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Abstract

High input of organic carbon and/or slowly renewing bottom waters frequently create periods

with low dissolved oxygen concentrations on continental shelves and in coastal areas; such

events can have strong impacts on benthic ecosystems. Among the meiofauna living in these

environments, benthic foraminifera are often the most tolerant to low oxygen levels. Indeed,

some species are able to survive complete anoxia for weeks to months. One known mecha-

nism for this, observed in several species, is denitrification. For other species, a state of

highly reduced metabolism, essentially a state of dormancy, has been proposed but never

demonstrated. Here, we combined a 4 weeks feeding experiment, using 13C-enriched diatom

biofilm, with correlated TEM and NanoSIMS imaging, plus bulk analysis of concentration and

stable carbon isotopic composition of total organic matter and individual fatty acids, to study

metabolic differences in the intertidal species Ammonia tepida exposed to oxic and anoxic

conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the

ingested biofilm components were observed between the two conditions. Under oxic condi-

tions, within a few days, intact diatoms were ingested, degraded, and their components

assimilated, in part for biosynthesis of different cellular components: 13C-labeled lipid droplets

formed after a few days and were subsequently lost (partially) through respiration. In contrast,

in anoxia, fewer diatoms were initially ingested and these were not assimilated or metabo-

lized further, but remained visible within the foraminiferal cytoplasm even after 4 weeks.

Under oxic conditions, compound specific 13C analyses showed substantial de novo synthe-

sis by the foraminifera of specific polyunsaturated fatty acids (PUFAs), such as 20:4(n-6).

Very limited PUFA synthesis was observed under anoxia. Together, our results show that

anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a

time scale of less than 24 hours, these observations are consistent with a state of dormancy.
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Introduction

Benthic foraminifera are eukaryote unicellular protists and ubiquitous in marine sediments

from shallow water estuaries to the deep ocean [1]. Representing up to 50% of top sediment

biomass, they constitute an important part of benthic meiofauna [2,3] and may play a signifi-

cant role in the carbon and nitrogen cycles, depending on the habitat, species assemblage, and

feeding patterns [4–7]. The broad spectrum of conditions under which marine foraminifera

live includes zones of O2-depletion [8–11], deep-sea sulphidic habitats [12], hydrocarbon seeps

[13,14], and intertidal environments [15]. Of particular interest here is the striking capability

of some benthic foraminifera to adapt to a sudden decrease in the availability of O2. Hypoxic

and anoxic events strongly and more frequently affect benthic ecosystems, in particular on

continental shelves and in coastal areas where renewal of bottom water is slow and/or organic

input is high [16–18]. During such events, large fractions of the benthic meio- and macrofauna

(size range >1 mm) can die off [19–22]. However, foraminifera are consistently among the

most resistant species [9,23,24]. High survival rates of foraminifera under low O2 conditions

have been documented both in-situ [25–29] and in laboratory experiments [30,31] and

ascribed, in part, to relatively low rates of O2-respiration compared to other meiofauna species

[32]. Experimental studies of Ammonia sp. combining TEM and NanoSIMS observations sug-

gest higher global metabolic activity in hypoxia than in anoxia [33]. Various anaerobic path-

ways have been suggested as alternative metabolic strategies to achieve resistance to low-O2

conditions, including symbiosis with ectobionts [12,34] or endobionts [35], and sequestered

chloroplasts [36,37]. It has been demonstrated that some species are capable of nitrate respira-

tion (denitrification) under anoxia [38–40]. Bernard et al. [41] observed a decrease of the aden-

osine 50-triphosphate (ATP) pool in foraminifera Bulimina marginata, Stainforthia fusiformis
and Adercotryma glomeratum from Drammensfjord (Norway) exposed to anoxia, and sug-

gested that this might indicate a state of dormancy. Indeed, dormancy or quiescence, defined

as reduced or suspended metabolic activity in response to exogenous factors, might be a more

widespread adaptation strategy of benthic foraminifera to environmental stress than previously

acknowledged [42]. Even during periods with normal oxic conditions in bottom waters, fora-

minifera and other benthic meiofauna species can be (and frequently are) exposed to low O2

levels simply because bioturbation mechanically moves them deeper into the sediments

[43,44]. Ammonia tepida, for example, which is among the most abundant species in intertidal

sediments [15] is normally residing in the top few centimeters of the sediments, where O2 con-

centration is high. Here, it grazes on algal biofilm [45]. However, A. tepida is also regularly

found alive at depths of 4 to 26 cm, i.e. below the O2 penetration depth, as a result of bioturba-

tion [46,47]. These observations raise questions about the mechanism(s) that enable foraminif-

era to survive sudden changes to anoxia, often for extended periods of time.

In this study, we present results of two experiments: Experiment I aimed to determine the

survival and growth rates of algae-fed A. tepida under anoxia, compared with oxic conditions.

Experiment II aimed to investigate the metabolism of A. tepida following a sudden shift to

anoxic conditions. In the latter experiment, using 13C-enriched diatom-containing biofilm

and a combination of transmission electron microscopy (TEM) and NanoSIMS isotopic imag-

ing, we have visualized and quantified with subcellular resolution (in situ, ex vivo) the incorpo-

ration and transfer of isotopically labeled heterotrophic compounds, under both oxic and

anoxic conditions. These subcellular-level observations were combined with concentrations

and stable carbon isotopic analysis by isotope ratio mass spectrometry of total organic carbon

(TOC) and individual fatty acids. Our results are discussed in context of previous experiments

using 13C-labeled food, which have already yielded important insights into the metabolism of

foraminifera under a variety of environmental conditions [48–55].

Dormancy in response to anoxia
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Results

Experiment I: Survival and growth rate of A. tepida under oxic and anoxic

conditions

After 13 days of incubation, the survival rates of fed adult or juvenile specimens of A. tepida
were indistinguishable (p>0.05) between oxic and anoxic conditions (S1 Fig): 95±11% and

87±12% for adults and 84±2% and 83±8% for juveniles, respectively. The average growth rate

of juvenile specimens was significantly (p<0.05) higher under oxic (1.3±0.7% per day) com-

pared with anoxic (0.2±0.1% per day) conditions (S2 Fig). The growth rate under anoxic con-

ditions was not significantly different from zero (t-test, p>0.05).

