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A B S T R A C T

We report systematic transmission electron microscope (TEM) observations of the cellular ultrastructure of se-
lected, small rotalid benthic foraminifera. Nine species from different environments (intertidal mudflat, fjord,
and basin) were investigated: Ammonia sp., Elphidium oceanense, Haynesina germanica, Bulimina marginata,
Globobulimina sp., Nonionellina labradorica, Nonionella sp., Stainforthia fusiformis and Buliminella tenuata. All the
observed specimens were fixed just after collection from their natural habitats allowing description of intact and
healthy cells. Foraminiferal organelles can be divided into two broad categories: (1) organelles that are present
in all eukaryotes, such as the nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, and peroxisomes;
and (2) organelles observed in all foraminifera but not common in all eukaryotic cells, generally with unknown
function, such as fibrillar vesicles or electron-opaque bodies. Although the organelles of the first category were
observed in all the observed species, their appearance varies. For example, subcellular compartments linked to
feeding and metabolism exhibited different sizes and shapes between species, likely due to differences in their
diet and/or trophic mechanisms. The organelles of the second category are common in all foraminiferal species
investigated and, according to the literature, are frequently present in the cytoplasm of many different species,
both benthic and planktonic. This study, thus, provides a detailed overview of the major ultrastructural com-
ponents in benthic foraminiferal cells from a variety of marine environments, and also highlights the need for
further research to better understand the function and role of the various organelles in these fascinating or-
ganisms.

1. Introduction

Despite a number of studies regarding the ultrastructure of benthic
foraminifera revealed by transmission electron microscope (TEM) ob-
servations, only a small fraction of the organelles in these single-celled
organisms have been identified and their function understood (see
compiled review of prior publications in Bernhard and Geslin, this
issue. Recent studies have attempted to correlate ultrastructural ima-
ging of the cytoplasmic structures to physiological processes using
correlative imaging approaches (Bernhard and Bowser, 2008; LeKieffre
et al., 2017; Nomaki et al., 2016). The inability to confidently link form
and structure with function warrants an improved understanding of the

foraminiferal cell at the ultrastructural level.
Based on the literature, we present here an inventory of the common

organelles found in benthic foraminifera, to which we add new TEM
observations on the cytoplasm of nine benthic rotalid foraminiferal
species. These foraminifera were sampled in three different locations
and environments (Fig. 1 and Table 1): Ammonia sp. (phylotype T6,
Hayward et al., 2004; Holzmann, 2000), Elphidium oceanense (ex-
cavatum species complex, Darling et al., 2016), and Haynesina germanica
(Ehrenberg, 1980) from an intertidal mudflat in Bourgneuf Bay on the
Atlantic coast of France; Bulimina marginata (d'Orbigny, 1826), Globo-
bulimina sp., Nonionellina labradorica (Dawson, 1860), Nonionella sp.,
and Stainforthia fusiformis (Williamson, 1848) from the Gullmar Fjord in
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Sweden, which is a silled basin with restricted circulation, and Bulimi-
nella tenuata from the silled, typically stagnant, Santa Barbara Basin
(USA, samples from Bernhard and Bowser, 2008). These species are all
small (< 500 μm) rotalid benthic foraminifera for which a description
of each typical organelle is presented along with discussion of their
known or inferred function(s).

2. Material and methods

2.1. Collection sites

Foraminifera from intertidal environments (Ammonia sp., E. ocea-
nense and H. germanica) were sampled on March 7, 2016, on the in-
tertidal mudflat in the bay of Bourgneuf at la Couplasse station (Loire-
Atlantique, France; 47°0′47″N, 2°1′17″W). The top 2 cm of sediment
was collected at low tide, transferred to plastic jars, and immediately
chemically fixed (1:1 volume sediment: fixative solution; see below).
Living foraminifera from the Gullmar fjord, Sweden (B. marginata,
Globobulimina sp., N. labradorica, Nonionella sp. and S. fusiformis) were
collected on October 22, 2014, at two locations using the R/V Skagerak
of the Sven Lovén Centre for Marine Science (University of
Gothenburg): site DF3 (117-m depth; 58°19.096′N, 11°32.398′E) and
site DF70-2 (70-m depth, 58°17.071′N, 11°30.636′E). At the time of
collection, both locations were characterized by a temperature of ap-
proximately 8 °C and salinity of 34.6. Sediment samples were collected
with a box corer. Immediately after the cores were brought on board,
the top 2 cm (approximately) of the sediment was collected in plastic
jars and chemically fixed (1:1 volume sediment: fixative solution; see
below). Buliminella tenuata specimens were collected as described in
Bernhard and Bowser (2008) from sediments in the Santa Barbara Basin
(centered on 34°16′N, 120°02′W).

2.2. Chemical fixation and TEM observations

The fixative solution contained 4% glutaraldehyde and 2% paraf-
ormaldehyde diluted in cacodylate buffer solution (NaCaco 0.1 M,
Sucrose 0.4 M, NaCl 0.1 M). Following fixation and rinsing with the
cacodylate buffer, cytoplasm-bearing foraminifera were, based on the
color of their cytoplasm, picked using a binocular microscope (Leica,
M165C) and transferred individually into microtubes for decalcification
in 0.1 M Ethylenediaminetetraacetic Acid (EDTA) diluted in 0.1 M ca-
codylate buffer solution. They were then post-fixed with 2% osmium
tetroxide (OsO4) for 1 h at room temperature, dehydrated in successive
ethanol baths (50, 70, 95 and 100%) and finally embedded in LR White
acrylic resin. Embedded individuals were cut into 70-nm sections with

an ultramicrotome (Reichert ultracut S) equipped with a diamond knife
(Diatome, Ultra 45°) and placed on formvar‑carbon coated copper TEM
slot grids. The sections were post-stained for 10 mins with 2% uranyl
acetate and observed with a transmission electron microscope (TEM),
either a Philips 301 CM100 at the Electron Microscopy Facility of the
University of Lausanne (Switzerland) or a JEOL JEM 1400 at the SCIAM
(Service Commun d'Imagerie et d'Analyses Microscopiques) platform at
the University of Angers (France). Semi-thin sections (500 nm) for light
microscopy observation were also cut and stained with toluidine blue
and basic fuchsin. Both thin and semi-thin sections were taken in the
middle of the foraminiferal cell in order to obtain sections bisecting the
maximum number of chambers. Buliminella tenuata specimens were
processed, and imaged as described in Bernhard and Bowser (2008).

3. TEM observations of benthic foraminiferal cells

The TEM micrographs presented in this study depict foraminifera
that were alive when collected and preserved. The vitality of each
specimen was checked by observing the appearance of mitochondria
and membranes as described by Nomaki et al. (2016). Only specimens
with well-preserved mitochondria and membranes are reported here.

