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a b s t r a c t 

One essential element for the successful application of metaheuristics is the evaluation function. It should 

be able to make fine distinctions among the potential solutions in order to avoid producing wide plateaus 

(valleys) in the fitness landscape, on which detecting a promising search direction could be hard for cer- 

tain local search strategies. In the specific case of the cyclic bandwidth sum ( CBS ) problem, the heuristics 

reported have used directly the objective function of the optimization problem to assess the quality of 

potential solutions. Nevertheless, such a conventional function does not allow to efficiently establish pref- 

erences among distinct potential solutions. In order to cope with this important issue, three new more 

refined evaluation functions for the CBS problem are introduced in this paper. 

An in-depth comparative analysis considering the conventional and the three proposed evaluation func- 

tions is carried out and presented. It includes an assessment of their: (a) discrimination potential, (b) 

consistency with regard to the primary objective of the CBS problem, and (c) practical usefulness within 

two different algorithms, best improvement local search and iterated local search. A validation of the 

experimental results by means of a meticulous statistical significance analysis revealed that proposing 

more informative evaluation schemes for the CBS problem could be a useful means of improving the per- 

formance of metaheuristics. Indeed, our iterated local search implementation, using an alternative eval- 

uation function, surpassed the best solutions yielded by the state-of-the-art algorithms and allow us to 

attain new better upper bounds for 14 out of 20 well-known benchmark instances. 

© 2018 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

c  

a

C  

w  

c  

 

b  

a  

b  

a  

g  
1. Introduction 

The cyclic bandwidth sum ( CBS ) is a well-studied combinato-

rial optimization problem. It was first studied by Yuan (1995) who

demonstrated that it is a N P -hard problem. This problem arises

in some important application areas like VLSI designs ( Bhatt &

Leighton, 1984; Ullman, 1984 ), code design ( Harper, 1964 ), simula-

tion of network topologies for parallel computer systems ( Monien

& Sudborough, 1990 ) and scheduling in broadcasting based net-

works ( Liberatore, 2002 ). 

The CBS problem can be formally defined as follows. Let G =
(V, E) be a finite undirected graph (guest) of order n and C n a cy-

cle graph (host) with vertex set | V H | = n and edge set E H . Given

an injection ϕ: V → V H , representing an embedding of G in C n , the
∗ Corresponding author. 
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yclic bandwidth sum (the cost) for G with respect to ϕ is defined

s: 

bs (G, ϕ) = 

∑ 

(u, v ) ∈ E 
| ϕ(u ) − ϕ(v ) | n , (1)

here | x | n = min { | x | , n − | x | } (with 1 ≤ | x | ≤ n − 1 ) is called the

yclic distance , and the label associated to vertex u is denoted ϕ( u ).

Then, the CBS problem consists in finding the optimal em-

edding ϕ∗, such that Cbs( G , ϕ∗) is minimum, i.e., ϕ 

∗ =
rg min ϕ∈ �{ Cbs (G, ϕ) } , with � denoting the set of all possible em-

eddings. It is worth noting that an embedding can also be seen as

 labeling of the guest graph G using distinct vertices of the host

raph C n , thus hereafter the terms embedding and labeling are used

ndistinctly. 

The past research on the CBS problem has been mainly focused

n the theoretical study of its properties, with the aim of find-

ng optimal solution values for some particular graph topologies:

aths, cycles, wheels, k th power of cycles and complete bipartite

raphs ( Chen & Yan, 20 07; Jianxiu, 20 01 ). Jianxiu (20 01) studied
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 special class of instances produced as the Cartesian product of

wo graphs and proved upper bounds for the CBS problem when

hose graphs are either a path, a cycle or a complete graph. Un-

ortunately, these theoretical results only permit to compute the

ptimal solution value (or an upper/lower bound) of the objec-

ive function, but they do not provide a procedure to construct the

abeling responsible of that solution value. Therefore, heuristic or

etaheuristic approaches emerge as the best strategy to find high

uality embeddings in short computing times. 

Satsangi, Srivastava, and Gursaran (2012) proposed the first

ethod to solve the CBS problem. It is inspired by the General

ariable Neighborhood Search methodology ( GVNS ) ( Mladenovic &

ansen, 1997 ). Specifically, it starts by labeling each vertex by us-

ng a consecutive label from 1 to n (i.e., in lexicographic order), and

mproving this initial embedding with a Reduced Variable Neighbor-

ood Search (RVNS) method. The GVNS further improves this so-

ution by considering six different shake operators and two local

earch strategies. As it is shown in the computational experiences,

arried out on graphs of order n ≤ 200, GVNS achieves the optimal

olution values for all the instances with known results and gives

alues less than the upper bound for Cartesian product of certain

raphs like paths, cycles and complete graphs. For a thorough de-

cription of this method the reader is referred to Satsangi et al.