Experiment II: Feeding behavior of A. tepida under oxic and anoxic

conditions

Under anoxic conditions the foraminifera rapidly (within around 24 hours) ceased to move.

At the end of the incubation there was still diatom biofilm left in the vials in the anoxic

aquarium, while the biofilm had been completely consumed by the foraminifera in the oxic

aquarium.

Under oxic conditions, the average total organic carbon (TOC) content per cell of the A.

tepida specimens increased during the first 7 days from 0.65±0.06 to 1.29±0.14 μg C×ind-1

(Fig 1A). At this point it was observed that all the biofilm had been ingested. After 14 days,

the TOC content had decreased to 1.10±0.18 μg C×ind-1 and continued to decrease to reach a

value of 0.94±0.05 μg C×ind-1 at the end of the experiment (i.e. Day 28). Under anoxia the

TOC content showed a modest increase during the first 3 days of the incubation, reaching

maxima of 1.0±0.1 μg C×ind-1. At Day 7, the TOC had dropped to 0.8 ±0.1 μg C×ind-1 and

this level was maintained for the rest of the experiment (p>0.05) (Fig 1A).

Average 13C atomic fractions in TOC (x(13C)TOC in %) as a function of time are shown in

Fig 1. Under both oxic and anoxic conditions, a sharp 13C-enrichment indicating an uptake of
13C-enriched diatoms occurred at the beginning of the experiment, reaching plateaus on dif-

ferent time scales. Under oxic conditions, a sharp increase in x(13C)TOC up to 1.86±1.16%

Fig 1. TOC concentration and 13C atomic fraction of A. tepida under oxic and anoxic conditions. (A) Average total organic carbon

(TOC in μg C×ind-1) concentration and (B) 13C atomic fraction of the TOC (x(13C)TOC in %), both as a function of time. Continuous lines: oxic

conditions, dotted lines: anoxic conditions. Error bars are ±1 SD (n = 3).

https://doi.org/10.1371/journal.pone.0177604.g001

Dormancy in response to anoxia

PLOS ONE | https://doi.org/10.1371/journal.pone.0177604 May 31, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0177604.g001
https://doi.org/10.1371/journal.pone.0177604


occurred during the Day 1, followed by a slower increase to 2.24±1.22% on Day 7, after which

x(13C)TOC stabilized (p>0.05). Under anoxia, x(13C)TOC increased to 1.41±1.18% during the

Day 1, after which no statistically significant changes were observed (p>0.05). The final
13CTOC-enrichment was about 4 times higher under oxic than anoxic conditions.

Average carbonate uptake (calculated as the difference in C content of the shells in individ-

uals from Day 28 and control specimens) and the enrichment in 13C of the shells from Day

28 over that of control samples are given in S1 Table. Under oxic conditions, an average of

4.9±1.8 μg C×ind-1 was added to the shells over 28 days and their average x(13C)car was 0.05%

higher than the unlabeled control samples. Under anoxia, the specimens did not add new car-

bonate to their shells and therefore no significant 13Ccar-enrichment was observed (p>0.05),

consistent with a growth rate statistically indistinguishable from zero (Fig 1B).

Results of TEM and NanoSIMS analyses are presented in Figs 2 and 3. S3 Fig exhibits typi-

cal cellular structures in the antepenultimate chamber of an A. tepida specimen collected

directly from the mudflat that provided samples for Experiment II. Recognizable structures

include lipid droplets, residual bodies, and diatomic frustules. The presence of mitochondria

and the integrity of intact double membranes and crests indicated vitality at the time of the

chemical fixation; all observed specimens exhibited these ultrastructures. Time sequences of

TEM and NanoSIMS isotopic images permit to follow the ingestion and metabolism of isoto-

pically enriched diatom biofilm components under oxic and anoxic conditions (Figs 2 and 3).

Fig 4 shows the relative surface areas occupied by diatoms, lipid droplets, and residual bodies

in a representative cytoplasm area, with the corresponding average 13C atomic fractions for

each structural component.

Under oxic conditions, abundant diatoms with frustules were visible after Day 1 as free-

floating objects (i.e. not surrounded by vesicles/vacuoles) that occupied about 30% of the cyto-

plasm area (Figs 2A and 4A). About 75% of these ingested diatoms still held their original cel-

lular matrix, which was clearly distinguishable by strong 13C enrichment; the remaining 25%

had lost their content to the foraminiferal cytoplasm (Fig 2A–2C, Table 1). After Day 3, diatom

frustules were still clearly observable (Fig 2D), but ca. 83% of them had lost their original con-

tent of cellular matrix (Fig 2D–2F, Table 1). After Day 7, frustules were no longer observed

(Fig 2G, 2J and 2M). However 13C-enriched lipid droplets (not observed before Day 7) were

numerous (Fig 4C). Between Day 7 and 14, lipid droplets were present in roughly constant

abundance (ca. 10%; Fig 4C) with x(13C) of approximately 1.65% (Fig 4D). After Day 28 only a

few lipid droplets were observed in the cytoplasm of the foraminifera (Figs 2M and 4C). In

contrast, 13C-enriched residual bodies appeared after Day 14 (Figs 2J and 4F) occupying about

5% of the cytoplasm area with an average 13C atomic fraction around 1.70% (Fig 4E and 4F);

this did not significantly change before the end of the experiment (p>0.05). In 5 out of 15

observed foraminifera cells, the organic lining (i.e. the thick membrane between the plasma

membrane and the calcite shell) was enriched in 13C (Fig 2E, 2F, 2K and 2L); two of these had

the 13C-enrichment of their organic lining concentrated in the vicinity of pores in the shell.

