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Abstract Dynamic island models are population-based algorithms for solving op-
timization problems, where the individuals of the population are distributed on
islands. These subpopulations of individuals are processed by search algorithms
on each island. In order to share information within this distributed search pro-
cess, the individuals migrate from their initial island to another island at regular
steps. In dynamic island models, the migration process evolves during the search
according to the observed performance on the different islands. The purpose of
this dynamic/adaptive management of the migrations is to send the individuals
to the most promising islands, with regards to their current states. Therefore,
this approach is related to the adaptive management of search operators in evo-
lutionary algorithms. In this work, our main purpose is thus precisely analyses
dynamic migration policies. We propose a testing framework that assigns gains
to the algorithms applied on the islands in order to assess the adaptive ability of
the migration policies, with regards to various situations. Instead of having one
dynamic migration policy that is applied to the whole search process, as it has al-
ready been studied, we propose to associate a migration policy to each individual,
which allows us to use simultaneously different migration policies.

Keywords Adaptive Evolutionary Algorithms · Island Models

F. Lardeux
LERIA, University of Angers (France)
E-mail: frederic.lardeux@univ-angers.fr

J. Marturana
Universidad Austral de Chile (Chile)
E-mail: jorge.maturana@inf.uach.cl

F. Saubion
LERIA, University of Angers (France)
E-mail: frederic.saubion@univ-angers.fr



2 Frédéric Lardeux et al.

1 Introduction

Island models (IM) [Whitley et al(1998),Skolicki(2007)] have been introduced in
evolutionary computation in order to avoid premature convergence in population-
based algorithms when solving optimization problems. The main idea of IM is to
use a set of sub-populations instead of a panmictic one, in order to improve the per-
formance of the evolutionary search process. IM are thus closely related to parallel
evolutionary computation [Luque and Alba(2011),Melab et al(2005)]. Each sub-
population evolves independently on each island and interacts periodically with
other islands by means of migrations [Rucinski et al(2010)]. The impact of migra-
tion has been carefully studied [Lässig and Sudholt(2013),Luque and Alba(2010)].
Migrations may be actually used in order to reinforce the most efficient islands
[Skolicki and Jong(2005),Gustafson and Burke(2006),Araujo et al(2009)]. Note that
the impact of the frequency of migrations has been studied in [Mambrini and Sudholt(2014)].
Considering the same algorithm on all islands, one may be interested in assess-
ing the convergence ability by evaluating two complementary aspects: (1) the
ability to converge on each island (e.g., the ability to obtain the best individu-
als on all islands using for instance the notion of takeover time [Rudolph(2000),
Luque and Alba(2010)]) and (2) the ability to ensure a good global diversity to
avoid sub-populations to get stuck in local optima and finally reach a global optima
(e.g., using specific problems, difficult to handle with a single panmictic population
[Lässig and Sudholt(2010)]).

Context

Classically, in above-mentioned works, islands models use the same algorithm on
each island and the islands differ only by their populations. In [Lardeux and Goëffon(2010)]
it has been proposed to consider different algorithms on the islands - restricted in
fact to a basic evolutionary algorithm with only one variation operator - and to
define dynamic migration policies. In this approach, called Dynamic Island Models
(DIM), migration probabilities are modified during the evolutionary process ac-
cording to the impact of previous analogue migrations, by means of a learning pro-
cess. Compared to classic island models DIM has be indeed related to adaptive op-
erator selection techniques for evolutionary algorithms [Da Costa et al(2008)Da Costa]
since only one operator is used on each island. DIM should be able to identify a
subset of islands that are currently the most suitable for improving individuals,
but also to quickly react to changes when new operators become more efficient.
Therefore, DIM can be compared to other classic operator selection mechanisms
[Candan et al(2012)].

Contributions

The purpose of this paper is to carefully study different configuration of the DIM
with dynamic migration policies, as well as their ability to adapt to changes during
the solving process. Such changes occur when the solving process explores different
areas of the search space. Therefore, the basic search operators (or heuristics) may
become more or less efficient according to the current state of the search. Con-
sidering the case where each island may use its own specific search algorithm,
we propose here a testing scenarios in order to simulate the evolution of the
search efficiency on the islands. In such scenarios, gains are associated to oper-
ators of the island in order to reflect their performances. Compared to previous
testing scenarios (see for instance [Thierens(2005),Da Costa et al(2008)Da Costa,
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Candan et al(2013)], we consider here a gain matrix that takes into account possi-
ble interactions between operators, i.e., the efficiency of an operator applied on a
given individual may depend on the previous operators applied on it. This is moti-
vated by the fact that, in search processes, such dependencies may occur between
operators alternating intensification and diversification stages or using comple-
mentary neighborhoods, for instance by means of local search based operators.
We consider several types of scenarios from fixed scenarios to different dynamic
scenarios that may reflect different possible search processes.

While in previous works [Lardeux and Goëffon(2010),Candan et al(2012),Candan et al(2013)]
the same dynamic migration policy has been investigated, we propose here to
study several possible configuration of the DIM, by considering more possible
components, including learning and migration processes. Moreover, instead of hav-
ing a predefined migration policies, we propose to take advantage of this multi-
individuals algorithm by associating policies to individuals. This cooperative model
allows us to use simultaneously several migration policies in order to benefit from
their respective properties. Our study highlights that DIM is efficient for tracking
interactions between islands and to quickly react to efficiency changes during the
search.

Organization of the paper

This paper is organized as follows. Section 2 presents the dynamic island model.
Section 3 discusses how to measure the efficiency of migration policies. The exper-
iments are presented in Section 4 to finally draw conclusions and outline future
works.

