7. The blue curves is the solution of P1 at T1 = 25 days. The red
and yellow curves are the solutions of P2 at T = T1 + 25 days with reduced proliferation rate for
γ(M) = 1 and γ(M) = 5, respectively.

Finally, by comparing the red and yellow curves in Figure 6, it is clear that cell proliferation
has a major impact on the size of the aggregates. If the treatment has the double effect to stop
proliferation as well as modifying the cell mechanical properties, cell aggregates will become very
dense and well-separated, while merging aggregates are still observed if the treatment has the sole
effect to change the cell mechanical properties.

In Figure 7 we compared the results when the TMZ only affects the proliferation rate and the
mechanical properties of the cells remain unchanged (red curve), with the case when TMZ affect
both, proliferation and elasticity (yellow curve). We observe that when TMZ only reduces the
proliferation rate of GBM cells, we do not observe a significant sharpening of the cell clusters,
compared to the case when TMZ has the coupled action of reducing proliferation and changing the
mechanical properties of the cells. Together with Figure 6, we therefore conclude that the mechano-
transduction phenomenon induced by the presence of the drug could be sufficient to explain the
shrinking of the cell aggregates documented in Section 2.
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In all previous experiments we chose to introduce the treatment at time T1 = 25 days, we now
aim to study the effect of the treatment introduced at different times in the aggregation process.

Introduction of the treatment at different times Here, we consider the case when the treatment
is introduced at different times in the aggregation process. As before, we let the system run in P1
(without drug, M = 0, γ(M) = 1) until time t = T1 and introduce the treatment uniformly in the
domain (M = 1, γ(M) = 5). We consider the cases when the treatment has the ability to stop
proliferation, and when the treatment only acts on the cell mechanical properties. In Figure 8, we
show the results at time T = T1 + 25 days (red curve), when the treatment is introduced at times
T1 = 6.25 days (left plots), T1 = 12.5 days (middle plots) and T1 = 37.5 days (right plots). Figures
8a shows the results when the treatment stops proliferation while Figures 8b shows the results when
the treatment only changes the mechanical properties of the cells. For each, the blue curves are the
density profiles before introducing the treatment.

As one can observe, in Figures 8a and 8b, introducing the treatment at different times of the ag-
gregation process has a major impact on the size of the aggregated patterns formed at a latter time.
Introducing the treatment at an earlier time (T1 = 6.25 days, left figures) enables to obtain smaller
aggregates compared to when the treatment is introduced on already formed aggregates (T1 = 37.5
days, right figures). This effect is more visible when the treatment has the double effect of blocking
cell proliferation and changing the elasticity (compare red curves in Figures 8a and 8b). In this case,
the earlier the treatment is introduced, the smaller the aggregated patterns. When the treatment
stops proliferation as well as it changes the cell mechanical properties, and is introduced at later
times (right panel of Figure 8a) we recover the observation of the real systems, where the treatment
induces a shrinking of the aggregate and favors the formation of more compact cell structures. This
effect is not observed when proliferation is active with the treatment, (right panel of Figure 8b) where
aggregates are merging and they are larger than before the treatment introduction. This suggests
indeed that the treatment has the double effect of blocking cell proliferation as well as changing
the cell mechanical properties. The model suggests that introducing the treatment at earlier times
of the tumour development could enable to control the size and separation of the tumour aggregates.

Introduction of the treatment in the middle of the domain Finally, we aim to study the
case when the treatment is introduced in the center of the domain and diffuses in the environment.
Here we assume that the treatment is not consumed or escapes the domain, therefore δ0 = 0 in
(17). In Figure 9, we show the density profiles of the solution before introducing the treatment
(blue curves), and when the treatment is present (red curves), at times T2 = 0 (left), T2 = 0.6 days
(center) and T2 = 3.75 days (right). The distribution of the treatment follows a Gaussian of the form

M(x, 0) = Ce
(x−x0)2

2σ2 , where C = 40 is the amplitude, x0 is the center of the Gaussian and σ = 0.5
describes the spread. As one can observe, the large concentration of the treatment in the middle
immediately sharpens the interface between already-formed aggregates, and favors the separation of
the cell clusters. As the treatment diffuses in the domain (see the middle figure of Fig. 9), the cell
cluster interfaces sharpen, creating denser and well-separated cell clusters.