Percentage of the diatoms present in the cytoplasm of A. tepida still holding their original

cellular contents, as a function of time for both experimental conditions (n = 3).

Under anoxic conditions, the content of the foraminifera cytoplasm after Day 1 was essen-

tially identical to that observed at the same time under oxic conditions (Fig 3A). No lipid drop-

lets or residual bodies were visible, and the cytoplasm was occupied by 13C-labeled intact

diatoms (i.e. diatomic material surrounded by the silica frustule; roughly 30% of the imaged

area) (Figs 3A–3C and 4A–4B). However, the fraction of ingested diatoms still containing

their original 13C-labeled material was higher under anoxic conditions (roughly 91% vs. 75%;

Table 1). After Day 3 diatoms were still observed in the cytoplasm (Fig 3D) with about 75% of

them containing original cellular materials; i.e., 4 times more than under oxic conditions at the

Dormancy in response to anoxia
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Fig 2. Time-evolution of 13C uptake and transfer within the cytoplasm of A. tepida under oxic

conditions. A, D, G, J and M: TEM images; C, F, I, L and O: NanoSIMS images of corresponding 13C/12C

distributions. B, E, H, K, and N: Direct correlation of TEM and NanoSIMS images. d*: Intact diatoms; d:

frustules without their original contents; *: diatomic material free in the foraminiferal cytoplasm; li: lipid

droplets; ol: organic lining; p: pores; r: residual bodies. Arrowheads show aperture of opened diatom frustules.

Circles are drawn around a few organelles to facilitate their visualization on the different images: white circles:

lipid droplets, dotted circles: residual bodies. Scale bars: 2 μm.

https://doi.org/10.1371/journal.pone.0177604.g002
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Fig 3. Time-evolution of 13C uptake and transfer within the cytoplasm of A. tepida under anoxic

conditions. A, D, G, J and M: TEM images; C, F, I, L and O: NanoSIMS images of corresponding 13C/12C

distributions. B, E, H, K, and N: Direct correlation of TEM and NanoSIMS images d*: Intact diatoms; d:

frustules without their original contents; *: diatomic material free in the foraminiferal cytoplasm; li: lipid

droplets; ol: organic lining; p: pores; r: residual bodies. Arrowheadsshow aperture of opened diatom frustules.

Circles are drawn around a few organelles to facilitate their visualization on the different images: white circles:

lipid droplets, dotted circles: residual bodies. Scale bars: 2 μm.

https://doi.org/10.1371/journal.pone.0177604.g003
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Fig 4. Percentages of cytoplasmic occupation and 13C atomic fraction of key cell ultrastructures. Percentage of

occupation of cytoplasm area (A, C and E) and 13C atomic fraction (x(13C) in %; B, D and F) over time for key

components in A. tepida: A, B: diatoms; C, D: lipid droplets; E, F: residual bodies. Errors bars are ±1 SD (n = 3).

https://doi.org/10.1371/journal.pone.0177604.g004
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same time point (Table 1). The proportion of diatoms in the foraminifera cytoplasm remained

roughly constant between Days 3 and 28, in the range from 3 to 12% (Fig 4A). Among these,

the proportion containing original 13C-labeled material decreased to ca. 30% between Days 3

and 7, and then did not significantly change until the end of the experiment (p>0.05; Table 1).

Lipid droplets appeared after Day 3 under anoxic conditions, in contrast to Day 7 under oxic

conditions (Fig 3D and 3C). Their proportion in the cytoplasm varied between 4% and 19%

with corresponding average 13C atomic fractions between 1.27% and 1.38%; i.e. 2 to 3 times

less 13C-enrichment than under oxic conditions (Fig 4C and 4D). Residual bodies, which were

observed only in specimens sampled on Day 28, and only in 2 out of 3 imaged foraminifera,

were much less abundant (4±4%) than under oxic conditions (Figs 3M and 4E). Most of these

residual bodies were only slightly enriched, with an average x(13C) of 1.20±0.03% compared to

1.69±0.14% under oxic conditions (Fig 4F).

Fatty acids (FAs) studied here included triglycerides, phospholipid and free acids, as well as

other acid lipids extracted from diatom and foraminifera samples. In the following, FAs are

abbreviated as x:y(z) where ‘x’ is the number of carbon atoms, ‘y’ the number of double bonds

and ‘z’ the position of the double bond relative to the terminal methyl group. The main satu-

rated FAs in the labeled diatom biofilm were 14:0 and 16:0, with relative abundances of 7.4%

and 28.2%, respectively (Fig 5A). The mono-unsaturated FAs 16:1 and 18:1 (isomers) were

Table 1. Percentage of intact diatoms (frustule containing cytoplasm) in the foraminiferal cytoplasm.

Days Diatoms filled with diatomic material (%)

Oxic Anoxic

1 75 ±11 91 ±8

3 17 ±10 73 ±22

7 0 28 ±22

14 0 17a

28 0 47 ±46

a: diatoms were present only in 1 of the 3 specimens analyzed, SD could not be calculated.

https://doi.org/10.1371/journal.pone.0177604.t001

Fig 5. Relative abundances (%) of the dominant fatty acids extracted from the biofilm of diatoms and in A. tepida endoplasm.

Relative abundances (expressed in %) of the eight dominant FAs extracted from the biofilm of diatoms and in A. tepida individuals incubated

under oxic (B) and anoxic (C) conditions, respectively. White: control specimens; grey: after Day 7 and black: after Day 28. Error bars are ±1

SD (n = 3).

https://doi.org/10.1371/journal.pone.0177604.g005
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observed in relative abundances of 42.0 and 3.8%, respectively (Fig 5A). The sums of all the

positional (mainly n-9, n-7and n-5) and geometric (cis and trans) isomers of hexadecenoic and

octadecenoic acid were included in the designations 16:1 and 18:1. The main polyunsaturated

FAs (PUFA) were 20:5(n-3) (9.6%) with trace amount of 20:4(n-6) and 22:5(n-3) and 22:6(n-3),

which accounted for less than 0.2% of the total FAs.