Two regions of cytoplasm in foraminifera are usually distinguished
in thin sections: the cell body (located inside the test (shell); also called
“endoplasm”) and the reticulopodial net (reticulated pseudopods) ty-
pically, but not always, located outside the test (the reticulopodial net
can also be gathered within the younger chambers of the foraminifer)
(Alexander and Banner, 1984; Anderson and Lee, 1991). The cell body
is usually denser (i.e., contains more electron-opaque organelles and
thus appears darker in TEM images) than reticulopodial net, which has
a granular appearance (Alexander and Banner, 1984). The cell body is
the focus of the present study.

3.1. Cell body and “empty” vacuoles

The appearance of the cell body was highly variable among for-
aminiferal species, both between conspecifics and between chambers
within a single individual. A main difference between intertidal and
fjord/basin species was the numerous, large (between 10 and 200 μm in
diameter) empty vacuoles, which were typical in the cell body of most
of the fjord species, except B. marginata (Fig. 2). These vacuoles cer-
tainly had lost their soluble compounds during sample preparation.
Similar, albeit smaller (i.e., 5–20 μm diameter) vacuoles were some-
times observed in the youngest chambers of species from intertidal
mudflats (for instance in H. germanica and E. oceanense, Fig. 2B and C).
Portions of the cell body in the two or three youngest chambers of a
foraminifera had a particular appearance: they contained very few lipid
droplets but more “empty” and degradation vacuoles (and thus ap-
peared less dense) than the cell body portions of older chambers. Be-
sides these cell body portions of the youngest chambers often had a
patchy aspect: that is, more electron-opaque organelles were grouped in
certain areas within the cell body, thus appearing darker in TEM images
than the surrounding cytosol (e.g. Fig. 2C).

Because Globobulimina sp. from Gullmar Fjord and several other
species inhabiting the same type of environment, such as Stainforthia
fusiformis or Nonionella sp., are known to store nitrate in their cell (Piña-
Ochoa et al., 2010), it is possible that the large “empty” vacuoles play a
role as internal reservoirs of nitrate, as suggested by Bernhard et al.
(2012). The intertidal species Ammonia tepida (same type T6 as our
specimens) and Haynesina germanica are not known to contain any in-
tracellular nitrate (Piña-Ochoa et al., 2010). Thus the vacuoles observed
in the cell body of intertidal species may have a different origin and/or
function than the common, large “empty” vacuoles observed in fjord
specimens. As hypothesized in some studies (e.g., Erez, 2003; Bentov
et al., 2009), the vacuoles in intertidal species could serve as storage for
ions intended for test formation inside the foraminiferal cell body (pool
of HCO3

– ions in Amphistegina lobifera). The brighter appearance of the

Table 1
Species, sampling location, and number of specimens observed using TEM or reported in
this study.

Species Site Numbers of
specimens
analyzed

Ammonia sp. (phylotype
T6)

Bourgneuf Bay, Atlantic coast,
intertidal mudflat, France

3

Elphidium oceanense
(excavatum species
complex)

3

Haynesina germanica 4
Bulimina marginata Gullmar Fjord, Sweden

(70 m/117 m depth)
1

Globobulimina sp. 3
Nonionellina labradorica 6
Nonionella sp. 4
Stainforthia fusiformis 3
Buliminella tenuata Santa Barbara Basin,

California, USA
(approximately 580–598 m)
(Bernhard and Bowser, 2008)

3
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cell body portions of the youngest chambers is likely due to its location
near the aperture from where the reticulopods extend, as this requires
the presence of numerous microtubules which are not electron-dense
organelles (e.g., Alexander and Banner, 1984). The numerous de-
gradation vacuoles sometimes observed can also be explained by the
proximity to the aperture, where food is internalized by phagocytosis.

3.2. Organelles with known function

3.2.1. Nucleus
The nucleus can be located at different locations within the for-

aminiferal cell, from older to younger chambers in multi-chambered
species (reviewed in Anderson and Lee, 1991). In our spiral-shaped
foraminifera, the nucleus in one Ammonia sp. (phylotype T6) and two E.
oceanense occurred in chambers of the penultimate whorl. In all spe-
cimens where a nucleus was observed, it seemed that these individuals
were uninucleate, except for one E. oceanense where two nuclei were
noted (Fig. 2C). The uninucleate feature seemed to be typical for for-
aminiferal gamonts (e.g. McEnery and Lee, 1976; Goldstein, 1988,
1997; Goldstein et al., 2010; Raikov et al., 1998). The observed nuclei
exhibited various shapes, from nearly spherical to partially lobate.
Published accounts also document nuclei with various shapes, from
spherical to multilobate (reviewed in Raikov et al., 1998). The lobate
forms may derive from the spherical form in response to an increased
need of membrane before gametogenesis (Raikov et al., 1998).

In the rotalid species investigated in this study, the nucleus had a
size typically ranging from about 20 to 50 μm in diameter with nu-
merous nucleoli and a lamina (Figs. 3A and 4), which is in the same

range as previously observed nuclei in different monothalamous or
rotalid species (e.g., Altin et al., 2009; Altin-Ballero et al., 2013;
Anderson and Lee, 1991; Dahlgren, 1967a, b; Goldstein and
Richardson, 2002; Goldstein et al., 2010; Raikov et al., 1998; Schwab,
1972; Schwab and Schwab-Stey, 1979). The lamina is a layer of nu-
cleoplasm (i.e., matrix of the nucleus) in contact with the inner mem-
brane of the nuclear envelope (Fig. 4). Although the lamina appears
very similar to the nucleoplasm, the former is easily visualized because
of the space it creates between the nuclear envelope and the nucleoli
(Fig. 3B). The lamina between the nucleoli and the inner membrane has
been described in other species (e.g., Dahlgren, 1967a, b. In the allo-
gromiid foraminifer Myxotheca sp. a “prominent non-chromatin con-
taining” space was also observed between the nucleoli and the nuclear
envelope but was not interpreted as a lamina (Goldstein and
Richardson, 2002). However it might not exist in all species because it
was not observed in Heterostegina depressa and Globobulimina turgida
(Hottinger and Dreher, 1974). At higher magnification (Fig. 3B), the
double-membrane nuclear envelope was observable. The distribution of
the nucleoli in the nucleus varied among species: all the nucleoli we
observed were distributed at the periphery of the nucleus, flattened
against the lamina or nuclear envelope as illustrated for S. fusiformis
(Fig. 3C). Sometimes, however, additional small nucleoli were seen in
the central part of the nucleus as in N. labradorica (Fig. 3D). The lit-
erature also notes that different distributions of nucleoli occur in dif-
ferent species (see Raikov et al., 1998). For example, Spindler et al.
(1978) described a central dispersion of the nucleoli in the planktonic
species Hastigerina pelagica, without nucleoli adjacent to the nuclear
envelope, while Anderson and Lee (1991) reported nucleoli distribution
either centrally or at the periphery of the nucleus. A peripheral re-
partition of nucleoli was also observed in the monothalamous Hippo-
crepinella alba, the rotalid Globobulimina turgida (Dahlgren, 1967b) and
the allogromiid Hyperammina sp. (Goldstein and Richardson, 2002).