2 Dynamic Island Models

In this section we propose to generalize the definition of dynamic island models
proposed in [Lardeux and Goëffon(2010)] by considering different possible options
for the main components of the algorithm that manage the migration process. The
purpose is to evaluate the relative advantages of the resulting possible configura-
tions. A Dynamic Island Model (DIM) is defined by:

– its size n.
– a set of islands I = {i1, · · · , in} and a set of algorithms A = {a1, · · · , an}. Each

algorithm ak is assigned to island ik.
– a set of populations P = {p1, · · · , pn}. Each population is a subset of indi-

viduals. Each population pk is assigned to island ik. The size of the entire
population is fixed but the size of each pk changes continuously according to
the migrations. ak(pk) is the population obtained after applying algorithm ak
on population pk.

– a topology given by an undirected graph (I, V ) where V ⊆ I × I is a set of
edges between islands (here we will consider a complete graph).

– an initial migration matrix M of size n×n with M(i, j) ∈ [0..1]. M is supposed
to be coherent with the topology, i.e., if (i, j) 6∈ V then M(i, j) = 0, M is the
set of migration matrices.

– a migration policy Π : I × M → I that selects a migration island given an
initial island and a migration matrix.
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input : a DIM, a gain function
output: a solution s∗

local : a reward matrix R of size n× n

s∗ ← best(P);
R← 0;
Initialiaze(M);
while not stop condition do

for k ← 1 to n do
Reward(R, pk);
pk ← ak(pk);
for s ∈ pk do

il ←Migrate(ik,M);
pl ← pl ∪ {s};
pk ← pk \ {s};

Learn(M,R);

b← best(P);
if b > s∗ then

s∗ ← b;

Algorithm 1: Dynamic Island Model

Given a DIM, its computational behaviour is described by Algorithm 1.

Description of the components of the algorithm:

– Note that, in this paper, we do not address a particular optimization problem,
but we rather aim at testing scenarios in order to evaluate different possible
settings of the DIM. Therefore, we define a notion of gain associated to each
algorithm located on the islands that simulates the effect of its application
on the individuals of the population. For instance, this gain can be the fitness
improvement with regards to a classic optimization problem. Of course, this ap-
proach does not take into account the fact that the performance of an algorithm
a depends, most of the time, on the semantics - phenotype and/or genotype
- of the individuals in real problem. Nevertheless, such testing scenarios for
EAs have been widely used for studying control of operators [Thierens(2005),
Da Costa et al(2008)Da Costa] and are indeed useful for evaluating general
properties of these adaptive control mechanisms.

Definition 1 (Gain and fitness of individuals) We consider a function gain :
A × N → R, such that gain(a, t) is the gain of algorithm a when processed at
iteration t of the DIM. Individuals may be abstracted by the sum of their
successive gains. For an individual s ∈ pi at iteration t, we define its value
(fitness) at iteration t as v(s, t) = Σtτ=1gain(as(τ), τ), where s(τ) is the island
where s was located at iteration τ .

– The value R(i, j) of reward matrix R evaluates the benefit (by means of fitness
improvement) of sending individual from island i to island j. R is used to
update the migration matrix M by means of a reinforcement learning based
process. Note that R is initialized with 0 values. M can be initialized with equal
values for all M(i, j) corresponding to equal probabilities of migration for any
pair of islands.

– The function best computes the best current individual of the whole population,
best(P) = best(∪i∈I(pi)), according to their values.
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– The stop condition is, as usual, a limited number of iterations or the fact that
an optimal solution has been found in the global population P.

Let us now focus on the most important components. Since M and R will be
changed at each iteration of the algorithm, let us denote M (t) and R(t) the value
of these matrices at iteration t of the algorithm.

2.1 Learn Function

Basic Reinforcement Learning Function

The basic learning principle consists in sending more individuals to the islands
that have previously improved individuals coming from the current island and less
to the islands that are currently less efficient. The learning process is achieved by
an adaptive update of the migration matrix at iteration t, M (t), performed as:

M (t+1)(i, k) = (1− β)(α.M (t)(i, k) + (1− α)R
(t)
i (k)) + β.N (t)(k)

where N (t) is a stochastic noise vector. The parameter α represents the importance
of the knowledge accumulated (inertia or exploitation) and β is the amount of
noise, which is necessary to explore alternative actions. The influence of these
parameters has been studied in [Candan et al(2012)].

QLearning Based Function

We use here a classic QLearning (see [Sutton and Barto(1998)] for more de-
tails) algorithm in order to update the transition matrix. Compared to previous
approach learning function, QLearning takes into account an estimation of the
future optimal value that can be obtained after a migration has been performed.

M (t+1)(i, k) = M (t)(i, k) + δ(R
(t)
i (k) + γmaxjM

(t)(k, j)−M (t)(i, k))

where δ is the learning rate and γ is a discount factor that allows to control the
importance of the estimation of expected future gains.

2.2 Reward Function

R
(t)
i (k) corresponds to the reward assigned to individuals that were on island i at

iteration t−1 and that have been processed on island k at iteration t. We consider

two possible reward functions for computing R
(t)
i (k).

Elitist Reward: R
(t)
i (k) =

{
1
|B| if k ∈ B,
0 otherwise,

with

B = argmax
k∈{1,...,n}

({v(s, t)− v(s, t− 1)|s(t) = k, s(t− 1) = i})

Note that B is the set of the indices of the islands k where individuals coming
from i at iteration t− 1 have obtained the best gain improvements at iteration t.