All analyzed foraminifera samples showed roughly similar FAs distributions in the C14 to

C22 range. The observed small quantities of odd-chain and traces or complete absence of

branched-chain FAs indicate minimal bacterial contamination. In the control foraminifera,

the most abundant saturated FAs were 14:0, 16:0 and 18:0, with a preference for 16:0 (Table 2

and Fig 5B and 5C). The most abundant monounsaturated FA was 16:1 and the most abun-

dant PUFAs were 20:4(n-6) and 20:5(n-3) (Table 2 and Fig 5).

Under oxic conditions, the FA content in foraminifera increased during the first 7 days

from 322±22 to 408±33 ng×ind-1 (p<0.05), and then decreased to 344±32 ng×ind-1 after Day

28 (p<0.1 between 7 and 28 days) (Table 2). Under anoxia, the total foraminifera FA content

continuously increased during the experiment from 322±22 up to 380±13 ng×ind-1 (p<0.05)

(Table 2). Under oxic conditions, the relative abundances of 16:0 and 18:1 isomers increased

between 0 and 7 days (p<0.05), and remained stable between Day 7 and 28 (Fig 5B). The rela-

tive abundances of 14:0 and 16:1(n-7) decreased between Days 0 (control) and 7 (p<0.05).

Between Days 7 and 28, the relative abundance of 14:0 remained constant, while that of 16:1

(n-7) continued to decrease. The abundance of 20:5(n-3) first decreased between Days 0 (con-

trol) and 7, and then increased to its highest level at Day 28 (p<0.05) (Fig 5B). Despite being

present in small amounts in the diatom biofilm, the PUFAs 20:4(n-6) and 22:5(n-3)

Table 2. Concentrations of fatty acids in A. tepida.

Fatty acid Control Oxic Anoxic

7 days 28 days 7 days 28 days

Total 322.6±22.4 408.3±33.5 344.24±31.8 360.1±22.1 380.8±13.1

14:0 27.0±1.8 25.7±1.5 22.3±2.4 27.2±0.9 28.4±0.8

15:0 4.8±0.2 4.1±0.3 3.4±0.2 4.9±0.2 5.2±0.4

15:1 1.5±0.2 2.2±0.4

16:0 66.7±4.3 97.3±7.4 81.1±8.2 74.1±5.7 77.0±3.4

16:1 49.1±3.8 51.1±6.4 21.2±3.5 64.0±5.1 64.9±2.7

16:2 11.4±0.8 9.3±3.3 3.2±2.7 14.0±0.4 14.7±0.4

16:3 3.1±0.2 2.9±0.5 2.9±0.3 3.3±0.5

17:0 3.3±0.4 1.1±0.3 3.4±0.2 3.6±0.1

17:1 3.2±0.4 3.7±0.3 2.8±0.2 2.1±1.3 2.3±1.5

18:0 8.6±0.4 14.6±1.5 11.3±0.5 8.3±1.5 8.7±0.4

18:1 27.9±2.2 48.1±4.95 37.6±5.5 28.7±2.5 22.9±1.3

18:2(n-6) 5.2±0.6 6.4±0.6 3.4±0.4 5.3±0.4 5.6±0.4

18:4(n-3) 3.4±0.3 3.1±0.2 2.2 4.3±0.3 4.7±0.1

20:1(n-9) 4.1±0.2 6.2±0.6 4.6±0.2 3.9±0.7 4.3±0.1

20:4(n-3) 2.6±0.2 2.6±0.2 3.0±0.1 2.9±0.2 2.9±0.2

20:4(n-6) 26.2±1.8 40.4±2.5 58.7±5.0 33.2±2.5 39.0±2.0

20:5(n-3) 62.3±4.3 75.6±6.3 72.5±7.5 66.6±4.3 71.7±3.1

22:6(n-3) 8.7±0.7 9.6±0.7 8.7±0,7 9.7±0.4 10.8±0.2

22:5(n-3) 4.8±0.4 6.9±0.3 9.3±0.6 5.3±0.3 5.9±0.3

Concentrations in ng×ind-1 of the fatty acids found in A. tepida cell before the experiment (control), after Day 7 and Day 28; under oxic and anoxic

conditions.

https://doi.org/10.1371/journal.pone.0177604.t002
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significantly increased in relative abundance along the experiment (p<0.05); most pronounced

for 20:4(n-6) from 8.1% in the control to 17.1% (Fig 5A–5B). Significant variation in the abun-

dance of 22:6(n-3) was not observed during the experiment (p>0.05).

Under anoxia, the relative variations in the abundance of individual FAs with time were sig-

nificantly smaller than those observed under oxic conditions (Fig 5C). Only the abundance of

14:0 decreased slightly during the experiment, with a trend similar to that observed under oxic

conditions. No significant changes (p>0.05) were observed in the contents of 16:0, 22:5(n-3),

and 22:6(n-3) during the experiment. 16:1(n-7) first increased slightly, then decreased from

Day 7 to Day 28 (p<0.05). 18:1 abundance first decreased at Day 7 (p<0.05), and stabilized

(p>0.05). 20:4(n-6) was the only FA that showed a significant, albeit minor increase (from

8.1±0.1 to 10.2±0.4%; p<0.05) along the experiment.

The 13C atomic fraction of FAs (x(13C)FA in %) are shown in Table 3. These 13C-enrich-

ments were significantly higher after Day 7 of incubation (p<0.05) under both conditions and

in general FAs 13C-enrichments were higher under oxic than anoxic conditions.