Perinuclear endoplasmic reticulum was often noted on the outside
of the nuclear envelope (see Section 3.2.3). A thin layer (approx-
imately200 nm) of cytoplasmic material with a particular fibrous aspect
surrounded the nuclei in some species, such as Nonionella sp. or Non-
ionellina labradorica (Fig. 3A, B and D). This layer was absent from the
nucleus of S. fusiformis (Fig. 3C). The thin layer of fibrous cytoplasm
around the nuclei has been described in larger benthic foraminifera
(Soritidae) and planktonic species (Leutenegger, 1977) where it was
separated from the cytosol by small vesicles or lacunas (electron-light
cytoplasmic layer). Small vesicles surrounding the nucleolar membrane
were also observed in different monothalamous species: Psammophaga
sapela, Xiphophaga minuta, Niveus flexilix, Myxotheca sp., Cri-
brothalammina alba and Hyperammina sp. (Altin et al., 2009; Altin-
Ballero et al., 2013; Goldstein and Richardson, 2002; Goldstein et al.,
2010). However in the present study, the thin layer of cytoplasm with a
fibrous aspect surrounding the nuclei in some rotalid species was not
clearly separated from the rest of the cytosol and no accumulation of
small vesicles was detected. This feature could correspond to the “nu-
clear villi” observed by Dahlgren (1967a) in the monothalamous spe-
cies Ovammina opaca and described as protrusions projected into the
cytoplasm from the nuclear envelope. The double nucleated E. ocea-
nense exhibited atypical nuclei with outgrowths (Fig. 3E). At higher
magnification (Fig. 3F), the circular nuclear envelope was distinguished
between the nucleus and the “outgrowths”. These “outgrowths” were
formed of an electron-dense matrix and included various organelles like
lipid droplets or electron-opaque bodies. This matrix was probably
linked to the thin layer of cytoplasm, although its role remains

Fig. 3. Transmission electron micrographs of benthic foraminiferal nuclei.
A: Nonionella sp. nucleus with numerous nucleoli. B: Higher magnification of Nonionella sp. nucleus showing a nucleolus at the nucleus periphery and the nuclear envelope (arrows) with a
thin cytoplasmic layer (dotted arrows). C: S. fusiformis nucleus with numerous small peripheral nucleoli (black arrowheads). D: Nonionellina labradorica nucleus with a few small central
nucleoli (white arrowheads). E: Elphidium oceanense nucleus with “cytoplasmic outgrowths”. F: Higher magnification of the nucleus of Elphidium oceanense (arrows: nuclear envelope).
Arrows: nuclear envelope, dotted arrows: thin cytoplasmic layer, white asterisks: electron opaque bodies, c: chloroplasts, fv: fibrillar vesicles, li: lipid droplets, m: mitochondria, n:
nucleus, nu: nucleolus, ol: organic lining, p: peroxisomes, po: pore, rb: residual bodies, v: vacuoles. Scales: A = 2 μm; B, F = 1 μm; C, E = 5 μm; D = 10 μm.

Fig. 4. Schematic ultrastructure of a foraminiferal nucleus.
The double nuclear envelope is surrounded by a thin cytoplasmic layer against which
perinuclear endoplasmic reticulum stand in a continuous or intermittent layer. On the
inner part of the nuclear envelope a lamina can be seen, separating the peripheral nucleoli
from the envelope. Smaller nucleoli can also occupy a central position. The nucleus is
represented in a circular shape for convenience as it can also be in a lobate form (see
details in the text).
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Fig. 5. Transmission electron micrographs of benthic foraminiferal mitochondria.
A: Classic structure of a mitochondrion observed in Stainforthia fusiformis (arrowheads: cristae, arrows: double membrane). B: Elongated mitochondria (asterisks) in Nonionella sp. C:
Circular mitochondrion (asterisk) aside two classic mitochondria in Nonionella sp. D: Tubular inclusions (white arrowheads) in two mitochondria of a specimen of Nonionellina labradorica.
E: Mitochondria with a less electron opaque central part (white asterisks) in Nonionella sp. Inset: High-magnification micrograph of the fibrils in this central part. F and G: Numerous
mitochondria at the periphery of the chambers (areas surrounded by a dashed black line in F) in Stainforthia fusiformis. c: chloroplasts, m: mitochondria, li: lipid droplets, n: nucleus, rb:
residual bodies, v: vacuoles. Scales: A, D = 200 nm; B, C = 500 nm; E = 100 nm; F = 5 μm; G = 2 μm.
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unknown. It could also be a fixation artifact.
The TEM micrographs of our study did not allow us to observe the

pores of the nuclear envelope, but other studies have noted their pre-
sence in both planktonic and benthic species (e.g. Altin et al., 2009;
Anderson and Lee, 1991; Dahlgren, 1967b; Goldstein, 1997; Hemleben
et al., 1989; Leutenegger, 1977). These pores may allow communica-
tion with the cell body, in particular the migration of RNA (Anderson
and Lee, 1991).

3.2.2. Mitochondria
Mitochondria were studied in all the observed specimens. As they

are the site of Adenosine TriPhosphate (ATP) production (Sherratt,
1991), their presence and integrity are one of the main tools to attest to
the vitality of the specimen at the time of fixation (Nomaki et al., 2016).
Main features of mitochondria, which are also observed in our study
(Fig. 5A), are their double membrane and the presence of cristae in
their matrix (Sherratt, 1991). Mitochondria usually appeared oval or
kidney shaped in cross section with a length in the range of 0.5 to 1 μm
(Fig. 5A–C), although they can be bigger and take various shapes
(Fig. 5B and C). In some foraminiferal species mitochondria with aty-
pical morphologies could be observed. In two of the observed N. lab-
radorica, the mitochondria exhibited tubular inclusions (Fig. 5D). Also,
in other specimens of N. labradorica, as well as in H. germanica and
Nonionella sp., a less electron opaque central area was seen in the mi-
tochondria (Fig. 5E). At higher magnification, filaments could be
identified in this less electron-dense central part (Fig. 5E inset).