5.3 Numerical results for a two dimensional case

For the 2D simulations we consider that Ω is a disk of radius R which can be defined as Ω = {(x, y) ∈
R2 : x2 + y2 < R2} where the boundary is given by ∂Ω = {(x, y) ∈ R2 : x2 + y2 = R2}. The
proliferation rate is chosen to be r0 = 0.4 day−1 and the initial homogeneous density as well as the
carrying capacity are set to umax = u0 = 0.1 or umax = u0 = 0.5. The other parameters can be
found at the beginning of Section 5.2.
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Figure 8: Introduction of the treatment at different times T1 = 6.25, 12.5, 37.5 days when u0 = 0.5
and A = B = 12. The blue curves give the initial condition u(x, T1) for the part P2. In (a) r0 = 0
and in (b) r0 = 0.1 = 0.8 day−1. The red curves are at T = T1 + 25 days.
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In Figure 10 we show the formation of aggregates for different values of A without the treatment,
for u0 = 0.1 and r0 = 0.4 day−1. We observe that for A = 10 (Figure 10a) we do not have patterns,
in agreement with the analytic results obtained in Figure 8b since this value of A is less than
Ac ≈ 16.7. As we increase the chemosensitivity parameter, the aggregates become more compact.
From Figure 10b we observe the phenomena of two aggregates merging together, analogous to the
one dimensional results in Figure 17. As expected, by changing the carrying capacity and the initial
density of cells to u0 = umax = 0.5, the patterns change shape. We observe a transition from
spot-like patterns in Figure 10 to maze-like structures in Figure 11. This behaviour has been widely
studied experimentally [46], numerically [39, 41] and more recently, also including a volume-filling
approach [48].

(a) (b) (c)

Figure 10: Formation of aggregates at T1 = 25 days when u0 = 0.1, r0 = 0.4 day−1 and (a) A = 10,
(b) A = 20 and (c) A = 70.

(a) (b) (c)

Figure 11: Formation of aggregates at T1 = 25 days without the treatment and when umax = u0 =
0.5, r0 = 0.4 day−1 and (a) A = 7, (b) A = 12 and (c) A = 50.

Analogous to the one dimensional case, we consider two different initial conditions for the treat-
ment: (i) we first include the treatment uniformly in the domain with M = 5, and (ii) we introduce
the treatment with a localised concentration either in the middle of the domain or at the boundary,
and let it diffuse in space. In these simulations, the treatment is supposed to block proliferation as
well as changing the cell mechanical properties.

In order to compare the change in size of the aggregates before and after the treatment, we
compute the difference between the solution of the first part of the experiments u(x, T1) coming
from (16), when the aggregates are formed (at T1 = 25 days), and the solution w(x, T2) of (17), once
the treatment has been inserted (at time T = 25 + T2 days). In Figure 12, we show the results for
different values of the chemosensitivity parameter A = B, when the aggregates have been exposed
to a uniform distribution of the treatment for a time T2 = 3.75 days. The positive values of this
difference, observed on the external boundary of the clusters, indicate the shrinking of the aggregate
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due to the action of TMZ, while negative values on the inner boundaries of the clusters highlight
the increased concentration on the boundaries. TMZ therefore favors the production of smaller and
more concentrated aggregates, as described in Section 3. When we compare the results in Figure 12a
and 12b for different values of A and B we observe that the effect of the treatment is stronger when
the value of the chemosensitivity parameter B is closer to its critical value (see Figure 4b). This is
in accordance with the results of the stability analysis. The cell mechanical properties (controlled by
the function γ(M)) have less influence on the cell cluster sizes when the chemosensitivity parameter
A = B is increased (see Figure 4b).

(a) (b)

Figure 12: Difference between the solutions obtained without TMZ and with TMZ, u(x, T1)−w(x, T2)
for T1 = 25 days, T2 = 3.75 days and (a) A = B = 20 and (b) A = B = 70. Here γ(M) = 11,
r0 = 0.4 day−1 and umax = u0 = 0.1.

(a) (b) (c)

Figure 13: Difference between the solutions when the initial concentration of the treatment is a
Gaussian function centered in the domain. (a) T2 = 1.25 days, (b) T2 = 3.75 days (c) T2 = 12.5
days for T1 = 25 days, r0 = 0.4 day−1 and u0 = 0.1.

We now study the case when the treatment is introduced in the middle of the domain and
diffuses in the environment. To this aim, the initial concentration of the treatment is assumed to
be a Gaussian function with width 5 centered in the middle of the domain. We consider that the
treatment is not consumed by the cells in the time scales we are interested in, and choose δ0 = 0.
In Figure 13 we show the evolution of the difference between the two solutions u(x, T1)− w(x, T2),
where T1 = 25 days is the time at which the treatment is introduced and T2 is the duration of the
treatment. We explore different times T2 = 1.25, 3.75, 12.5 days. For short times, the effect of the
treatment is only noticed by the aggregates at the center of the domain and therefore the difference
between the two solutions close to the boundaries is zero. As time increases, the concentration of
the treatment reaches the whole domain as is observed in Figure 13c.
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To understand if the position of the Gaussian plays a role in our study, we now consider the
initial condition for the TMZ to be a Gaussian centered at a boundary of the domain. Figure 14
depicts the difference u(x, T1)− w(x, T2) when the treatment is introduced at time T1 = 25 days and
for three different times T2. We observe that the TMZ concentration diffuses from the left border
of the domain, and progressively the aggregates shrink in response to TMZ.