Discussion

Survival and growth

No significant difference was observed between the survival rate of fed A. tepida specimens

incubated for 13 days under oxic and anoxic conditions (S1 Fig). This is in line with results of

previous laboratory experiments showing that A. tepida is capable of surviving under strong

hypoxia and anoxia for extended time periods, up to 60 days [31,56]. Growth of A. tepida
under anoxia was assessed by three different methods: (i) measurement of juvenile shell size

before and after incubation (S2 Fig), (ii) quantification of the carbonate content in shells of

adult specimens, and (iii) shell 13C-enrichment (S1 Table). The results consistently showed

that on average A. tepida grew and added at least one chamber under oxic conditions, whereas

only minimal, if any growth took place under anoxia. A previous study using incubation with

calcein labeled foraminifera to detect chamber formation showed that among adult A. tepida
living under anoxic conditions for 60 days, only 5% were able to add one chamber [31]. These

observations clearly indicate that a strong perturbation of normal physiological processes

results from a shift to anoxia.

Feeding and metabolism: Bulk data

Under oxic conditions, the TOC and its 13C-fraction increased by almost 100%, within the

first 7 days in fed, adult A. tepida (Fig 1). Similar TOC values are reported in the literature

Table 3. 13C atomic fraction of dominant fatty acids in the cytoplasm of A. tepida.

Fatty acid Control Oxic Anoxic

Day 7 Day 28 Day 7 Day 28

14:0 1.08±0.01 1.81±0.04 1.89±0.02 1.32±0.07 1.37±0.02

16:0 1.08±0.01 2.07±0.07 2.01±0.11 1.85±0.06 1.92±0.04

16:1 1.08±0.01 2.25±0.04 2.23±0.04 1.40±0.06 1.41±0.02

18:1 1.08±0.01 2.31±0.01 2.39±0.05 1.47±0.10 1.23±0.01

20:4(n-6) 1.08±0.01 1.77±0.04 1.93±0.04 1.28±0.05 1.33±0.02

20:5(n-3) 1.08±0.01 2.01±0.04 2.03±0.05 1.33±0.01 1.39±0.02

22:6(n-3) 1.08±0.01 1.69±0.03 1.72±0.01 1.22±0.01 1.31±0.02

22:5(n-3) 1.08±0.01 1.74±0.03 1.85±0.01 1.15±0.01 1.18±0.01

13C atomic fraction (x(13C) in %) of dominant fatty acids in the cytoplasm of A. tepida (n = 2) for oxic and anoxic conditions at Days 7 and 28.

https://doi.org/10.1371/journal.pone.0177604.t003
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quantifying the rate of ingestion of diatoms [50], indicating an important role for benthic fora-

minifera in the organic carbon cycle in shallow, O2-rich marine sediments. After Day 7 under

oxic conditions, the TOC began to decrease steadily while its 13C-enrichment remained con-

stant (Fig 1), consistent with the visual observation that the food source had been exhausted.

From this point onward, the TOC values decreased (i.e. cells lost weight), as their reserves of

organic C (mainly in the form of lipid droplets) were metabolized and respired. This metabolic

consumption of organic matter did not change the 13C content of the residual TOC, indicating

that no preferential respiration or preservation of organic compounds with different isotopic

composition took place.

Under anoxia A. tepida ingested 13C-enriched diatom biofilm only during Day 1. During

this time, the 13C-enrichment of the TOC increased by about 30% and the average of TOC

content per cell increased from the control value of 0.65 μg C×ind-1 to about 0.9 μg C×ind-1

(Fig 1). In contrast to the results from the corresponding oxic experiment, neither the TOC

nor its 13C-enrichment changed substantially after Day 1, consistent with the visual observa-

tion that feeding stopped, i.e. left over biofilm was not further consumed. Furthermore, the

TOC per cell did not decrease (Fig 1), providing strong indication that metabolic loss of car-

bon was minimal after Day 1.

Recent studies with ingestion of phytodetritus under strong hypoxia (O2 levels around 0.02

mL/L) have documented both ingestion and metabolism in species from the Arabian Sea oxy-

gen minimum zones (OMZ) [48,49]. The fact that foraminifera metabolism seems relative

insensitive to hypoxic conditions might be due to their low rate of oxic respiration compared

to other benthic meiofauna [32]. A picture emerges of benthic foraminifera capable of main-

taining an efficient metabolism even under strong hypoxia, while complete anoxia leads to a

shutdown of aerobic metabolic processes on a timescale of less than 24 hours.

Feeding and metabolism: Subcellular observations

Key sub-cellular structures of A. tepida involved in ingestion and metabolism include the

ingested diatoms, residual bodies, and lipid droplets (S3 Fig), the latter representing the princi-

pal form of carbon storage [57–59]. Fully intact diatoms (i.e. with the diatom cell-material still

contained in its silica frustule) were directly integrated into the cytoplasm by the foraminifera

during the first day under both conditions (Figs 2A–2C and 3A–3C), consistent with previous

observations of feeding A. tepida [60] and a number of other species [60–62]. Nevertheless, the

density in the cytoplasm of ingested diatoms observed in our study was substantially higher

than previously reported in the literature, with ca. 30% of the cytoplasm area occupied by

intact diatoms after Day 1 under both conditions. This might be ascribed to the fact that the

foraminifera had been fasting during the 6 days between the initial collection on the mudflat

and the start of the feeding experiment, thus they grazed quickly on the available biofilm at the

beginning of the incubation.

Following the efficient ingestion of intact diatoms during Day 1, the sub-cellular TEM and

NanoSIMS observations for oxic and anoxic conditions diverged dramatically (Figs 2 and 3).

Under oxic conditions, the intact diatom frustules were all emptied and their 13C-enriched

contents incorporated into other subcellular components before Day 7. On Day 7, the silica

frustules had almost entirely disappeared (Figs 2G and 4A). The process by which the forami-

nifera break down the frustules remains unknown. Exocytosis of the empty frustules was not

observed, nor frustules being degraded.