In all analyzed specimens except those of Stainforthia fusiformis, the
mitochondria seemed to be homogeneously distributed throughout the
cell body. However in the three analyzed individuals of S. fusiformis,
although a few mitochondria were seen dispersed through the entire
cell body, most of them were clearly concentrated close to the plasma
membrane of the external parts of the chambers, i.e., parts of the
chambers that are in contact with the environment (or were in contact
before the addition of a new chamber (Fig. 5F and G).

To our knowledge, the tubular inclusions observed in some mi-
tochondria have not been described in any other type of organism. We
suggest here that they could be elongated cristae. The less electron-
opaque central part of mitochondria observed in some species of this
study can also be seen in the mitochondria of the planktonic species
Hastigerina pelagica and Globigerinoides ruber (Hemleben et al., 1989).
Seen at higher magnification, the filaments resembled fibrils of mi-
tochondrial DNA (Nass and Nass, 1963). The accumulation of mi-
tochondria under the pores is known in some benthic foraminiferal
species such as Nonionella stella and Bolivina pacifica (Bernhard et al.,
2010a; Leutenegger and Hansen, 1979). This specific distribution was
interpreted as an adaptation to low‑oxygen environments. In the S.
fusiformis specimens studied here, the mitochondria were not only
distributed under the pores but all along the plasma membrane of the
external part of the chambers. Thus we cannot conclude that a similar
role occurs in this species.

3.2.3. Endoplasmic reticulum
Generally in eukaryotic cells, two types of endoplasmic reticulum

occur: rough endoplasmic reticulum (RER) that has ribosomes on its
membrane, and smooth endoplasmic reticulum (SER) that lacks ribo-
somes (Vertel et al., 1992). The former type is a site of protein synth-
esis, while the latter is involved in lipid synthesis and other synthesis
activities (Vertel et al., 1992). Because the visualization of ribosomes at
the resolution of the TEM is not assured, in this contribution both types
will be grouped under the name of “endoplasmic reticulum”.

Endoplasmic reticulum (ER) was observed in all foraminiferal spe-
cies studied here (e.g., Fig. 6A and B), and has been documented in
many other foraminiferal species (reviewed in Anderson and Bé, 1978).
The ER is very often observed associated with Golgi apparatus (Fig. 6D
and E) and peroxisomes (Fig. 6E and F - see Sections 3.2.4 and 3.2.5). It
was also present around each nucleus observed in this study, as shown
in Fig. 6C and D. In Fig. 6E–G, structures apparently made of ER can be
observed. These structures, all observed in S. fusiformis specimens, were
formed of numerous ER cisternae stacked in parallel.

The particular association of ER with the nucleus was established in
different foraminiferal species, rotalid or monothalamous (e.g. Altin
et al., 2009; Altin-Ballero et al., 2013; Anderson and Bé, 1978;
Dahlgren, 1967a, b; Hottinger and Dreher, 1974) and described as
“perinuclear reticulum”, however it seems to be absent in some
monothalamous species such as Myxotheca sp., Cribrothalammina alba
and Hyperammina sp. (Goldstein and Richardson, 2002). In certain
specimens of S. fusiformis, this perinuclear ER was intermittent
(Fig. 6C), while in specimens of N. labradorica it formed a continuous
layer around the nucleus (Fig. 6D). Finally, the ER organized in parallel
stacks (Fig. 6E–G) were similar to the annulate lamellae of the plank-
tonic foraminifer Hastigerina pelagica (d'Orbigny) (Anderson and Lee,
1991; Hemleben et al., 1989; Spindler and Hemleben, 1982). These
annulate lamellae made of ER are formed before the gametogenesis of a
foraminifera and may provide membranous material for the formation
of the nuclear envelope of the new nuclei (Anderson and Lee, 1991;
Hemleben et al., 1989; Spindler and Hemleben, 1982). Goldstein
(1997) also described a pregametic nucleus surrounded by several
layers of endoplasmic reticulum in the rotalid Ammonia sp. She also
hypothesized that those structures are involved in foraminiferal ga-
metogenesis.

3.2.4. Peroxisomes
Peroxisomes, which were observed in all the specimens from the

three sites, are spherical vesicles, approximately 500 nm in diameter
and containing a crystalline structure (Fig. 7A). At high magnification,
the regular organization of the crystalline structure was observed
(Fig. 7B inset). Peroxisomes were always observed associated with ER
(Fig. 7A, C and D) and, in the cell body of S. fusiformis and Globobuli-
mina sp., they were organized in a particular structure: numerous per-
oxisomes were associated with a high density of ER (Fig. 7E).

The existence of peroxisomes in the cytoplasm of foraminifera was
first demonstrated in planktonic foraminifera by Anderson and
Tuntivate-Choy (1984), who used cytochemical analysis to document
the presence of peroxidases, which are enzymes typical of peroxisomes.
Peroxidase activity was also demonstrated in benthic foraminiferal
peroxisomes (Bernhard and Bowser, 2008). Furthermore, Bernhard and
Bowser (2008) measured the spacing of the benthic foraminiferal per-
oxisomal internal crystals, documenting its identity as catalase, which is
present in all peroxisomes (De Duve and Baudhuin, 1966). Catalase is
an enzyme that converts hydrogen peroxide (H2O2) into water and
oxygen, a reaction which produces metabolically useful molecules.
Another role that peroxisomes play in eukaryotic cells, including for-
aminifera, is gluconeogenesis, i.e., the production of carbohydrates
(Hemleben et al., 1989).

The association of peroxisomes with ER has been established pre-
viously for other benthic foraminiferal species (Bernhard et al., 2001;
Bernhard and Alve, 1996; Bernhard and Reimers, 1991; Nyholm and
Nyholm, 1975). Also, the specific organization of stacks of peroxisomes
associated with copious endoplasmic reticulum (so-called peroxisome-
endoplasmic reticulum complexes; P-ER; Fig. 7E) has been observed in

Fig. 6. Transmission electron micrographs of benthic foraminiferal endoplasmic reticulum.
A: Area of the cytoplasm rich in endoplasmic reticulum in Nonionella sp. B: Higher magnification of endoplasmic reticulum in Nonionellina labradorica. C, D: Endoplasmic reticulum at the
periphery of a nucleus in C: Nonionellina labradorica and D: Stainforthia fusiformis. E: Particular structure made of endoplasmic reticulum in one specimen of Stainforthia fusiformis. F, G:
Endoplasmic reticulum stacked in a parallel pattern in another specimen of Stainforthia fusiformis. Black arrowheads: endoplasmic reticulum, arrows: nuclear envelope, g: Golgi apparatus,
m: mitochondria, mvb: multivesicular bodies, n: nucleus, nu: nucleolus, li: lipid droplets, p: peroxisomes. Scales: A, B, D = 200 nm; C = 2 μm; E, F = 500 nm; G = 1 μm.
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benthic foraminifera inhabiting chemocline environments, such as
low‑oxygen areas or seeps (reviewed in Bernhard and Bowser, 2008)
(Fig. 7F and G). Our observations are consistent with these prior studies
because we noted P-ER complexes in both S. fusiformis and N. labra-
dorica from the Gullmar Fjord, which often exhibits episodes of hypoxia
(Filipsson and Nordberg, 2004; Nordberg et al., 2000).