(a) (b) (c)

Figure 14: Evolution of the difference u(x, T1)− w(x, T2) for T1 = 25 days, at three different times:
(a) T2 = 1.25 days, (b) T2 = 3.75 days, (c) T2 = 12.5 days.

Finally, we also study the effect of the treatment at earlier stages of the formation of the aggre-
gates. Figure 15 shows the different patterns obtained during the formation of the aggregates at
different times (part P1), top row, and the corresponding effect of the treatment (part P2), bottom
row. For example, introducing the treatment at T1 = 6 days leads to a significant reduction of the
size of the pattern with a reasonably low concentration of the treatment. Identifying this specific
time in real patients could make the treatment much more effective and reduce the spread of the
cancer cells.

6 Discussion of results and perspectives

In this paper we propose a mechanism for the effect of certain treatments on tumours formed by a
chemotaxis type self-organisation phenomenon. Inspired by the experiments concerning the action
of TMZ on Glioblastoma cells mentioned in Section 2, we considered the particular case of a non-
cytotoxic treatment which could induce changes in the mechanical properties of individual tumour
cells by making them pass from rigid bodies to semi-elastic entities. We explored two scenarios: in
the first one, only cell’s plasticity is impacted by the treatment, and in the second one, the treatment
has a double effect of preventing cell proliferation as well as changing cell mechanics.

Under these hypotheses, we obtained a modified version of the Keller-Segel model, known as the
nonlinear volume-filling approach for cell motion, where the cell mechanical properties are taken into
account in the form of the so-called squeezing probability. In the nonlinear volume-filling Keller-
Segel model, this squeezing probability function could be related to the amplitude of the transport
term towards zones of high chemoattractant concentration (chemosensitivity), as well as with the
(nonlinear) diffusion coefficient.

By performing a linear stability analysis, we are able to detect and characterise the parameter
ranges for which the homogeneous distribution is unstable, i.e. the ranges for which patterns appear
as the result of the dynamics. We show that the emergence of patterns without treatment (i.e.
when cells act as rigid bodies) is driven by a fine interplay between the chemotactic sensitivity,
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(a) (b) (c)

(d) (e) (f)

Figure 15: Effect of the treatment at different times while the aggregates are forming for A = 20.
Top row: solution obtained for P1 at (a) T1 = 3.75 days, (b) T1 = 6.2 days and (c) T1 = 12.5 days.
Bottom row: solution at time T = T1 + 25 days, when the treatment has been introduced at times
(d) T1 = 3.75 days, (e) T1 = 6.2 days and (f) T1 = 12.5 days.

which tends to aggregate the cells, and the diffusion, together with the logistic growth, which tend
to smoothen the solution. We are able to compute the critical chemosensitivity value above which
the system self-organizes into aggregates, and characterise the size of the aggregates as a function
of the model parameters.

Under treatment, i.e. when cells behave as semi-elastic entities, we show that the critical value of
the chemosensitivity above which patterns emerge is smaller than that in control cultures, showing
that as cells become more elastic, they tend to aggregate more easily than when they behave as rigid
entities.

We are able to completely characterise the size of the patterns and show that semi-elastic cells
create smaller aggregates than rigid entities for the same value of the chemosensitivity. These results
suggest that the mechanical properties of individual cells have a huge impact on the shape and size
of the aggregated patterns at the population level.

Moreover, we show that the ratio between the tight packing cell density and the carrying capacity
of the TME plays a major role in the size and shape of the obtained patterns. For large values of
this ratio, the aggregation abilities of the system are essentially driven by the chemotactic transport
term while the individual cell mechanical behaviour has little impact on the shape and size of the
patterns. However, for smaller values of this ratio, i.e. when the tight packing density is closer to
the carrying capacity of the environment, cell mechanics has a huge influence on the behaviour of
the population.

These results are confirmed by numerical experiments in 1D and 2D for which, given an initial
perturbation of the homogeneous cell distribution, we observe the emergence of cell aggregates
and we recover the critical values of the chemosensitivity predicted by the stability analysis. We
obtain a very good correspondence between the simulations and the theoretical predictions, for the
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appearance of patterns as well as their size.
By performing numerical simulations of the systems (16) and (17), we recover the experimental

observations: introducing the treatment on already-formed aggregates leads to a rapid formation
of more compact patterns. As the treatment diffuses in the domain (changing locally the cell
mechanical properties as it goes), it sharpens the border of the cell aggregates and leads to denser
and well-separated clusters.