Proportional Reward: R
(t)
i (k) = Σs∈Kv(s,t)

|K| ,

with K = {s ∈ p(t)k |s(t− 1) = i}
Note that K is the set of the individuals of the island k at iteration t that were

on island i at iteration t− 1.
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2.3 Migrate Function

We consider four possible migration functions:

– Elitist migration: individuals from island i migrate to the island j that has
the highest value in line vector, i.e. argmaxjM

(t)(i, j). Such migration policy
promotes intensification of the search process toward the most efficient islands.

– Proportional migration: for each individual s on island i the classic migration
process consists in sending this individual according to a probability on line

vector M
(t)
i . Note that M is normalized in order to insure good probability

properties.
– Uniform migration: individuals from island i migrate to the island j at random

uniformly.
– UCB based migration: the selection of the next possible migration can be consid-

ered as a reinforcement learning problem itself. Therefore, we consider this se-
lection as a multi-armed bandit problem (see [Cesa-Bianchi and Lugosi(2006)]
for instance) and we select the next migration using the following formula:

UCB(i, j) = M
(t)
i +

√
2 log(

∑
1≤j≤n nb

(t)
i (k))

nb
(t)
i (j)

where nb
(t)
i (k) is the number of individuals that have migrated from i to k at

iteration t. Note that we use here indeed the migration matrix as an estimation
of the gain that has been obtained by migration from i to other islands. The
island with maximal UCB value is selected for next migration.

2.4 Configurations of the DIM: Setting the Policy

While in previous works [Lardeux and Goëffon(2010),Candan et al(2012),Candan et al(2013)],
the proposed DIM was using a single configuration for its migration policies (i.e.,
choice of reward, learn and migrate functions). In this work, we propose to consider
more possible components and to generalize the study of different configurations
in order to highlight their respective behaviours. In particular we consider an al-
ternative learning mechanism based on QLearning, as well as alternative migration
functions.

Instead of considering configurations at the algorithm level, we want to fully
benefit from the collaborative model induced by the DIM and we propose to link
configurations to individuals, allowing thus the DIM to use simultaneously different
policies within the same search process. This is motivated by the fact that the DIM
is particularly well suited to the management of collaborative policies. Moreover,
we previously observed that different policies leads to different search behaviour
and we propose here to check that cooperation may lead to better results that the
use of a single policy.

We may first remarks that different migrate functions may be used in the
same DIM while its is not possible to use different Learn and reward functions
at the same time since they manage the matrices R and M differently, involving
incompatible update processes. Based on the previously described components, we
propose the following taxonomy in order to define different configurations of the
DIM. A policy for a DIM will be described by a tuple

(typel, typer, typem)
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where

– typel corresponds to the type of learning functions (see Section 2.1), typel ∈
{C,Q}, (C)lassic or (Q)learning

– typer corresponds to the type of reward functions (see Section 2.2), typer ∈
{E,P}, (E)litist or (P)roportional

– typer corresponds to composition of the population concerning the migra-
tion functions (see Section 2.3) and is a tuple (Elit, Prop, Unif, UCB) with
Elit, Prop, Unif, UCB ∈ {0, 1}. For instance, (1, 1, 0, 1) means that one third of
the individuals use elitist migration, one third use proportional migration, and
one third UCB based migration.

Note that we may consider here pure policies, i.e., policies that use only
one type of individuals as well as mixed policies were the migration policy is
not the same for all individuals. For instance, the policy (C,E, (0, 1, 0, 0)) corre-
sponds to the basic dynamic island model that has been previously studied in
[Candan et al(2012),Candan et al(2013)].

Note that DIM migration policies have been previously compared to adaptive
selection operator policies based on reinforcement learning technique, considering
AOS as a multi-armed bandit problem. These previous works [Goëffon et al(2016),
Candan et al(2012),Candan et al(2013)] have shown that DIM is an efficient al-
ternative to these approaches. In this paper, since we consider gains that de-
pend from previously visited island, classic AOS approaches, as fully described in
[Maturana et al(2012)], are not efficient (as we have checked experimentally). As
baseline for comparisons, we consider the following policies:

– A myopic oracle (Oracle) which knows the hidden matrix and selects, at it-
eration t + 1, argmaxj H

(t+1)(i, j) if action ai has been selected at iteration
t.

– A uniform selection (U) that selects uniformly an action at each iteration.

3 Assessing the Efficiency of the DIM Configurations

In this section, we focus on assessing the ability of DIM to dynamically select the
most promising islands according to the current state of the search. This corre-
sponds to assess that the migration policies are able to adapt to changes that may
occur during the search process, which will be simulated by search scenarios. In
order to define these scenarios, we are particularly interested in two main aspects:

– introduce changes in the efficiency of the islands, which corresponds to the fact
that different exploration and exploitation stages are usually required along a
search process, involving different search operators

– take into account dependencies between islands in order to discover possible
cooperative sequences, which corresponds to the fact that, when using differ-
ent operators into a search algorithm (e.g., metaheuristics or hyperheuristics),
they can be combined to achieved an efficient search (for instance due to com-
plementary effects). For instance, after having reached a local optimum with a
given search operator, one may use another operator to escape from this local
optimum (e.g., using different neighborhoods that correspond to different local
move operators).
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The purpose of this paper is to assess the efficiency of different dynamic migra-
tion policies using evaluation models that consider both above-mentioned aspects.
Given an DIM, the efficiency of the policy can be estimated according to the fit-
ness of the individuals that are generated during the solving process. As mentioned
before, we will use here generic testing scenarios (i.e., not related to a specific op-
timization problem) for assessing this efficiency .