Peroxisomes can also be closely associated with mitochondria
(Bernhard and Bowser, 2008; Fig. 7F) and large vacuoles (Bernhard and
Bowser, 2008; Fig. 7G). Bernhard and Bowser (2008) hypothesized the
conversion of peroxide to oxygen and water allowed mitochondrial use
of oxygen; the association of peroxisomes with vacuoles suggests a
potential source of reactive oxygen species in the vacuoles.

3.2.5. Golgi apparatus
Generally, the Golgi apparatus plays a role in the maturation of

proteins, as well as in the formation of some lipids (and polysaccharides
in plant cells) (Farquhar and Palade, 1998; Staehelin and Moore, 1995).
The Golgi processes proteins received from the endoplasmic reticulum
through incoming transport vesicles on the cis face. These proteins are
then sent to their next destination from the trans face in secretory ve-
sicles (Farquhar and Palade, 1998; Staehelin and Moore, 1995; Fig. 8).
The Golgi apparatus is made of membrane stacks surrounded by dif-
ferent types of vesicles, these membranes form tubular vesicles called

cisternae; the space within the cisternae is called the lumen (Farquhar
and Palade, 1998; Staehelin and Moore, 1995; see Fig. 8). In our study,
the Golgi apparatus observed in the rotalid species' cell bodies also
presented this specific organization (Fig. 9).

The Golgi apparatus observed in our foraminiferal cells had a ty-
pical structure where the different elements described above can be
clearly identified (Fig. 9A). The membrane stacks were made of about
ten cisternae and were often surrounded by ER on the cis face, with
spherical transport vesicles about 70 nm in diameter existing between
the ER and the cisternae (Fig. 9A, B and C). The secretory vesicles on
the trans face were elongated and slightly longer (150–200 nm)
(Fig. 9A). Frequently, a single stack of membrane was observed
(Fig. 9B) but groups of two and sometimes more were also noted
(Fig. 9C).

The Golgi apparatus is a common organelle that has been described
in planktonic (e.g., Anderson and Bé, 1976a; Anderson and Lee, 1991),
benthic (e.g., Bernhard et al., 2010a, b; Frontalini et al., 2015), and
large benthic foraminifera (LBF) (e.g., Hottinger and Dreher, 1974;
Leutenegger, 1977). In planktonic foraminiferal cells they may be in-
volved in the formation of fibrillar vesicles (see Section 3.3.1.).

3.2.6. Organelles involved in feeding metabolism
3.2.6.1. Degradation vacuoles. Often in the literature the degradation
vacuoles containing food are described and referred to as either food
vacuoles or digestive vacuoles. Anderson and Bé (1976b) and Hemleben
et al. (1989) differentiated between food vacuoles and digestive
vacuoles: the former are vacuoles containing food that has recently
been ingested, but not yet degraded; and the latter are vacuoles in the
next stage, i.e., after a food vacuole has fused with a primary lysosome
carrying digestive enzymes that have triggered the onset of
degradation. In our study no food vacuoles with clearly identifiable
food particles were observed. Concerning the digestive vacuoles, it is
challenging to determine from TEM images if the source of the
degraded material is an external source (food) or autophagocytosis of
foraminiferal organelles (i.e., self-digestion of damaged or non-
functional organelles). Thus, we do not distinguish between digestive
vacuoles, and autophagocytosis and consequently lump them together
under the label of “degradation vacuoles”.

Degradation vacuoles had highly variable dimensions (Fig. 10A, B,
C and D), with diameters ranging between 2 and 10 μm. They were
mainly localized in the younger chambers of the foraminiferal cell,
close to the aperture where food is phagocytosed. They were observed
in all specimens examined in this study, in varied abundances. In Am-
monia sp. (phylotype T6), diatoms at different stages of digestion could
be seen in the youngest chambers (n to n – 5, i.e., the last six chambers
from the aperture).

The different sizes and abundances of degradation vacuoles might
depend on the foraminiferal metabolism and feeding strategies. Indeed,
a starved foraminifer or a foraminifer with an alternative metabolism,
such as denitrification, mixotrophy, or symbiosis with algae (or bac-
teria) might contain fewer endoplasmic degradation vacuoles.
Furthermore, the morphological appearance of these vacuoles might
depend on the nature of the ingested food and/or feeding strategy
(reviewed by Goldstein and Corliss, 1994). In our study, one example is
illustrated by the particular appearance of degradation vacuoles in
Ammonia sp. (phylotype T6). As Ammonia sp. feeds on diatoms, in-
cluding the diatom frustules, the cell body portions of the youngest
chambers in this species exhibited diatoms at different stages of

Fig. 7. Transmission electron micrographs of benthic foraminiferal peroxisomes.
A: Classic structure of a peroxisome surrounded by endoplasmic reticulum (ER) in Nonionellina labradorica. B: High-magnification image of the crystalline structure of the peroxisome seen
in A; inset: triangular core in Buliminella tenuata peroxisome (specimen from Bernhard and Bowser, 2008). C and D: Peroxisomes in the cytoplasm of C: Nonionella sp. and D: Nonionellina
labradorica. E: Peroxisome-endoplasmic reticulum (P-ER) complex in Stainforthia fusiformis. F: Circular P-ER ring encircling mitochondria in Buliminella tenuata (specimen from Bernhard
and Bowser, 2008). G: “Railroad track” of P-ER along the edge of a large vacuole in Buliminella tenuata (specimen from Bernhard and Bowser, 2008). Inset: higher magnification showing
two of the peroxisomes forming the track and the fibrils of ER linking them. Arrowheads: ER, arrow: crystalline inclusion, fv: fibrillar vesicles, li: lipid droplets, li*: lipid droplets in lysis,
m: mitochondria, mvb: multivesicular bodies, p: peroxisomes, rb: residual bodies, v: vacuoles. Scales: A = 200 nm; B = 100 nm; C, D = 500 nm; F, G = 1 μm.