While the border sharpening of the clusters is independent on whether proliferation is activated
or not during treatment, the shrinking of the clusters is clearer when the treatment has the double
effect of changing the cell mechanical properties as well as blocking cell proliferation. Indeed, when
proliferation is still active in the presence of the treatment, we observe the merging of existing
clusters and this results in aggregates being larger than before treatment. These results suggest a
possible mechanism for the shrinking of the aggregates observed under the experimental conditions
described in Section 2: TMZ might not only stop cell proliferation, but might also generate a stress
in the environment to which cells respond to by changing their mechanical state.

While alterations of mechanical properties, around or inside the tumour, are common in solid
tumours including GBM, the question of the nature and the regulation of cancer cells through
mechano-sensitive pathways are largely unknown. Recently, in a Drosophila model, glioma pro-
gression has been associated to a regulatory loop mediated by the mechano-sensitive ion channel
Piezo1 and tissue stiffness [15]. A direct perspective of these works consists in verifying the poten-
tial mechano-sensing effect of TMZ proposed in the present model, through direct measures in real
systems by studying the mechanical properties of individual GBM cells which have been exposed to
TMZ treatment. The targeting of mechano-sensitive pathways after TMZ treatment may provide
new therapeutic angles in GBM and in more general settings.

Moreover, it would be interesting to identify other clinical settings where the effects of the
treatment are similar to those of TMZ in GBM, and to check if the effects are due to changes in the
tumor cell properties corresponding to the general hypothesis of the model constructed in this work.
In the future, exhaustive quantitative comparison with experiments will allow for systematic choice
of parameters and validation of the mechanisms we propose here. From a biological point of view, a
natural sequel of this work consists in studying the coupled effect of TMZ and irradiation. Indeed,
even if TMZ alone seems not to suffice to decrease the tumour mass, the coupling of TMZ treatment
with irradiation has been shown to have more efficient effects than irradiation alone [53, 8, 58]. It
would also be interesting to introduce a second treatment with cytotoxic effects in this model, to
study whether the mechanical changes of individual cells induced by TMZ could explain the better
response of the system to irradiation treatments. Finally on a modelling viewpoint, it would be
interesting to extend the model to take into account cell-cell adhesion in the spirit of [5], in order to
study the effects of cell-cell adhesion vs. individual cell mechanics on the aggregation properties of
cell populations.
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A Stability analysis

First part of the experiments We first observe that the homogeneous distributions u(x, t) = u∗

and c(x, t) = c∗ are steady-states solutions of system (16) for u∗ and c∗ such that f(u∗) = 0 and
g(u∗, c∗) = 0. In order to study their stability, we consider the system without spatial variations

∂tu = f(u) , ζ∂tc = g(u, c) , (23)

and linearize the solution at (u∗, c∗). We obtain

∂tσ = Gσ , where σ =

(
u− u∗
c− c∗

)
and G =

(
f∗u 0

ζ−1g∗u ζ−1g∗c

)
, (24)

where the quantities f∗u , g
∗
u and g∗c are the linearization slopes of f and g: f∗u = f ′(u∗), g∗u =

∂ug(u∗, c∗), g∗c = ∂cg(u∗, c∗). The steady state is linearly stable if tr(G) < 0 and det(G) > 0, which
imposes the following constraints on the kinetic functions f(u) and g(u, c),

f∗u + ζ−1g∗c < 0 and f∗ug
∗
c > 0 . (25)

Note that in our case, f∗u = −r0, g
∗
u = 1, g∗c = −1 so the conditions are satisfied.

We now go back to the full chemotactic system (19). In order to investigate the stability of the
homogeneous steady-state, i.e. the ability of the system to create patterns, we introduce a small
parameter ε� 1 and write

u = u∗ + εũ(x, t) , c = c∗ + εc̃(x, t) . (26)

We substitute (26) into (19) and, computing the first order terms with respect to ε and neglecting
higher order terms, the linearized system reads

∂tu = ∆u−Aφ1(u∗)∆c+ uf∗u + cf∗c ,

ζ∂tc = ∆c+ ug∗u + cg∗c ,
(27)

where φ1(u∗) = u∗q1(u∗). We now look for perturbations of the form

u(x, t) =
∑
k

ak(t)ψk(x) and c(x, t) =
∑
k

bk(t)ψk(x) , (28)

where (ψk)k≥1 is an orthonormal basis of L2(Ω) and satisfies the following spatial eigenvalue problem

−∆ψk = k2ψk ,
∂ψk
∂η

= 0 . (29)

Then, the linearized system (27) can be written as

∂t(ak) = −akk2 +Aφ1(u∗)bkk
2 + akf

∗
u + bkf

∗
c ,

ζ∂t(bk) = −bkk2 + akg
∗
u + bkg

∗
c ,

(30)

where k is the spatial eigenfunction, also called the wavenumber and 1/k is proportional to the
wavelength ω. In matrix form we can write (30) as ∂tXk(t) = Pk(t)Xk(t) where

Xk =

(
ak
bk

)
, Pk =

(
−k2 + f∗u Aφ1(u∗)k2 + f∗c
ζ−1g∗u ζ−1(−k2 + g∗c )

)
. (31)
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Remark A.1. Since the solutions of the eigenvalue problem (29) are simply sines and cosines, the
“size” of various spatial patterns is measured by the wavelength of the trigonometric functions. For
example, in one dimension when 0 < x < L, ψ ∝ cos(nπx/L) and the wavelength is ω = 1/k = L/nπ,
where n ∈ Z.