Given a DIM and a time horizon T , the efficiency of its migration policy is
defined by the value ΣTt=1gain(ai(t), t) obtained by its best individual s∗ after T
iterations, where ai(t) is the algorithm that has been applied on this individual on
island i(t) at iteration t. In this context, an optimal policy corresponds to the best
sequence ai(1), · · · , ai(T ) (that also corresponds to the best visiting sequence of
islands i(1), · · · , i(T )). In order to assess the ability to adapt the migration policy
to changes, we introduce a hidden gain matrix.

Definition 2 (Hidden Gain Matrix) Given a DIM we define a sequence of ma-
trices H(t), for each iteration t of the algorithm, of size |A|2 such that gain(ak, t) =
H(t)(j, k) if ai(t−1) = aj (i.e., gain from j to k).

The gain obtained by action ak depends on the action aj that has been previ-
ously applied on the considered individual. This general model allows us to take
into account dependencies between search operators that should be used sequen-
tially. Of course, H is not known by the DIM. Note that while H(t) encodes gains,
M (t) encodes migration probabilities. Nevertheless, the accuracy of the learning
process will be easy to assess by comparing the structures of H and M . Note that,
for an individual s, v(s, t) = Σtk=2H

(k)(s(k−1), s(k)). When solving real problems,
the gains associated to the application of the search operators are likely to change
over time. In order to simulate this behavior in our model, H will be a dynamic
in our experiments, with changing values H(t).

Moreover, in order to simulate the fact that search operators can be often
stochastic, we will consider two different types of gains, extending Definition 2:

– fixed gain functions, where gain(ak, t) is always equal to the value H(t)(j, k) as
mentioned in Definition 2.

– probabilistic gain functions, where gain(ak, t) = 1 according to the probability
defined by H(t)(j, k). For this reason, the values of H will always belong to
interval [0, 1].

Therefore a scenario is fully defined by a sequence of hidden matricesH(0), H(1), · · · , H(T ).

4 Experiments

The purpose of this section is to evaluate and to analyze the respective perfor-
mances of the different possible configurations of the DIM, that implement dif-
ferent migration policies, on various possible testing scenarios. According to our
evaluation methodology described in Section 3, we consider both static and dy-
namic hidden gain matrices. The goal is to provide representative scenarios, where
interaction between islands may be stable or may evolve during the search pro-
cess. Some dynamic scenarios are defined by alternating different matrices selected
from a set of predefined fixed matrices, at different change frequencies. We use also
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Markov inspired scenarios in order to simulate a search process that changes pro-
gressively and reach a stable state after a certain time. Remind that our main
motivation is to focus on the management of the migration of individuals within
the DIM, whose efficiency is assessed by scenarios that take into account the
benefit of visiting the islands (and thus being processed by their corresponding
algorithms).

4.1 Hidden Gain Matrix

In this section, we present the three different types of scenarios that will be used
in our experiments.

4.1.1 Fixed Hidden Matrix

Three basic 10× 10 gain matrices A,B and C are defined. These matrix represent
typical situations with different types of dependencies between islands. Based on
A,B and C, we will define either constant H such that H(t) is always equal to one
of these matrix or changing H. The gains are illustrated on Figure 1. The thickness
of the arrows from i to j is proportional to the associated gain H(t)(i, j) (as in
Definition 1). Of course, even if there is no edge between some islands, migrations
are possible but with a null gain H(t)(i, j), which means that no benefit is obtained
by using the operator j after the operator i (e.g., if operators have opposite or
incompatible effects).
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Fig. 1 Representation of possible gains of H.

Matrix A has two possible gain paths of length 3 that provide a total gain of 2.
Nevertheless, once reaching the end of these paths, one needs to start again from
island 1. Therefore, using one of these paths is suboptimal compared to a cycle
(1−2−4−1). This matrix is introduced to check if the policy is able to avoid being
trapped into suboptimal paths. Matrix B is introduced to checked that with only
3 efficient paths, the policy is able to identify short gain paths (e.g., performing
a cycle (10 − 2 − 10)). C has a clear gain cycle (2 − 10 − 9 − 8 − 7 − 5 − 2) with
no null gain transition. However this cycle is suboptimal compared to the optimal
cycle (2− 10− 7− 5− 2).
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4.1.2 Dynamic Hidden Matrix

In order to define a dynamic hidden matrix it is possible to use a sequence of fixed
matrices or to use a matrix based on Markov chain transitions.

– Dynamic hidden matrix based on fixed matrices (Hidden Dyn)
In this model, we use the three previous matrices A,B and C, which are alter-
nated at defined time steps. Given a change frequency FC and a time horizon
T the Hidden Dyn matrix can be defined as:

H(t) = A if (FC > 1 ∧ (t div FC) mod 3 = 0) or (FC = 1 ∧ t mod 3 = 1)

H(t) = B if (FC > 1 ∧ (t div FC) mod 3 = 1) or (FC = 1 ∧ t mod 3 = 2)

H(t) = C if (FC > 1 ∧ (t div FC) mod 3 = 2) or (FC = 1 ∧ t mod 3 = 0)

– Dynamic hidden matrix based on Markov chain transitions (Hidden Markov)
We use a Markov chain transitions matrix ([Kemeny and Snell(1960)]) as dy-
namic hidden matrix.

HMarkov(0) =



0.6 0.4 0 0 0 0 0 0 0 0
0 0.3 0.3 0 0.4 0 0 0 0 0

0.2 0 0.8 0 0 0 0 0 0 0
0 0 0 0 0 0.6 0.4 0 0 0
0 0 0 0 0 0.3 0.7 0 0 0
0 0 0.2 0.5 0 0 0.3 0 0 0
0 0 0.2 0.8 0 0 0 0 0 0
0 0 0 0 0 0 0 0.5 0.2 0.3
0 0 0 0 0 0 0 0.1 0.5 0.4
0 0 0 0 0 0 0 0.1 0.4 0.5


As for dynamic hidden matrix based on fixed matrices, we also use a frequency
of changes FC. Each change corresponds to the update of the hidden matrix,
such that H(t) = H(t−1) ×H(0). This Hidden Markov matrix converges to an
equilibrium for t = 50, and stabilizes after 50 steps.