2012) . 

The second method specially designated for solving the

BS problem is a two-step algorithm, called Mach , which was

roposed by Hamon, Borgnat, Flandrin, and Robardet (2016) . The

rst step of this procedure consists in finding a collection of

aths in the graph (i.e., some sequences of vertices consecutively

onnected). Each path is constructed by performing a depth-first

earch in which the next vertex is selected according to the Jac-

ard index ( Jaccard, 1912 ). The second step consists in merging all

btained paths by following a greedy approach. In particular, a par-

ial solution is augmented by inserting a new path at the position

just after or just before another already inserted path) that min-

mizes the cyclic bandwidth sum. As far as we know, this method

urrently provides the best results in the related literature. There-

ore, we consider it as the current state-of-the-art algorithm. 

These two algorithms have a point in common, both of them

valuate the quality of an embedding as the change in the objec-

ive function Cbs( G , ϕ), see Eq. (1) . Nevertheless, it provides re-

uced information during the search process because the conven-

ional evaluation function does not allow to establish preferences

mong different potential embeddings resulting in the same cyclic

andwidth sum. 1 The poor discrimination power of this function

ould result into large plateaus in the fitness landscape ( Pitzer &

ffenzeller, 2012; Stadler, 1992 ), on which detecting a promising

earch direction could be hard for certain local search strategies

 Marmion, Dhaenens, Jourdan, Liefooghe, & Verel, 2011; Michiels,

arts, & Korst, 2007 ). 

In recent Operational Research literature, different approaches

ave been proposed to cope with this issue that could seri-

usly compromise the search efficiency. They include the intro-

uction of new alternative evaluation functions ( Murovec, 2015;

met, Bilgin, De Causmaecker, & Vanden Berghe, 2014 ), special-

zed diversification mechanisms to better traverse plateaus in the

tness landscape ( Benlic, Epitropakis, & Burke, 2017 ), objective

pace decomposition ( Derbel, Humeau, Liefooghe, & Verel, 2014 ),

valuation functions with aggregated penalty terms ( Karapetyan,

itrovic Minic, Malladi, & Punnen, 2015; Umetani, 2017 ) and

ulti-objectivization ( Garza-Fabre, Toscano-Pulido, & Rodriguez-
1 Note that multiple embeddings can produce different cyclic distance combina- 

ions resulting in the same total cyclic bandwidth sum. 

l  

t  

o  

p  

b  
ello, 2015; Lochtefeld & Ciarallo, 2015 ), just to mention some rel-

vant examples. 

Based on our past experience designing more informative eval-

ation schemes ( Rodriguez-Tello, Hao, & Romero-Monsivais, 2015;

odriguez-Tello, Hao, & Torres-Jimenez, 20 08a; 20 08b ), in this pa-

er three new more discriminating evaluation functions for the

BS problem are introduced. These evaluation functions were thor-

ughly devised to capture even the smallest improvement that ori-

nts the searching of better solutions and permits to find em-

eddings in which all the cyclic distances are minimized. An in-

epth comparative study considering the conventional and the

hree novel evaluation schemes proposed by us is carried out by

ollowing the methodology reported in Garza-Fabre, Rodriguez-

ello, and Toscano-Pulido (2013) . It includes: (a) an investigation

f their discrimination potential, (b) an analysis concerning the

onsistency of the three new evaluation functions with regard to

he primary objective of the CBS problem, (c) an assessment of

he practical usefulness of the four evaluation approaches when

sed within two distinct algorithms, local search with a best im-

rovement move strategy and iterated local search, and (d) a val-

dation of the experimental results by means of a meticulous sta-

istical significance analysis. To further understand the extent to

hich the studied evaluation functions can influence the conver-

ence process of search algorithms, this comparative study was

omplemented with an analysis of the evolution profiles of the av-

rage best cyclic bandwidth sum (cost) attained by the proposed

terated local search implementation. All experiments presented

onsider a test-suite composed of 20 standard benchmark graphs

or the CBS problem having different topologies. 