If the matrix Pk has eigenvalues with positive real part, then the homogeneous steady state
(u∗, c∗) is unstable, resulting in pattern formation. The characteristic polynomial related to (31) is
given by `2 + a(k2)`+ b(k2) = 0 where

a(k2) = (1 + ζ−1)k2 − (f∗u + ζ−1g∗c ) , (32)

b(k2) = ζ−1k4 − ζ−1(g∗c + f∗u + g∗uAφ1(u∗))k2 + ζ−1f∗ug
∗
c . (33)

The eigenvalues ` determines the temporal growth of the eigenmodes, and we require Re(`(k2)) > 0
for the homogeneous steady state to be unstable. Note that we only look for the eigenmodes k 6= 0
since we already guaranteed that the steady state is stable in the absence of spatial perturbations,
i.e. Re(`(k2 = 0)) < 0 in (25).

From the conditions (25), we know that a(k2) > 0, hence the instability can only occur if
b(k2) < 0 for some k so that the characteristic polynomial has one positive and one negative root.
This implies

k4 − (g∗c + f∗u + g∗uAφ1(u∗))k2 + f∗ug
∗
c < 0 . (34)

We also know from (25) that f∗ug
∗
c > 0, then a necessary (but not sufficient) condition for b(k2) < 0

is
g∗c + f∗u + g∗uAφ1(u∗) > 0 .

Remark A.2. The bifurcation between spatially stable and unstable modes occurs when the critical
expression bmin(k2

min) = 0 is satisfied.

Moreover, to satisfy (34) the minimum bmin must be negative [40]. Differentiation with respect
to k2 in (33) leads to

bmin(k2
min) = − (g∗c + f∗u + g∗uAφ(u∗))2

4
+ f∗ug

∗
c . (35)

Hence, the condition bmin < 0 implies

g∗c + f∗u + g∗uAφ1(u∗) > 2
√

(f∗ug
∗
c ) . (36)

To summarise, we have obtained the following conditions for the generation of spatial patterns
for the chemotaxis system (19),

f∗u + ζ−1g∗c < 0 , f∗ug
∗
c > 0 , ζ−1g∗c + f∗u − ζ−1g∗uAφ1(u∗) > 0 ,

g∗c + f∗u + g∗uAφ1(u∗) > 2
√
f∗ug
∗
c .

(37)

From the analysis in this section, and using the particular forms of φ1(u), f and g as in (19),
it is easy to see that the spatially homogeneous steady states are (0, 0) and (umax, umax). We
can check that (0, 0) is an unstable steady state, therefore we only work with (umax, umax) which,
on the contrary, is stable. The first and second properties in (37) are immediately satisfied, i.e.,
−(r0 + ζ−1) < 0 and r0/ζ > 0, respectively. Finally, we have to check that the third and fourth
conditions are satisfied as well. We have that

− 1− r0 +Aφ1(u∗) > 2
√
r0 . (38)
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Therefore, (38) is a necessary condition for pattern formation for the original system (12). Consid-
ering A as a bifurcation parameter, we can obtain a critical value Ac, so that we observe pattern
formation if A > Ac. From (38) we get

Ac =
2
√
r0 + 1 + r0

umax

(
1− umax

ū

) . (39)

The corresponding critical wavenumber k2
c is obtained from (35) using (38) as follows,

k2
c =

g∗c + f∗u + g∗uA
cφ1(u∗)

2
=
√
f∗ug
∗
c =
√
r0 . (40)

This means that, within the unstable range, Re(`(k2)) > 0 has a maximum wavenumber given by
k2
c . The range of linearly unstable modes k2

1 < k2 < k2
2 is obtained from b(k2) = 0,

k2
1 =
−m−

√
m2 − 4f∗ug

∗
c

2
< k2 < k2

2 =
−m+

√
m2 − 4f∗ug

∗
c

2
, (41)

where m = −(g∗c + f∗u + g∗uAφ1(u∗)).