We consider two possible types of gains: either constant gains, in this case
as mentioned in Section 3, gain(ak, t) = H(t)(j, k) if ai(t−1) = aj or probabilistic

gains, in this case gain(ak, t) = 1 with a probability equal to H(t)(j, k). This al-
lows us to simulate scenarios where the effect of an operator can be subjectied
to stochastic phenomena, which is expecially the case in metaheuristics that use
generic operators (e.g., uniform crosser or basic mutation operators in evolution-
nary algorithms).

4.2 Description of the Test Instances and Parameters of the Configurations

Using the previous matrices, we define the following sets of test scenarios over a
time horizon T = 600.

– Changing dynamic hidden gain matrix with fixed gains and change frequencies
1, 5, 10, 25, 50, 100 and 200
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– Markov hidden gain matrix with fixed gains and change frequencies of 1, 5, 10, 25, 50, 100
and 200

– Changing dynamic hidden gain matrix with probabilistic gains and change
frequencies of 1, 5, 10, 25, 50, 100 and 200

– Markov hidden gain matrix with probabilistic gains and changes frequencies of
1, 5, 10, 25, 50, 100 and 200

– Fixed matrices A,B and C with fixed gains
– Fixed matrices A,B and C with probabilistic gains

We consider thus 34 scenarios for each configuration of the DIM. Each config-
uration is evaluated on 20 independent runs for each scenario.

Note that some components require parameters (in particular the learning
functions, see Section 2.1). They have been obtained using a methodological tuning
process with statistical tests. For the basic reinforcement learning function, we have
used α = 0.8, β = 0.01. For QLearning, we have used δ = 0.1 and γ = 0.8.

4.3 Experimental Results

The experimental results are presented according to the previously described sce-
narios on the different configurations/policies of the DIM, with regards to our
taxonomy (see Section 2.4).

4.3.1 Configurations Based on QLearning

In this paper, we introduce QLearning as a possible learning technique in order to
update the migration matrix M as defined in Section 2.1. Therefore, we first study
this new configuration of the DIM before going on into more complete comparisons.

According to Section 2.4, this learning approach can be combined with two
possible reward functions providing a set of possible configurations of the form
QE∗ or QP∗, where ∗ is any tuple of {0, 1}4. We have run the previously defined
testing scenarios and we observed that both configurations provide similar results
for each scenarios (according to a T-test). Therefore, in the following, we only
consider one type of configuration, which will be called Q∗, with the different
values of ∗ as above.

Concerning the QLearning Q∗ configurations, we aim first at evaluating dif-
ferent configurations with only one individual in order to observe the perfor-
mance on this new learning mechanism in this context of migration policy. To
this aim, we run single individual versions of the four following configurations
Q1000, Q0100, Q0010, Q0001, where the population size in thus 1. Each configu-
ration has been run 20 × 20 times for each scenario and the best results of each
sequence of 20 consecutive runs has been used to compute the mean value. In this
case, we compare the mean value with the results obtained with other configura-
tions with 20 individuals. Table 1 shows that the configuration Q1000 provides the
best results, followed by Q0100, which means that for QLearning, as expected, a
greedy based strategy is useful for selecting next action.

Once having compared the respective performances of the different ”pure” con-
figurations based on QLearning, we aim at studying the influence of using several
individuals with different migration policies, instead of a single one, i.e. assessing
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Fixed Matrices
Strategies A B C

Q1000 165,80 64,33 328,10
Q0100 125,20 50,53 223,42
Q0010 19,31 9,18 20,26
Q0001 57,31 21,65 74,64

Hidden Dyn with Different Change Frequencies
Strategies 1 5 10 25 50 100 200

Q1000 102,74 47,82 41,80 46,56 67,30 125,05 163,10
Q0100 51,60 44,42 43,08 49,99 57,91 85,44 128,74
Q0010 16,80 16,49 15,92 17,25 15,90 16,90 16,63
Q0001 18,70 17,04 19,18 26,96 27,57 39,30 66,65

Hidden Markov with Different Change Frequencies
Strategies 1 5 10 25 50 100 200

Q1000 146,35 158,86 167,15 185,18 198,10 222,17 256,54
Q0100 130,43 131,18 132,93 135,56 143,72 159,30 184,50
Q0010 60,79 60,70 60,47 60,64 60,41 60,36 60,20
Q0001 83,41 83,44 83,48 83,89 84,63 90,63 106,20

Table 1 QLearning Configurations - Scenarios with Fixed gains - One individual

the benefit of using a cooperative management of the migration process and its
influence on the knowledge that is collected by a population of individuals. We
focus thus on the configuration Q1000 and run several experiments with different
population sizes. Note that for all experiments, the same computation power is as-
signed to each configuration, i.e. when the number of individuals is lower then the
number of executions used to compute the mean values is increased, as mentioned
above. The number of individuals ranges from 1 to 400 for the different scenarios
with fixed gains.

The results observed on Table 2 show that the performance increases as the
number of individuals increases. This results is interesting, since from the QLearn-
ing point of view, it means that using a DIM with several individuals, which share
their learned information by means of the migration matrix, may improve the
global learning process and, consequently, improves the management of the migra-
tions. It also appears that, when using more than 20 individuals, the improvement
slows down. Therefore, we consider that using 20 individuals for next experiments
constitutes a good compromise.