Part of the organic diatomic material was converted into fatty acids stored in clearly 13C-

labeled lipid droplets (Figs 2G–2I, 4C and 4D). After Day 7, the 13C-labeled diatomic material

had become part of the metabolic pathways and 13C-enrichment had spread into most
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components of the cytoplasm (Fig 2I, 2L, 2O). Consistent with the observed decrease in TOC

after Day 7 (Fig 1A), once the entire diatom biofilm had been ingested, the foraminifera began

to metabolize their lipid reserves. As a result, lipid droplets had disappeared at Day 28 (Fig

4C). In contrast, residual bodies with clear 13C-enrichment appeared in the cytoplasm at Day

14 (Figs 2J, 4E and 4F). These heterogeneous vacuoles are believed to hold metabolic waste

and recycled organelles [58,63]. The rapid ingestion, catabolism, and anabolism of the 13C-

enriched diatom biofilm in A. tepida under oxic conditions (Fig 2) is consistent with the bulk

observations discussed above and the evolution of the fatty acid composition discussed below.

The observation of labeled organic lining in 5 of the foraminifera incubated in oxic conditions

is likely to be linked with chamber formation, because the organic lining is thought to play a

key role in initiating calcite formation [58,64]. Consistent with this, no 13C-labeled organic

lining was observed in the specimens from anoxic conditions, which did not grow new

chambers.

Under anoxic conditions, the metabolism was very different (Fig 3). Following the initial

ingestion of diatoms during Day 1, there was substantially less redistribution of 13C-enriched

material in the foraminifera cells until the experiment ended. On Day 28, diatoms with their

frustules were still present in the cytoplasm with their original content of strongly 13C-labeled

material (Fig 3M–3O). Nevertheless, some early metabolism/redistribution did occur, result-

ing e.g. in the appearance of 13C-enriched lipid droplets from Day 3 (Fig 4C). The density of

lipid droplets remained constant after Day 3, consistent with the observation of constant aver-

age TOC levels (Fig 1A). The formation of lipid droplets earlier in anoxic (Day 3) than in oxic

conditions (Day 7) might be attributed to the stressful conditions: faced with a lack of oxygen

the foraminifera were first storing carbon in lipid droplets instead of using it for the cell metab-

olism. A qualitatively similar increase of lipid droplet abundance was observed in Ammonia
beccarii specimens submitted to stress from Cu contamination [65]. Such a response does not

seem to be specific to foraminifera; it has also been observed in marine dinoflagellates [66].

Mildly 13C-enriched residual bodies did not appear until between Day 21 and 28 (Figs 3M–3O

and 4E–4F).

Fatty acid composition and synthesis

Fatty acids 14:0, 16:0, 16-1(n-7), and specifically the 20:5(n-3) (Fig 5A, Table 2) are biomarkers

of marine diatoms [67–69]. These FAs had already been observed in algae feeding experiments

with foraminifera under both oxic [70] and hypoxic conditions [49,52]. In our study, the

observed increase during the first 7 days of 16:0 under oxic conditions and of 16:1(n-7) under

anoxic conditions is ascribed to the ingestion of diatoms. The decreases of 14:0 under both

conditions and of 16:1(n-7) under oxic conditions at Day 7 suggest lipolysis and fatty acid

catabolism (their β-oxidation to C2 units). Part of the degradation products were probably

used for de novo synthesis of long chain fatty acid intermediates for the production of PUFAs,

i.e. 20:4(n-6), 20:5(n-3), and 22:5(n-3) under oxic conditions (Fig 5B). Under oxic conditions,

the relative abundance of 20:5(n-3) first decreased and then increased. This suggests that this

PUFA was first consumed (by metabolic breakdown or used for the synthesis of 22:5) and then

formed by desaturation and C2 elongation of short-chain precursors. The relative increase in

20:5(n-3) cannot be explained by an ingestion of diatoms, because there were completely

ingested after Day 7 under oxic conditions. This supports de novo synthesis of eicosapentae-

noic acid 20:5(n-3) by the foraminifera.

20:4(n-6) and 22:5(n-3) were present only in small abundances in the diatom biofilm (Fig

5A), but in higher concentrations in A. tepida cytoplasm under both oxic and anoxic condi-

tions (Fig 5B and 5C and Table 2). This can be explained by either a selective uptake of these
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PUFAs [70], or by de novo biosynthesis following a pathway similar to that for 20:5(n-3). A

similar high increase in 20:4(n-6) content was observed in other foraminiferal feeding experi-

ment with microalgae [49,71–73]. The observed concentration increase, combined with signif-

icant 13C-enrichment (Fig 5B and 5C and Table 2), strongly suggest de novo synthesis of this

arachidonic acid, as hypothesized in other publications [49,73].

A. tepida is also able to graze on bacteria [55]. The increase in the relative abundance of

18:1, which is a bacterial biomarker in marine environments [74], during the first 7 days under

oxic conditions (Fig 5B) suggests that bacteria developed during the beginning of the experi-

ment, assimilating 13C by degrading the de-frozen diatom biofilm (Fig 5B and Table 3). Fur-

ther support for ingestion of bacteria is provided by the presence of small amounts of other

bacterial FAs (15:0, 15:1, 17:0, and 17:1) in the foraminiferal cells (Table 2).

Finally, under anoxic conditions, the foraminifera assimilated clearly less 13C labeled fatty

acids from the diatom biofilm than under oxic conditions (Table 3, Fig 5B and 5C), and they

produced less new fatty acids. Between Days 7 and 28, only the relative abundances of the FAs

16:1(n-7) and 20:4(n-6) varied, indicating some, albeit strongly reduced metabolism compared

to oxic conditions.

Together, our observations under anoxia indicate that food digestion and metabolic redistri-

bution took place at a much-reduced rate compared to oxic conditions. Nevertheless, anabolic

processes did initially take place, conceivably driven by the ‘oxic metabolic machinery’ still

available to the cell during the first hours after establishment of anoxic conditions. The reduced

state of metabolism seems consistent with a state of dormancy or quiescence, defined as a sus-

pension of active life, arrested development, and reduced or suspended metabolic activity [42],

in our case due to the sudden onset of anoxic conditions. Consistent with a state of dormancy/

quiescence is the fact that no obvious ultrastructural damage to the cells was observed, indicat-

ing that capability to return to a state of normal vitality once oxic conditions are reestablished.