Second part of the experiments Following the same steps as before we linearise the system (17)
to get

∂tw = D2(w∗,M∗)∆w −Bφ2(w∗,M∗)∆c+ wf∗w ,

ζ∂tc = ∆c+ wg∗w + cg∗c ,

m∂tM = ∆M − δ0w ,

(42)

where

D2(w∗,M∗) = 1 + (γ(M)∗ − 1)
(w∗
ū

)γ(M)∗

, φ2(w∗,M∗) = w
(

1−
(w∗
ū

)γ(M)∗)
,

and γ(M)∗ is given by (5) evaluated at M∗. As in (28), we let

w(x, t) =
∑
k

ak(t)ψk(x) , c(x, t) =
∑
k

bk(t)ψk(x) , M(x, t) =
∑
k

ck(t)ψk(x) , (43)

where ψk(x) satisfies (29) and we obtain a system ∂tXk(t) = Pk(t)Xk(t) where

Xk =

akbk
ck

 , Pk =

−D2(w∗,M∗)k2 + f∗w Bφ2(w∗,M∗)k2 0
1
ζ g
∗
w

1
ζ (−k2 + g∗c ) 0

− δ0m 0 − 1
mk

2

 . (44)

Similar to the previous section, the characteristic polynomial is given by a(k2)`3 +b(k2)`2 +c(k2)`+
d(k2) = 0 where a(k2) = −1 and

b(k2) = −
(
D2 +

1

ζ
+

1

m

)
k2 + f∗w +

g∗c
ζ
, (45)

c(k2) = −
(D2

ζ
+
D2

m
+

1

mζ

)
k4 +

(g∗cD2

ζ
+

g∗c
ζm

+
f∗w
ζ

+
f∗w
m

+
g∗wBφ2

ζ

)
k2

− f∗wg
∗
c

ζ
, (46)

d(k2) = −D2

mζ
k6 +

1

mζ
(D2g

∗
c + g∗wBφ2 + f∗w)k4 +

1

mζ
(−f∗wg∗c )k2 . (47)
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In general, the stability analysis for this cubic polynomial will require the Ruth–Hurwitz stability
criterion [30] which states that the steady state is unstable if the coefficients of a(k2)`3 + b(k2)`2 +
c(k2)`+ d(k2) = 0 satisfy the condition

1

(a(k2))2

(
b(k2)c(k2)− a(k2)d(k2)

)
< 0 .

However, from (44) we observe that one of the eigenvalues of the matrix Pk is given by `1 = −k2
m < 0.

The remaining two eigenvalues can be computed from the upper-left matrix(
−D2(w∗,M∗)k2 + f∗w Bφ2(w∗,M∗)k2

1
ζ g
∗
w

1
ζ (−k2 + g∗c )

)
, (48)

following the same analysis as for the case without TMZ.

The characteristic polynomial `2 + ā(k2)`+ b̄(k2) = 0 related to (48) has coefficients

ā(k2) =
(
D2(w∗,M∗) +

1

ζ

)
k2 − f∗w −

g∗c
ζ
, (49)

b̄(k2) =
D2(w∗,M∗)

ζ
k4 −

(D2(w∗,M∗)g∗c
ζ

+
Bφ2(w∗,M∗)g∗n

ζ
+
f∗w
ζ

)
k2

+
f∗wg

∗
c

ζ
. (50)

For the steady state to be unstable we require, as before, that Re(`(k2)) > 0. Since ā(k2) > 0 the

instability can only occur if b̄(k2) < 0. Computing db̄(k2)
dk2 = 0 from (50) we obtain

k2
min =

D2(w∗,M∗)g∗c + g∗wBφ2(w∗,M∗) + f∗w
2D2(w∗,M∗)

. (51)

Hence from the condition b̄min(k2
min) < 0 we get

D2(w∗,M∗)g∗c + g∗wBφ2(w∗,M∗) + f∗w >
√

4D2(w∗,M∗)f∗wg
∗
c . (52)

The spatially homogeneous steady state is (w∗, c∗, M∗) = (umax, umax, Ms), where
Ms = |Ω|−1

∫
Ω

M(x, 0) dx. Therefore, from (52) we obtain a critical constant Bc so that for any
B > Bc we observe pattern formation. This critical constant is given by

Bc =
2
√
r̄0D2(umax,Ms) +D2(umax,Ms) + r̃0

umax

(
1−

(
umax

ū

)γMs) , (53)

where

D2(umax,Ms) = 1 + (γMs
− 1)

(umax

ū

)γMs
. (54)

The corresponding critical wavemode is given by

k2
c =

D2(umax,Ms)g
∗
c + g∗wB

cφ2(umax,Ms) + f∗w
2D2(umax,Ms)

=

√
D2(umax,Ms)(f∗wg

∗
c )

D2(umax,Ms)
. (55)
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Finally, the unstable modes are k2 < k2
c , where from b̄(k2) = 0 we get

k2
1 =
−m̄−

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
< k2 < k2

2

=
−m̄+

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
, (56)

for m̄ = −(D2(umax,Ms)g
∗
c + g∗wBφ2(umax,Ms) + f∗w).