In this section, we have restricted the presentation of our experiments to fixed
gain scenarios, since results obtained with probabilistic scenarios are rather similar.
We have only assess the benefit of using several individuals instead of a single
one for improving the performance of configurations that use only one type of
individuals. In next section, we will consider general configurations using several
type of individuals - and thus several migration policies - simultaneously.

4.3.2 Comparison of the Different Configurations

According to previous remarks of Section 4.3.1, we consider 15 configurations
for QLearning (all possible combinations types, ignoring the reward function as
already mentioned), 30 configurations for the classic learning mechanism C associ-
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Fixed Matrices
nb ind A B C

1 165,80 64,33 328,10
4 266,48 71,73 345,24
10 285,13 74,39 353,65
20 292,99 76,37 353,81
50 295,43 77,30 360,81
100 297,00 78,96 365,94
400 297,76 79,95 390,00

Hidden Dyn with Different Change Frequencies
nb ind 1 5 10 25 50 100 200

1 146,35 158,86 167,15 185,18 198,10 222,17 256,54
4 193,23 211,27 215,45 224,48 235,66 258,63 292,62
10 223,17 233,99 236,93 240,27 254,33 284,98 327,23
20 241,84 247,34 250,43 251,38 263,74 296,93 339,57
50 250,05 251,92 252,54 253,96 269,89 310,78 364,17
100 253,14 253,50 254,13 256,44 270,75 310,77 362,44
400 255,65 256,03 256,50 257,92 274,71 327,93 395,20

Hidden Markov with Different Change Frequencies
nb ind 1 5 10 25 50 100 200

1 102,74 47,82 41,80 46,56 67,30 125,05 163,10
4 136,01 90,15 74,12 97,93 153,16 180,51 209,37
10 144,88 105,75 100,74 125,75 176,00 200,90 232,96
20 146,01 134,55 113,53 131,48 190,27 218,73 243,21
50 134,32 135,21 121,66 132,30 195,63 223,57 245,90
100 130,66 147,71 127,72 134,09 196,28 226,87 248,31
400 137,92 149,15 127,07 132,08 175,98 225,61 250,79

Table 2 Q1000 - Scenarios with Fixed gains - Different Population Sizes

ated to all possible rewards and combinations of migration functions, the uniform
blind migration policy (U) and the myopic oracle (Oracle). Hence, 47 configura-
tions are evaluated on 34 scenarios. In order to provide a more readable analysis
of the results, we decide to focus on the 12 best performing policies (first quartile).

In the following tables, for a given column, in case of different performance, the
darkest the cells, the better the results. Cells that have the same background colour
correspond to statistical similar results according to an ANOVA test that has been
performed over 20 executions of each method for each instance. For instance, for
the first column all configuration have provided statistically equivalent results. FC
is the frequency at which the hidden matrix are changed.

We first analyze the results for Fixed, Hidden Dyn and Hidden Markov matrices
with fixed gains.

Table 3 shows that depending on the structure on the hidden matrix that may
contain improvement cycles or not, and suboptimal gain cycles, the performance
of the policies may differ. In particular, it is interesting to remark that the Oracle
may be confused with matrix A, where there exist two possible gain paths (no
cycle), one being suboptimal. Q* policies are more efficient to detect such gain
cycles and identify the best ones. Since on matrix B no cycle occurs, classic C*
policies can be efficient to detect short gain paths or cycle paths, as on matrix
C. Of course it is noticeable that Q* policies provides good performance as soon
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Fixed Matrices
A B C

Q1001
(44)

Q1000 (40) Oracle (46)
Q1101 Oracle (39) CP1001

(43)
Q1000 (43) Q1110

(33)
Q1001

Q1011
(41)

Q1100 Q1010
(37)

Q1100 CP1111 Q1100
Q1111 (40) Q1010 (32) Q1101

(36)
Q1110

(38)
Q1011 (31) Q1011

Q0101 Q0110 (30) Q1110
Q0100

(36)
Q0100

(29)
Q1111

Q1011 C P 0011 C P1011 (30)
Q1101

(35)
Q0111 (27) CE1101 (28)

Q1111 CP 0111 (26) CE1111 (27)

Table 3 Basic Fixed Matrix (A - B - C)- Fixed Gain - Top 12 Configurations

Frequency of changes (FC)
1 5 10 25 50 100 200

Q1100 (45) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Q1000
(42)

Q1000
(45)

Q0101 (38) Q1100
(41)

Q0101 39 Q1010 (45) Q1110 (45) Q1100 Q1100
Oracle (37) Q1101 Q1001 (38) Q1110

(40)

Q1010

(40)

Q1101 Q0100
(42)

Q1000
(33)

Q0100 (39) CP1010
(33)

Q0110 Q1011 Q0100 (41) Q1110
Q1101 CP1001

(38)
Q1101 Q0111 Q1111 Q1011 (40) Q1101 (41)

Q0100
(31)

Q0101 Q1000 (32) Q1011 Q1000 Q1111 (39) Q1001
(40)

Q1111 Q1000 (37) Q0110
(30)

Q1111 Q0100 Oracle
(38)

Q1111
Q1001

(30)

CP0001 (35) Q1010 Q1000 (36) Q0110 (36) Q1110 Q1011 (39)
CP1010 Q1001 (34) Q1100

(29)
Q0101

(33)
Q1100

(33)
Q1010 (37) Q0110

(35)CP1011 Q1110
(33)

Q1011 Q1100 Q1101 CP0111 (33) Q0101
CP1111 Q1111 Q1110 Q0011 (31) CP0111 (31) Q0111 (32) Q0111

Table 4 Hidden Dyn - Fixed Reward - Top 12 Configurations

as they use either elitist or proportional migration to promote greedy choices. For
instance, let us consider Q1001, which mixes elitist choice and UCB, using greedy
choice and a slight exploration process. This policy is indeed known as a good
strategy when using QLearning.