Fig. 8. Schematic ultrastructure and relations between the reticulum endoplasmic, Golgi
apparatus and fibrillar vesicles in the foraminiferal cell.
The endoplasmic reticulum (ER) is secreting the transport vesicles containing the ER
secretory products (proteins or lipids) which arrive on the cis face of the Golgi apparatus.
After maturation through the Golgi saccules the proteins (or lipids) are excreted on the
trans face in secretory vesicles. The gray part is speculative: the secretory vesicles would
further be transformed into fibrillar vesicles (see details in the text). The arrow represents
the direction of the metabolic process, from the secretion by the endoplasmic reticulum to
the excretion in secretory vesicles and putative transformation in fibrillar vesicles.
Modified from Anderson and Lee (1991).
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digestion: from the nearly intact diatoms with identified organelles to
empty frustules (Fig. 10E). Engulfed frustules have been observed in
other studies of Ammonia spp. (Goldstein and Corliss, 1994; LeKieffre
et al., 2017) as well as in the large benthic foraminifera Amphisorus

hemprichii and Amphistegina lessonii (McEnery and Lee, 1981).

3.2.6.2. Residual bodies. Residual bodies are vacuoles with
heterogeneous content, often with electron-dense circular particles

Fig. 9. Transmission electron micrographs of benthic foraminiferal Golgi apparatus.
A: Golgi apparatus made of three stacks of membranes in Stainforthia fusiformis. B and C: Golgi apparatus alone (B) or organized in pair (C) surrounded by endoplasmic reticulum in
Nonionellina labradorica. Black stars: cis face, white stars: trans face, arrowheads: endoplasmic reticulum, dotted arrows: cisternae, black arrows: incoming transport vesicles, white arrows:
secretory vesicles, fv: fibrillar vesicles, m: mitochondria, li: lipid droplets, v: vacuoles. Scales: A, C = 500 nm; B = 200 nm.

Fig. 10. Transmission electron micrographs of different types of degradation vacuoles.
Degradation vacuoles in the cytoplasm of A: Nonionella sp. B: Nonionellina labradorica, C and D: Ammonia sp. (phylotype T6). E: Cytoplasm of the antepenultimate chamber in Ammonia sp.
(phylotype T6) exhibiting numerous diatom frustules (arrowheads), in which the diatom cytoplasm is being digested (d*) and diatom chloroplasts are in degradation (c*). c: chloroplasts,
c*: chloroplasts in degradation, d*: diatom in degradation, dv: degradation vacuoles, fv: fibrillar vesicles, li: lipid droplets, m: mitochondria, ol: organic lining, po: pore, rb: residual
bodies, v: vacuoles. Scales: A, C, D = 1 μm; B = 500 nm; E = 5 μm.
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(Hemleben et al., 1989; Leutenegger, 1977). In this study, residual
bodies were circular with diameters from 1 to 5 μm (Fig. 11A, B),
except in the species B. marginata where they were slightly bigger (4 to
8 μm) with irregular shapes (Fig. 11C). These residual bodies were
observed in all species studied here, although in different abundances,
and appear equivalent to the residual bodies observed in the cell body
of LBF Amphisteginidae and Nummulitidae (Leutenegger, 1977), and to
inclusions in Heterostegina depressa with “strikingly inhomogeneous
content” (Hottinger and Dreher, 1974. Leutenegger, 1977 described the
residual bodies as autophagocytosis vacuoles, i.e., autolysis vacuoles
containing foraminiferal organelles in degradation. Note that there was
no clear evidence for degrading organelles in any of the residual bodies
observed in this study. In general, it is difficult to establish if the
electron-dense particles inside these residual bodies result from the
degradation of external material (food) or from foraminiferal organelle
autophagocytosis. Hemleben et al. (1989) described residual bodies as
vacuoles containing non-digestible debris, which is consistent with the
observed accumulation of isotopic labeled compounds derived from
diatoms in residual bodies of Ammonia sp. (LeKieffre et al., 2017). Le
Cadre and Debenay (2006) and Morvan et al. (2004) noted that residual
bodies proliferated when Ammonia tepida specimens were under stress
from different forms of pollution or contamination of their
environment.

3.2.6.3. Lipid droplets. Lipid droplets were often spheroidal (Fig. 12A),
but can take a variety of shapes in the cytoplasm (Fig. 12B, C). A
particular feature of lipid droplets was the absence of apparent
enclosing membrane(s). Sizes vary from about 500 nm to 10 μm in
diameter, with an average diameter approximately 2 μm. In nearly all
specimens studied by us, a few lipid droplets were observed in
degradation (i.e., part of the lipid droplet was missing, ‘replaced’ by
apparently empty space in the TEM micrographs; Fig. 12B). Sometimes
the opacity of the lipid droplets was not uniform; it could be brighter on
the periphery than in the center, as observed, e.g., in N. labradorica and
B. marginata (Fig. 12C and D).

Described as the primary carbon storage in foraminiferal cells
(Hottinger, 1982; Hottinger and Dreher, 1974; Leutenegger, 1977;
Pawlowski et al., 1995), lipid droplets are osmiophilic vesicles and thus
they appear electron dense in TEM micrographs. The level of opacity
depends on the osmium tetroxide (OsO4) concentration of incubation
media, as well as on the degree of fatty acid saturation, which might
explain observed variations among different species, assuming identical
sample preparation procedures, including OsO4 staining (which is the
case in our study). Metabolic state and diet can contribute to this
variability. LeKieffre et al. (2017) have demonstrated a clear link be-
tween lipid droplets and food in digestive vacuoles by tracing

13C–enrichment from ingested food, via degradation vacuoles, to lipid
droplets.

Lipid droplet distribution in the cell body in the present study was in
agreement with previous studies. Anderson and Lee (1991) also ob-
served such droplets in all chambers, except in the last (youngest) and
penultimate chambers, from where benthic foraminifera extend their
reticulopods. The proportion of lipid droplets in a state of degradation
is highly variable, likely depending on metabolic state of the individual.
In a 28-day incubation in which foraminifera were fed only once, at the
beginning of the experiment, LeKieffre et al. (2017) observed how lipid
droplets were initially formed and then were gradually consumed
nearly to the point of disappearance.

A relatively high abundance of lipids has been observed under
stressful conditions in different experimental studies testing the re-
sponse of foraminifera to heavy-metal contamination (Frontalini et al.,
2015; Le Cadre and Debenay, 2006) and anoxia (Koho et al., this issue).
Finally, lipid droplets with a brighter periphery were also observed in
the case of contamination with lead and described as “electron-dense
core lipid vacuoles” (Frontalini et al., 2015). In our study we suggest
that the lipid brighter at the periphery observed in N. labradorica and B.
marginata could be a fixation artifact, although we are not able to ex-
plain it.