B Description of the numerics

We denote H1(Ω) = W1,2(Ω) the usual Sobolev space and the standard L2 inner product is denoted
by (·, ·). Let T h, h > 0, be a quasi-uniform mesh of the domain Ω consisting of N disjoint piecewise
linear mesh elements K such that the discretized domain Ωh =

⋃
K∈T h K. We denote the total

number of nodes by Nh.
Let hK := diam(K) and h = maxK hK and for d = 2, we choose linear triangular elements. In

addition, we assume that the mesh is acute i.e. for d = 2, each angle of the triangles can not exceed
π
2 . We must stress that for d = 2 since the domain Ω is circular, a small error of approximation is
committed using Ωh. We consider the standard finite element space associated with T h

Sh := {χ ∈ C(Ω) : χ
∣∣
K
∈ P1(K), ∀K ∈ T h} ⊂ H1(Ω) , (57)

where P1(K) denotes the space of first-order polynomials on K. Let Nh be the total number of nodes
of T h, Jh the set of nodes and {xj}j=1,...,Nh their coordinates. We call {χj}j=1,...,Nh the standard
Lagrangian basis functions associated with the spatial mesh. We denote by πh : C(Ω) → Sh the
standard Lagrangian interpolation operator. We also need the lumped scalar product to define the
problem

(η1, η2)h =

∫
Ω

πh (η1(x)η2(x)) dx ≡
∑
xj∈Jh

(1, χj)η1(xj)η2(xj) , η1, η2 ∈ C(Ω) .

We define the standard mass and stiffness finite element matrices as G and K, where

Gij =

∫
Ω

χiχj dx, for i, j = 1, . . . , Nh ,

Kij =

∫
Ω

∇χi∇χj dx, for i, j = 1, . . . , Nh .

In the following finite element approximation of the Keller-Segel problem, the mass matrix is lumped,
i.e. the matrix becomes diagonal with each term being the row-sum of the corresponding row of the
standard mass matrix,

Gl,ii :=

Nh∑
j=1

Gij , for i = 1, . . . , Nh .

Given NT ∈ N?, let ∆t := T/NT be the time-step where T is the time corresponding to the end
of the simulation. Let tn := n∆t, n = 0, . . . , NT − 1 be the temporal mesh. We approximate the

continuous time derivative by ∂uh
∂t ≈

un+1
h −unh

∆t . We define

unh(x) :=

Nh∑
j=1

unj χj(x) , and cnh(x) :=

Nh∑
j=1

cnj χj(x) ,
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the finite element approximations of the cell density u and the concentration of chemoattractant c
where {unj }j=1,...,Nh and {cnj }j=1,...,Nh are unknowns and {χj}j=1,...,Nh is the finite element basis.
Then, the finite element problem associated with the system (16) reads as follows.

For each n = 0, . . . , NT − 1, find {un+1
h , cn+1

h } in Sh × Sh, such that for all χ ∈ Sh

(
un+1
h − unh

∆t
, χ

)h
+
(
D(unh)∇un+1

h ,∇χ
)

=

(A (φupw(unh))∇cnh,∇χ) + r0

(
unh

(
1− unh

umax

)
, χ

)h
, (58)

ζ

(
cn+1
h − cnh

∆t
, χ

)h
= −

(
∇cn+1

h ,∇χ
)

+
(
un+1
h − cn+1

h , χ
)h
. (59)

The finite element scheme associated with the system (17) including the effect of the treatment
is the following

θ
(wn+1

h − wnh
∆t

, χ
)h

+
(
D(wnh ,M

n
h )∇wn+1

h ,∇χ
)

=
(
B
(
φ

upw

2 (wnh ,M
n
h )
)
∇cnh,∇χ

)
+ r̃

(
wnh

(
1− wnh

umax

)
, χ

)h
, (60)

ζ

(
cn+1
h − cnh

∆t
, χ

)h
= −

(
∇cn+1

h ,∇χ
)

+
(
wn+1
h − cn+1

h , χ
)h
, (61)

m

(
Mn+1
h −Mn

h

∆t
, χ

)h
= −

(
∇Mn+1

h ,∇χ
)
− δ

(
Mn+1
h , χ

)h
. (62)

In order to describe how the chemotactic coefficients φuwp and φ
upw

2 are computed, let us rewrite
the discrete equation (58) into its matrix form

(GL + ∆tKD)un+1 = GLu
n + ∆tKφc

n + ∆tGLg
n ,

where un and cn are the vectors of coefficients which are the unknowns of the problem and gn is a
vector defined by [

gn
]
i

=

(
unh

(
1− unh

umax

))
(xi) , for i = 1, . . . , Nh .