We consider now the dynamic hidden matrices based on alternating between
A,B and C, again with fixed gains. These matrices will be called Hidden Dyn in
the remaining of this paper. We may observe on Table 5 that, if the changes are
too frequent then, since the learning process is unable to detect any stable knowl-
edge, most of the policies are statistically equivalent. Nevertheless, note that, if
we considered more than the 12 best policies it will not be still the case. Since
the Oracle was rather efficient for the fixed matrices case, it still have good prop-
erties. In most of these experiments, classic learning process (either CP or CE)
exhibit good results. It is also interesting to mention that, in these experiments,
configurations Q∗ that use several types of individuals obtain better results than
configuration using only one type of individual.

On Table ??, results are more contrasted between the different policies. When
the frequency of changes if high (i.e., lowest values), then the matrix stabilizes
sooner (remind that the matrix is stable after 50 changes). Therefore, methods
that were efficient for fixed matrices are also efficient here (e.g., CP* or Q*). It
is interesting to see that when the changes are less frequent, due to the struc-
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Frequency of changes (FC)
1 5 10 25 50 100 200

Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Oracle (46)
Q1101

(38)

CP1001
(37)

Q1001 (40) Q1001 (39) Q1101 (34) Q1101 (36) Q1110
(29)

CE1001 Q1001 CE1001 (39) CP1001
(38)

Q1100
(33)

Q1100 (35) CP1011
Q1001 CE1001 CP1001

(36)
CE1001 Q1001 Q1110 (34) Q1101 (28)

CP1001 Q1101 (36) Q1101 Q1101 (35) Q1010

(31)

Q1011 (33) Q1100

(27)
CE1011

(35)
Q1011 (35) CE1011

(33)
Q1011 (34) Q1011 Q1010

(32)
Q1001

Q1011 CE1011

(32)

Q1011 CE1011

(30)

CP1001 Q1001 Q1011
CE1101 (34) Q1100 Q1100 (32) CE1101 Q1110 Q1111 Q1111
Q1100

(32)
CE1101 CE1101

(30)
Q1100 Q1111 CE1111

(26)
CP1111

Q1110 Q1111 Q1111 Q1111 CE1101 (30) CP1011 Q1010
(26)

Q1111 CE1111
(30)

Q1110 Q1110 (29) Q1000 (29) CE1011
(25)

Q0011
Q1010 (31) Q1110 Q1010 (29) Q1010 (28) CE1001 (27) CE0011 CE0111 (25)

Table 5 Hidden Markov - Fixed Gains - Top 12 Configurations

Fixed Matrices
A B C

Q1000
(41)

Oracle
(39)

Oracle (46)
Q1001 Q1000 CP1001 (37)
Q1011

(39)

Q1110 (35) Q1001 (36)
Q1100 Q1100 (34) Q1010

(35)
Q1101 Q0100

(30)
Q1100

Q1111 Q0110 Q1101 (33)
Q1110 (37) Q1010 Q1011

(32)Q0100
(36)

CP0011

(28)

Q1110
Q0101 CP0100 Q1111
Q1010 CP1111 CP1111 (28)
Q0110

(35)
Q1011 CE1111 (26)

Q0111 CP0111 (24) CE0011 (25)

Table 6 Basic Fixed Matrix (A - B - C)- Probabilistic Gain - Top 12 Configurations

ture of the initial matrix, which does not have specific gain paths or cycles, Q∗

are really efficient and may become even better than the Oracle. This phenom-
ena is certainly related to the successive states reached by the matrix during its
stabilization process.

The following Tables 6,7 and 8 show the results obtained with probabilistic
gains. These results are somehow quite similar for many policies. Nevertheless,
when using probabilistic gains, it seems that Q∗ policies have better properties
than C∗ policies.

In order to give a clearer overview of our experiments, we present in Figure 2
and Figure 3, a global comparison of the methods that have been ranked in the
top 12 for all previous experiments, distinguishing between fixed and probabilistic
gains. We may draw the following conclusions from these experiments:

– The newly introduced Q∗ policies provide good results allowing to reach even
better adaptive control than a myopic Oracle. In presence of fixed gains, classic
configurations C∗ are still interesting. Note that all the best configurations use
individuals that migrate according to an elitist choice (i.e. greedy choice of the
best possible next decision). When this migration component is not present, it
can be compensated by a proportional migration that allows the individuals to
benefit from a less elitist migration process. The UCB migration policy mixing
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Frequency of changes (FC)
1 5 10 25 50 100 200

Q0101 (38) Oracle (46) Oracle (46) Oracle (46) Oracle (46) Q1000 (42) Q1000 (45)
Oracle

(37)
CP1001 (42) Q0101

(40)
Q1010

(44)
Q1010

(42)

Q1100 (41) Q0100
(43)

Q0100 Q1100 (41) Q1001 Q1110 Q1011 Q0100

(40)

Q1100
Q1000 Q0100 (40) CP1010

(32)
Q0110

(40)

Q1110 Q1101 Q1110 (42)
Q1001

(36)
Q1101 (38) Q1000 Q0111 Q1111 Q1110 Q1101 (41)

Q1101 CP1010
(36)

Q1101 Q1011 Q1000 (38) Q1111 Q1001
(40)