Conclusions

Benthic foraminifera Ammonia tepida are ubiquitous in coastal marine sediments, where they

are often exposed to hypoxia or completely anoxic conditions. In order to survive such anoxic

conditions for longer time periods they must either rely on alternative, anaerobic metabolism,

which would allow them to produce energy and thus maintain a certain level of activity, or

enter a state of dormancy that minimizes energy consumption. With a broad suite of observa-

tions we show here that these single cell organisms respond to anoxic conditions by a radical

reduction in their heterotrophic metabolism. This, combined with the observation of arrested

calcification and the complete absence of physical movements upon exposure to anoxia

(movement is restored when oxygen is returned to the environment [75]), indicates that these

species do not have access to an alternative metabolic mechanism allowing them to maintain,

even approximately, their level of physical activity under oxic conditions. Therefore, we pro-

pose that, upon exposure to anoxia, the A. tepida organism enters into a state of dormancy/

quiescence, with strongly reduced metabolic requirements that make them capable of with-

standing anoxic conditions for unusually long time intervals (here up to 28 days), compared

with other benthic meiofauna.

Material and methods

Experiment I: Survival and growth rate of A. tepida

Superficial (top 2 cm) sediment was collected at low tide on January 15, 2013, from the inter-

tidal mudflat of l’Aiguillon Bay (France). Living foraminifera were picked out of sieved sedi-

ment of two size fractions: >150 μm (adults) and 100–150 μm (juveniles).
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Experiment I took place at the LPG-BIAF laboratory (Angers, France). For determination

of the survival rate 300 adult foraminifera were checked for their vitality using 2 criteria: pres-

ence of yellow brownish cytoplasm in the shell and detection of movement of the foraminifera

[56]. For determination of growth rate, 150 juveniles at a growth stage with 8 ±1 chambers

were selected using the same criteria as for adults.

Incubation was carried out in two glass aquaria (33×21×19 cm3) containing 10 liters ASW

(RedSea Salt, salinity of 35 psu), under oxic and anoxic conditions, respectively. Each aquar-

ium contained eighteen 10 mL glass vials (h = 45 mm, ø = 22 mm), 15 vials holding 10 adult

individuals and 3 vials holding 25 juvenile individuals, with each vial representing a replicate

in subsequent calculations. Before the start of the experiment, a thin layer of freeze-dried Chlo-
rella algae was added, forming a biofilm on the vial bottom (14.3 μg chlorophyll×cm-2). Each

vial was then covered with a 100 μm mesh net, the aquaria were covered with Plexiglas lids to

minimize evaporation and avoid changes in salinity and the lid of the anoxic aquarium was

sealed with plastic tape to prevent gas leakage/exchange. Each aquarium was bubbled continu-

ously with air using a standard aquarium pump to maintain oxic conditions, or with a mixture

of N2 and 0.04% CO2 (Air liquide, France, 99.999% N2, 99.99% CO2) to produce anoxic condi-

tions. Bubbling began immediately after the foraminifera were placed inside. The incubation

started on the 12th of February 2013 and lasted 13 days. Oxygen concentrations, temperature,

salinity and pH were measured continuously (oxygen and temperature) or at the beginning

and end of the experiment (salinity and pH) using dedicated sensors (details in S2 Table). O2

contents were between 4.0 to 4.5 mL×L-1, and below 0.007 mL×L-1 (detection limit) in the oxic

and anoxic aquaria, respectively. Temperature was between 17.5 and 19.5˚C, salinity 35.2±0.2

psu and pH 8.1±0.1. After 13 days, the incubation was stopped and the vials with the forami-

nifera taken out of the aquaria.

To determine survival rates, individuals were immediately incubated with 10 μM FDA

(fluorescein diacetate) solution [56]. After rinsing, fluorescence of the foraminifera was imme-

diately observed with an epifluorescence stereomicroscope (Olympus SZX16, LPG-BIAF labo-

ratory) equipped with a fluorescent light source (Olympus U-RFL-T). Foraminifera with less

than 3 chambers not fluorescing (terminal chambers) were considered to be alive. The average

size of all juveniles was measured before (t0) and after (t1) the incubation using an automatic

particle analyzer (LPG-BIAF laboratory) equipped with an automated incident light micro-

scope system; a Leica CLS100X ring light source mounted on a monocular Leica Z16PO

microscope. A camera (SIS CC12) recorded images and the size of individuals was determined

with the software analySIS FIVE (SIS/Olympus) [76]. The growth rate (in % size change) was

calculated as: Size t1� Size t0
Size t0 � 100.

Experiment II: Feeding behavior of A. tepida under oxic and anoxic

conditions

Superficial (top 2 cm) sediment was collected at low tide on March 27, 2014, on the intertidal

mudflat of the Bay of Bourgneuf (France). Living foraminifera were picked out from sieved

sediment and transported to LGB laboratory (EPFL, Switzerland).

The diatom Navicula salinicola (CCAP, strain 1050/10) was grown for one week in F2

medium enriched with 2 mM of 13C-enriched sodium bicarbonate (13C fraction of 99%,

Sigma-Aldrich, Switzerland). The F2 medium was made with non-decarbonated water with an

original concentration of ~2 mM sodium bicarbonate. Thus the addition of 2 mM of 13C-

enriched sodium bicarbonate resulted in a labeling of roughly 50% of the dissolved inorganic

carbon (DIC). The microalgae were harvested by centrifugation (1500 g, 10 min), washed 3
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times with artificial seawater (RedSea Salt, salinity of 35 psu) to remove the excess NaH13CO3,

and frozen at –20˚C until use in the experiment.

Starting on April 2nd, 2014 (six days after collection on the mudflat and one day before the

feeding experiment began), living A. tepida specimens were selected under a binocular

microscope, with the same criteria as in Experiment I. A total of about 6000 individuals were

distributed in 93 10 mL glass vials (h = 45 mm, ø = 22 mm), so that each vial contained ca.