We define the finite element matrices associated with the diffusion KD and the advection Kφ

KD,ij =

∫
Ω

D(unh)∇χi∇χj dx for i, j = 1, . . . , Nh , (63)

Kφ,ij =

∫
Ω

φupw (unh(xi), u
n
h(xj))∇χi∇χj dx for i, j = 1, . . . , Nh . (64)

In (63), the integral is computed using Gauss quadrature to deal with a potential choice of nonlinear
functional for D(unh). The exactness of the quadrature is obtained using the adequate number of
Gauss points since D(unh) is a polynomial of order γ(M) + 1.
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The chemotactic coefficient is computed using an upwing approach. For each element and de-
pending on the direction of the gradient of the chemoattractant we have

φupw (unh(xi), u
n
h(xj)) =

u
n
h(xj)

(
1−

(
unh(xi)
u

))
, if cnh(xj)− cnh(xi) < 0,

unh(xi)
(

1−
(
unh(xj)
u

))
, otherwise.

(65)

Therefore, the chemotactic coefficient is chosen as function of the sign of the difference of chemoat-
tractant between nodes connected by an edge. The same method is applied to compute φ

upw

2 in (60).
The property of non-negativity of the cell density satisfied by our numerical scheme can be proved
using similar arguments as in [13].

C One dimensional numerical results

Influence of the domain size

The unstable wavenumbers are discrete values, k = nπ/L, that satisfy the relation (41) from Section
4.2. The wavemode n determines the number of aggregates depending on the length of the domain.
For A = 7 and the parameters specified at the beginning of this section we have 0.25 < nπ/L < 0.4.
As shown in Figure 16, as we increase the length of the domain, the number of aggregates also
increases. When the domain is large, as in Figure 16c, we observe that some aggregates are merging
together while others are emerging, i.e., they are formed from a zone of low cell density. This process
is called coarsening [48] and is not observed in a small domain such as in Figure 16a.
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Figure 16: Relationship between the wavenumber k and the length of the domain L for A = 7.

For the remaining simulations in this section we fix the length of the domain to L = 40, and all
simulations are performed with carrying capacity umax = 0.5.

Comparison of the results with the stability analysis predictions Here, we study the influ-
ence of the chemosensitivity parameter A on the pattern dynamics and size of the aggregates, in the
presence or absence of TMZ. In order to compare the solutions to the predictions of the stability
analysis, the initial condition is a small perturbation around the homogeneous distribution u0 = 0.5.
Results of this section are obtained with a proliferation rate r0 = 0.1. For such parameters, using
the results of Section 4, the critical value of the chemosensitivity parameter without the treatment
(in P1, when M = 0 and therefore γ(M) = 1 ) is Ac ≈ 6.92 and with the treatment uniformly
distributed (for γ(M) = 5) is Bc ≈ 3.9.

In the first part of the experiment, i.e. without any treatment, we show in Figure 17 the
formation of patterns at different times, for A = 7 (close to the instability threshold, Figure 17a),
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Figure 17: Formation of the pattern without the treatment for (a) A = 7, (b) A = 50 and (c)
A = 150 when r0 = 0.1 and umax = u0 = 0.5.
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A = 50 (Figure 17b) and A = 150 (Figure 17c). We observe here the process of merging and
emerging patterns through time.

As predicted by the stability analysis, larger values of the chemotactic sensitivity A favor the
emergence of smaller aggregates (compare Figures 17a and 17c for A = 7 and A = 150, respectively).
This is due to the fact that for larger chemotactic sensitivity, cells are more attracted to zones of
high concentration of chemoattractant. The creation of patterns instead of the expansion of a
homogeneous cell distribution is due to an instability which results from a positive feedback loop
between the production of the chemical by the cells on one hand, and their attraction to high density
zones of this chemical on the other. The chemotactic sensitivity A must be large enough to trigger
this instability, in order to compensate the competing effects of diffusion and of the logistic growth
term, which on the contrary, tends to regulate the local cell density to the carrying capacity of the
environment umax, and therefore induces cell death inside the aggregated patterns for which the
density is above umax.

When the drug is introduced uniformly in the domain starting from a homogeneous distribution
of cells (i.e. for M = 1, γ(M) = 5) at time t = 0, we show in Figure 18 the formation of patterns at
different times, for chemosensitivity B = 5 (close to the instability threshold, Figure 18a), B = 30
(Figure 18b) and B = 150 (Figure 18c). Note that in this case we also let cells to proliferate with
rate r0 = 0.1.

As one can see in Figure 18, we first observe again that increasing the chemosensitivity parameter
B results in the formation of smaller cell aggregates (compare Figures 18a and 18b). Very close to
the instability threshold (Figure 18a), the system converges quickly to one aggregate, while for larger
values of B (Figure 18c) a large number of well-separated small aggregates arises. These clusters
merge in time to form bigger clusters as for the case without the treatment. Moreover, comparing
Figures. 17c and 18c, we clearly observe that varying the mechanical state of cells (i.e. passing from
γ(M) = 1 to γ(M) = 5), leads to a change in the cell’s aggregate size. When cells are more elastic,
they tend to create smaller aggregates than when they behave as rigid spheres.
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