Q1100 (34) Q0101 Q0100
(31)

Q1111 Q0100

(37)

Oracle
(38)

Q1111
CP1001

(30)
Q1001 Q1100 Q1000 (38) Q0110 Q1011 Q1010

(38)
Q1110 CP0001 (35) Q0110

(30)

Q1101 (36) Q0111 Q1010 (36) Q1011
Q1111 CP1011

(34)
Q1010 Q0011

(33)
Q1100 CP0011

(32)
Q0110 (37)

CP1101 (29) Q1000 Q1011 Q0100 Q1101 (35) Q0101 Q0101
(35)

CP1010 (27) CP0011 (32) Q1110 Q0101 CP0111 (32) Q0111 Q0111

Table 7 Hidden Dyn - Probabilistic Gains - Top 12 Configurations

Frequency of changes (FC)
1 5 10 25 50 100 200

Q1101 (39) Oracle (37) Oracle (39) CE1011
(35)

Oracle (43) Oracle (45) Oracle (46)
Oracle (38) CE1011 (36) CE1011

(34)

Oracle Q1100 (40) Q1100 (42) Q1100 (38)
CE1101 (36) Q1101 (35) CE1101 Q1101 Q1000

(33)
Q1010

(38)
Q1001

(37)
CE1001

(34)
CP1001 (34) CP1001 CP1001 (34) Q1010 Q1101 Q1010

CE1011 Q1100

(33)

Q1101 CE1001

(33)

Q1101 Q1001
(35)

Q1101 (34)
Q1001 Q1011 CE1001

(33)

CE1101 Q1011 (32) Q1011 Q1011 (32)
Q1011 (32) Q1010 Q1001 Q1001 CE1011 (29) Q1110 Q1110 (31)

CP1001

(31)

Q1001 Q1010 Q1011 CP1001
(27)

Q1111 (28) Q1111 (30)
CP1101 CE1101 Q1011 Q1100 Q1001 CE1011 (26) Q0011 (24)
Q1010 CE1001 Q1100 (32) Q1010 (32) Q1110 Q1000 (25) CP0011 (23)
Q1100 Q1111

(30)
CP1011

(31)
CP1011

(30)
CE1101 (26) CE0011 (21) CE0111

(18)
CP1011 (30) CP1101 CP1101 Q1000 CE0011 (23) CE0111 (20) Q1000

Table 8 Hidden Markov - Probabilistic Gains - Top 12 Configurations

exploitation (greedy choice) and exploration (random choice) seems to be also
an interesting diversification mechanism, if combined with more exploitative
strategies, while not being efficient if used alone (as seen in Section 4.3.1).

– Using simultaneously several types of individuals is really beneficial. In fact,
some individuals play the role of explorers: even if they obtain poor gains,
they contribute to the global learning process, by updating the reward matrix
and, consequently, the migration matrix. Individuals that focus on elitism can
be considered as champions, whose role is to collect the best possible scores,
according to the current knowledge with regards to estimated expected gains.
Therefore, instead of achieving the classic trade-off between exploration and
exploitation at the algorithm level, it is performed by means of the cooperation
between individuals. In particular, let us note that C∗ configurations using
several types of individuals achieve better result than the classic initial DIM
(i.e., CE 0 1 0 0). In general, good results can be obtained when individuals
using an elitist migration policy are associated to individuals using a policy
that permits more or less diversification (from uniformly random choice to
proportional choice).

– Concerning QLearning based configurations, remark that, of course, this learn-
ing process is really interesting for controlling migrations in DIM, which had
not been experimented before. Moreover, it is interesting to remark that using
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simultaneously different type of individuals provide an increase of efficiency of
the learning process compare to a pure strategy (e.g., Q 1 0 0 0). In particular,
it should be noticed that the configuration Q 1 1 0 0, that mixes elitist and
proportional migration, always belong to the 12 best configurations for the 34
scenarios.

Fig. 2 Ranking of configurations for fixed gains

Fig. 3 Ranking of configurations for probabilistic gains

5 Conclusions

In this work, we propose to study the management of migrations in islands models.
In Dynamic Island Models, the migration mechanism is updated during the search
in order to better adapt to the current state of the search process and therefore
to improve its overall performance. DIM are using different sub-populations that
are processed by different search operators or algorithms. These operators may
have complementary or opposite effects during the search. Hence, a key feature
for insuring a good trade-off between exploration and exploitation of the search
space is to manage the distribution of the individuals on these sub-populations,
which are considered to be located on islands. In order to provide a wide range of
possible search situations, we propose to use search scenarios that take into account
possible interactions between the operators as well as the dynamic evolution of
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their efficiency during the search. Based on a generic DIM, we propose a rather
complete set of possible components that allows us to define different configuration
of the DIM, involving different management of the individuals and of the migration
processes. Instead of having one dynamic migration policy that is applied to the
whole search process, as it has already been studied, we propose here to associate
this policy to each individual, which allows us to use simultaneously different
migration policies within the same DIM. Therefore, these individuals cooperate
and share their information into a common migration matrix. We also consider in
this work, a QLearning approach in order to learn what are the best migration
choices for individuals at a given state of the search. We evaluate these possible
configurations of the DIM on a set of scenarios. Our results highlights that:

– using QLearning is interesting for managing migrations in dynamic island mod-
els,

– using a population of individuals that cooperate by exchanging informations
improves the QLearning performance for scheduling the operators that must
be used along the search compared to a single learning process,

– considering simultaneously different type of individuals that use different mi-
gration policies is also beneficial and leads to good results compared to pre-
viously proposed dynamic migration approaches in the context of our search
scenarios.
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