3.2.7. Paracrystals of tubulin
Paracrystals of tubulin provide the cell with molecular building

blocks for their microtubular network supporting, e.g., the for-
aminiferal reticulopods (reviewed in Travis and Bowser, 1991), which
are the primary mean of foraminiferal food acquisition. They are
elongated structures (2 to 50 μm in length) and recognizable due to
their regular organization at high magnification (Fig. 13B), sometimes
exhibiting regular crystalline pattern akin to a honeycomb structure
(Fig. 13C and D) depending on the plane of section.

We observed these structures in the cell body of Gullmar Fjord
species N. labradorica, Nonionella sp. and Globobulimina sp. (Fig. 13A),
but not in intertidal foraminiferal species. Note that the higher density
of the cell body in the latter might have partially obstructed their ob-
servation. Our observations are similar to the paracrystals in the cell
body and reticulopodial net of other benthic foraminiferal species (re-
viewed in Travis and Bowser, 1991).

3.3. Organelles with unknown function

3.3.1. Prokaryotes and sequestered chloroplasts
Many benthic foraminiferal species are known to have prokaryotic

associates and/or sequester chloroplasts in their cytoplasm (see
Bernhard et al., this issue and Jauffrais et al., this issue for reviews). The

Fig. 11. Transmission electron micrographs of benthic foraminiferal residual bodies.
A: Round shaped residual body in Nonionella sp. B: High abundance of residual bodies in the cytoplasm of Nonionellina labradorica. C: Irregular shaped residual body in Bulimina marginata.
fv: fibrillar vesicles, m: mitochondria, ol: organic lining, p: peroxisomes, rb: residual bodies. Scales: A = 500 nm; B, C = 1 μm.
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prokaryotes seemingly can be symbionts beneficial to the host for-
aminifer or can be parasites, which are detrimental to the foraminiferal
host. Kleptoplasts are believed to confer considerable advantage to the
foraminiferal host. While the role of these subcellular entities clearly
impacts the foraminifer, details on the functions of these structures are
not well understood. We refrain from further discussion of these entities
and direct the reader to the noted publications.

3.3.2. Fibrillar vesicles
Fibrillar vesicles were abundant in all foraminiferal species ob-

served in this study (Fig. 14A). These structures are small oval vesicles
approximately 500 nm in length. They contained fibrils that, depending
on the cutting plane, appeared as thin threads or as nanometer-scale
spots (Fig. 14B). In some TEM micrographs, we observed a space be-
tween the fibrils and the membrane enclosing them (Fig. 14C), which

Fig. 12. Transmission electron micrographs of benthic foraminiferal lipid droplets.
A: Lipid droplets in the cytoplasm of Nonionella sp. B: Lipid droplets in degradation in Nonionellina labradorica. C, D: Less electron-opaque lipid droplets at the periphery of Nonionellina
labradorica (C) and Bulimina marginata (D). c: chloroplasts, eo: electron-opaque bodies, fv: fibrillar vesicles, li: lipid droplets, li*: degraded lipid droplets, m: mitochondria, p: peroxisomes,
po: pore, rb: residual bodies, v: vacuoles. Scales: A, C, D = 1 μm; B = 500 nm.
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may be a fixation artifact. Fibrillar vesicles were sometimes observed to
exocytose into white “empty” vacuoles or to be fused with residual
bodies (Fig. 14D, E, F and G).

First described by Angell (1967), small fibrillar vesicles have been
observed both in planktonic and benthic foraminifera throughout the
cell body as well as in the reticulopods (Anderson and Bé, 1976a;
Goldstein and Barker, 1988; Hemleben et al., 1989; Leutenegger, 1977).
Different authors have hypothesized that the fibrillar vesicles are
formed by the stacks of membranes of the Golgi apparatus (Anderson
and Bé, 1976a, 1976b; Anderson and Lee, 1991; Leutenegger, 1977)
(Fig. 8). Similar fibrillar vesicles were also observed in dinoflagellate
cells (Dodge, 1974; Leadbeater and Dodge, 1966) where they were
identified as Golgi vesicles. Langer (1992) hypothesized that the fi-
brillar vesicles are involved in the transport of glycosaminoglycans
(GAGs; sulfated polysaccharides) from their production site in the Golgi
apparatus, to the place they would be used. Some studies have argued
that the fibrillar vesicles could play a role in the secretion of mucila-
ginous substances for the reticulopods (Anderson and Bé, 1976a,
1976b). Because of the small size of fibrillar vesicles and their abun-
dance in the peripheral cytoplasm of the species studied, Leutenegger
(1977) suggested a role in the formation of organic matrix, such as
organic linings, which seems consistent with observations of high

densities of fibrillar vesicles in the last chamber of foraminifera, prior to
the formation of a new chamber in planktonic foraminifera (Angell,
1967; Leutenegger, 1977; Spero, 1988).

Note that the fibrillar vesicles observed here differ from the fibrillar
system (also called fibrillar bodies or microvillus system) observed in
planktonic foraminifera (Anderson and Bé, 1976a; Anderson and Lee,
1991; Hemleben et al., 1989; Leutenegger, 1977; Spero, 1988). The
fibrillar system in planktonic foraminifera is made of larger fibrillar
bodies, which are vacuoles containing larger fibrils with a tubular as-
pect; possibly serving as flotation devices (Anderson and Bé, 1976a;
Hemleben et al., 1989; Leutenegger, 1977), or playing a role as Ca
storage vacuoles (Spero, 1988).

3.3.3. Electron-opaque bodies
Electron-opaque bodies are small (200 to 500-nm in diameter)

spherical (Fig. 15A) to oval-shaped (Fig. 15B) dense bodies. Some of
these bodies were surrounded by a seemingly empty space and a
membrane (Fig. 15A–C, G–H); the space below the membrane could be
due to shrinkage during chemical fixation. Others did not seem to
possess a space below the membrane (Fig. 15C–H), and they are so
electron-opaque that the presence of a membrane is difficult to estab-
lish. Such electron-opaque bodies, i.e., with or seemingly without