65 specimens. 39 vials with foraminifera were placed in each aquarium. Fifteen vials contain-

ing foraminifera were used as control material for the subsequent analyses: 3 for TEM-Nano-

SIMS and total organic carbon (TOC) quantification and stable isotope analysis; 12 for fatty

acid analysis. These were placed overnight in ASW (RedSea Salt, salinity of 35 psu) under

oxic conditions without feeding and were sampled on Day 1, i.e. during the first sampling of

foraminifera.

Incubation was performed as in Experiment I in oxic and anoxic aquarium. After 4 hours

of bubbling with the mixture of N2 and 0.04% CO2 (Carbagas AG, Switzerland), enough to

allow the complete depletion of O2 in the anoxic aquarium, the experiment started. All the

foraminifera were fed by adding 13C-enriched diatoms (ca. 578 mg C×m-2) to all vials (i.e. in

both oxic and anoxic aquaria) over a timespan of a few minutes. Anoxic and oxic conditions,

were maintained from this point onwards. Oxygen concentrations were in the range of 4.1–4.8

mL×L-1 and below 0.007 mL×L-1 in the oxic and anoxic aquaria, respectively. Throughout the

experiment, temperature was between 23 and 24˚C, salinity 32 psu and pH 8.3.

For TEM-NanoSIMS and TOC quantification and stable isotope analysis, 3 vials were har-

vested at 1, 3, 7, 14, and 28 days from each aquarium. In addition, 12 vials were harvested from

each aquarium for fatty acid analyses at Day 7 and Day 28, respectively. Immediately upon

removal from the aquaria, the foraminifera were incubated for 3 h at room temperature in the

dark with FDA to a concentration of 100 μM [77]. Vitality was assessed under an epifluores-

cent stereomicroscope (Leica M165C equipped with SFL100 LED fluorescence module; GFP

green). Only living specimens were selected for further analysis. After rinsing with ASW, indi-

viduals for TEM-NanoSIMS analysis were immediately processed, those for TOC and fatty

acid analysis were stored in cleaned and pre-heated 5 mL glass vials at –20˚C until required.

TEM and NanoSIMS analysis. After incubation with FDA, specimens were immediately

fixed and prepared for TEM imaging using standard procedures (details can be found in S1

Text) and observed with a transmission electron microscope (TEM, Philips 301 CM100, 80

kV) at the Electron Microscopy Platform of the University of Lausanne. Ultra-thin sections

observed with TEM were subsequently imaged with a NanoSIMS ion microprobe [78]. Areas

of interest for NanoSIMS imaging were selected based on TEM observations permitting direct

correlation of ultrastructural (TEM) and isotopic images. Our observations systematically

focused on the antepenultimate chamber of the foraminifera, i.e. the third chamber counting

from the aperture. NanoSIMS imaging followed established procedures [79–81], as detailed in

S1 Text. Regions of interest (ROIs) were drawn with the software Look@NanoSIMS [82] to

estimate the percentage of cytoplasmic occupation and to quantify mean 13C enrichments of

different sub-cellular structures of a given foraminifera. 13C enrichments were reported as 13C

atom fraction in %: x(13C) = 13C/(13C+12C)×100.

Fatty acids. Foraminifera from oxic and anoxic conditions sampled at Days 7 and 28,

respectively, plus a sample of the 13C-labeled diatomic biofilm were analyzed for their fatty

acids (FAs) composition using procedures adapted from [83]. Each sample was analyzed in

triplicate, and the mean value was used for further calculations. For each analysis, lipids were

extracted from 200 water-washed and dried specimens by sonication with mixture of methanol

and dichloromethane of decreasing polarity. An aliquot of internal standard solution of deu-

terated carboxylic acids was added to permit quantification. The carboxylic acids were
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obtained by alkaline hydrolysis of the organic extract and were methylated with BF3/MeOH to

obtain fatty acid methyl esters (FAMEs). Chemical characterization of the fatty acids (as

FAMEs) was performed by gas chromatography/mass spectrometry and quantification by gas

chromatography/flame ionization detection (details in S2 Text).

Stable isotope analyses by isotope ratio mass spectrometry (IRMS). Compound specific

stable C isotopic composition of fatty acids was measured by gas chromatography/combus-

tion/isotope ratio mass spectrometry. The standard deviation for repeatability of the 13C

atomic fraction, x(13C)FA in %, ranged between ±0.01% and ±0.06%. The lipid-free foraminif-

era carbonate shell were analyzed for their 13C atomic fraction, x(13C)car, using a carbonate

preparation device (GasBench II, Thermo Fisher Scientific, Bremen, Germany) and isotope

ratio mass spectrometry. The measured shell 13C atom fractions, x(13C)car, had a precision of

±0.01% (2 SD). The average carbonate content (in μg C×ind-1) of the shells was determined

from the peak area of the major ions, ±0.02 μg C×ind-1 for TOC content. The 13C atom frac-

tion of the total organic matter, x(13C)TOC, of decalcified foraminifera were determined by

continuous flow elemental analysis/isotope ratio mass spectrometry. For each analysis, 30 pre-

viously decalcified specimens were used. The total organic carbon (TOC) content was deter-

mined from the peak area of the major isotopes and expressed in microgram per individual

cell (μg C×ind-1). Reproducibility and accuracy were better than ±0.01% for x(13C)TOC (2 SD)

and ±0.02 μg C×ind-1 for TOC content. For each analysis, 30 specimens were used (details in

S3 Text).

Statistical analysis. Data were analyzed using the R software. Univariate ANOVA tests

were performed to compare the effects of the time and experimental conditions (i.e. oxic vs.
anoxic). To determine the significance between two time points or two conditions at the same

time point, the Tukey post-hoc test was carried out following the ANOVA. For the fatty acid

abundance data, two-sample t-tests were performed to investigate significance of variations

between time points for a given condition. Variances of the data were checked with a F-test

prior the t-tests. The used significance level for all the tests was α = 0.05.

Access to both sampling sites did not required any specific permissions, and the work did

not involve endangered or protected species
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