Fig. 13. Transmission electron micrographs of paracrystals of tubulin in the cytoplasm of Nonionellina labradorica. A: Longitudinal section of a tubulin paracrystal. B: High-magnification
image revealing the regular pattern of the crystalline structure observed in A. C: Cross section of the crystalline structure. D: High-magnification image revealing the regular pattern of the
crystalline structure observed in C. Asterisks: paracrystals of tubulin, c: chloroplasts, fv: fibrillar vesicles, li: lipid droplets, m: mitochondria. Scales: A = 1 μm; B, D = 200 nm,
C = 500 nm.
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Fig. 14. Transmission electron micrographs of benthic foraminiferal fibrillar vesicles.
A: Fibrillar vesicles in the cytoplasm of Nonionellina labradorica. B: High-magnification image of a group of fibrillar vesicles in Nonionella sp.; sections parallel (black asterisks) or
perpendicular (white asterisk) to the fibrils. C: Fibrillar vesicle surrounded by a space between the fibrils and the vesicle membrane in Haynesina germanica. D and E: Fibrillar vesicles
merging with vacuoles (arrowheads) in D: Nonionellina labradorica and E: Nonionella sp. F and G: Fibrillar vesicles merging with residual bodies (arrowheads) in F: Stainforthia fusiformis
and G: Nonionellina labradorica. c: chloroplast, eo: electron-opaque bodies, li: lipid droplet, m: mitochondria, mvb: multivesicular bodies, p: peroxisomes, rb: residual body, fv: fibrillar
vesicles. Scales: A, E, F, G = 500 nm; B, C, D = 200 nm.
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membrane, were observed in the cell body of all species studied here,
sometimes equally distributed but occasionally clustered at the cell
periphery, as in the Ammonia sp. cell body (Fig. 15C). The visualization
of the membrane might also depend on the plane section view and
could explain that it was clearly visible in some cases, and sometimes
not.

We assume that whether or not they possess a seemingly empty
space and a membrane, all the electron-opaque bodies are in fact the
same structure, but further studies are required. Leutenegger (1977) did
not differentiate the osmiophilic granules observed in the cell body of
larger foraminifera, whether a membrane could be distinguished or not
(e.g., Plate 17, Fig. c; Plate 29, Fig. d and Plate 43, Figs. b and c in

Fig. 15. Transmission electron micrographs of benthic foraminiferal electron-opaque bodies.
A and B: Electron-opaque bodies with membranes (black arrowheads) in the cytoplasm of A: Nonionella sp. and B: Nonionellina labradorica. C: Clusters of electron-opaque bodies in the
cytoplasm of Ammonia sp. (phylotype T6). C, D and E: Electron-opaque bodies without distinguishable membranes (white arrowheads) in the cytoplasm of C, D: Nonionellina labradorica
and E: Haynesina germanica. G, H: Both shapes of electron-opaque bodies in the cytoplasm of G: Nonionella sp. and H: Nonionellina labradorica. Black arrowheads: electron-opaque bodies
with membranes, white arrowheads: indistinguishable membrane electron-opaque bodies, fv: fibrillar vesicles, g: Golgi apparatus, li*: lipid droplets in lysis, m: mitochondria, mvb:
multivesicular bodies, p: peroxisomes, rb: residual bodies, v: vacuoles. Scales: B, D-F = 500 nm; A, G = 200 nm; C, H: 1 μm.
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Leutenegger, 1977). The Leutenegger osmiophilic granules were ap-
proximately the same size as the electron-opaque bodies observed in
our study. It is noted that these structures occur in the TEM micro-
graphs of several publications, both on planktonic and benthic for-
aminiferal cells, although they have not always been described (e.g.,
Anderson and Bé, 1976a; Bernhard et al., 2010a, 2010b; Hemleben
et al., 1989; Le Cadre and Debenay, 2006). They may correspond to the
“electron-dense bodies” surrounded by membranes observed by
Nomaki et al. (2016), who observed these structures clustered close to
the cell periphery, but only in specimens incubated in anoxia. Although
their role is not understood, it has been shown that these structures had
a relatively high sulfur content when compared to other types of or-
ganelles (Nomaki et al., 2016).

3.3.4. Multivesicular bodies
Multivesicular bodies are tiny spheroidal vacuoles with a diameter

of 200–500 nm (Fig. 16A and B). They contain vesicles of 10 to 50 nm;
the number of these vesicles can vary from one or two to more than a
dozen per multivesicular body. They were observed in the cell body of
all the species studied here and were more abundant in the younger
chambers (arrowheads in Fig. 16B).

The role and function of these multivesicular bodies are unknown.
These structures could correspond to the multivesicular bodies in the
microtubule-transport model of Langer (1992, [Fig. 3]). Vesicles at-
tached to microtubules were also observed by Anderson and Lee (1991,
[Fig. 27]), although they were simply referred to as “vesicles”. They
could also correspond to the “fuzzy coated vesicles” associated with
microtubules in the reticulopods (Bowser and Travis, 2000 [Fig. 2b];
Travis and Allen, 1981 [Fig. 3]; Travis and Bowser, 1991 [Fig. 9]): these
fuzzy coated vesicles are more elongated than spheroids but their size is
similar to the structures observed here. Similar vesicles were also ob-
served in the canal plasma of Operculina ammonoides. However, in that
case, the vesicles were associated with microtubules (Hottinger and
Dreher, 1974 [Fig. 11]). Finally, the same kind of vesicles was also seen
in the reticulopodial net of Peneroplis planatus and near a pore in Am-
phistegina lobifera (Leutenegger, 1977 [Plate 45, Fig. a; Plate 52, Fig.
a]). All these observations are consistent with the higher abundances of
multivesicular bodies in younger chambers.

Although, to our knowledge, multivesicular bodies have not been
studied in foraminifera, similar structures are observed in additional
eukaryotic organisms and a number of studies have shown a role in
autophagy and in endocytosis processes (e.g., Piper and Katzmann,
2007; Fader and Colombo, 2008). These functions were also

demonstrated in some other protists such as amoeboflagellates
(Herman, et al., 2011). From our observations it not possible to con-
clude to a similar role in foraminiferal cells. Whatever their function, it
seems that multivesicular bodies are ubiquitous among benthic for-
aminiferal species.

4. Conclusion

The ultrastructure of foraminifera is highly variable among species.
First, the overall aspect of the cell body is variable, mainly because of
the absence/presence and abundance of large vacuoles. Second, al-
though organelles involved in basic functioning of the cell (e.g., nu-
cleus, mitochondria, ER, Golgi apparatus, peroxisomes) are present in
all the species, their appearance, size, abundance, or location vary.
Third, the degradation vacuoles are found in all the species studied here
but because there are many different types of feeding metabolism, there
are also many different types of degradation vacuoles. Moreover, the
physiological state (environmental stress, starvation state, stage in the
reproduction cycle, etc.) of a specimen can have an impact on its cel-
lular ultrastructure, resulting in ultrastructural variations within con-
specifics (Koho et al., this issue; Frontalini and Nardelli, this issue).

Finally, this work emphasizes the need for further ultrastructural
investigations to determine the role of recurrent but poorly understood
organelles, such as fibrillar vesicles, electron-opaque bodies, or multi-
vesicular bodies, as well as the metabolic interactions between all types
of organelles.
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