The rest of this manuscript is structured as follows:

ection 2 highlights some potential drawbacks of the conven-

ional evaluation function and presents an analysis of its main

haracteristics. Additionally, the three considered alternative eval-

ation functions for CBS problem are also formally described. We

ntroduce in Section 3 the algorithmic approach to deal with the

BS problem, which is based on the Iterated Local Search method-

logy. Section 4 details the adopted benchmark instances and the

erformance assessment methodology. Section 5 presents com-

utational experimentations that were carried out for examining

wo relevant characteristics of the studied evaluation schemes, the

apacity for discrimination and the CBS -compatibility . This section

ontinues by assessing the usefulness to guide the search process

f these four evaluation schemes when they are used within

wo distinct algorithms, as well as their influence in the global

onvergence. Section 6 is devoted to compare the performance of

ur iterated local search implementation, equipped with the best

dentified evaluation function, with respect to two state-of-the-art

euristics: GVNS ( Satsangi et al., 2012 ) and Mach ( Hamon et al.,

016 ). Finally, Section 7 provides the overall outcomes of this

ork as well as some lines for future research. 

. Evaluation functions for the CBS problem 

Metaheuristic algorithms depend on an effective evaluation ap-

roach to correctly direct the search process towards more promis-

ng zones in the solutions space ( Marmion et al., 2011; Michiels

t al., 2007 ). Nevertheless, as it was previously indicated the con-

entional evaluation function for the CBS problem, originally de-

ned in Eq. (1) , discriminates poorly among potential embeddings

aving the same cyclic bandwidth sum cost. For instance, con-

ider a Petersen (guest) graph G of order n = 10 . For this particu-

ar graph, the same cyclic bandwidth sum cost Cbs (G ) = 33 is ob-

ained by the three different embeddings depicted in Fig. 1 . Each

f these embeddings is represented by the corresponding labels

laced inside the vertices, which are uniquely identified with the

lue numbers outside The cyclic distance of each edge (u, v ) ∈ E is
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Fig. 1. Three different embeddings for a Petersen (guest) graph G of order n = 10 . All of them have the same cyclic bandwidth sum, Cbs (G ) = 33 . (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 
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2 Cb (G, ϕ) = max {| ϕ(u ) − ϕ(v ) | n } . 
computed as it was aforementioned and represented by the num-

ber close to each edge. 

More precisely, given a graph G = (V, E) of order n = | V | and

size m = | E| , the conventional evaluation function Cbs( G , ϕ), called

hereafter Cbs for simplicity, can only take values in the range from

n − 1 (the optimal value for a path graph) to the upper bound

value for any graph given by the following expression ( Jianxiu,

2001 ): 

m � n/ 2 �� n/ 2 	 
n − 1 

. (2)

These values are used for ranking a total of | �| = (n − 1)! / 2 em-

beddings, i.e., the entire search space. Note that each possible

Cbs value induces one equivalence class grouping the embed-

dings in � with the same cost. For instance, given a complete

graph K n of order n = 200 and size m = 19 , 900 there are only

999,802 different Cbs values (199 ≤ Cbs ≤ 1, 0 0 0, 0 0 0) which can

be employed to rank a total of 3.9416E+372 potential embeddings.

Nevertheless, some equally ranked embeddings (within the same

equivalence class) could lead the search algorithm to reach better

solutions than others in further iterations. 

The weak capacity for discrimination furnished by the con-

ventional evaluation function of the CBS problem generates the

existence of wide plateaus in the search landscape. In such neu-

tral zones, metaheuristics (principally those based on local search

methods) could fail to identify a promising search direction, lead-

ing to an almost randomly guided search process. 

In order to overcome the negative features of the conventional

evaluation function Cbs, three alternative evaluation functions for

the CBS problem are proposed. The aim of these alternative eval-

uations schemes is to provide a more fine-grained discrimination

among potential solutions, which allows metaheuristic algorithms

to make the most appropriate choice at each iteration of the opti-

mization process. These functions take into consideration not only

the total cyclic bandwidth sum of an embedding, but also addi-

tional semantic information related to the potential solution. 

In these new evaluation functions d k represents the number

of cyclic distances with value (magnitude) k between adjacent

vertices of G , i.e., d k = 

∑ 

(u, v ) ∈ E l u v , with l u v equals 1 if | ϕ(u ) −
ϕ(v ) | n = k, and 0 otherwise. Observe that the conventional func-

tion Cbs can be expressed in terms of the number of cyclic dis-

tances d k in the graph using the following equation: 

Cbs (G, ϕ) = 

� n/ 2 � ∑ 

k =1 

k · d k , (3)

since the maximum value k that a cyclic distance can reach is

� n /2 � . 
The main idea of the following three new functions is to con-

sider that each number of cyclic distances d should have a dis-
k 
inct level of contribution when they are used to compute the cost

alue of an embedding. It is accomplished by assigning a different

eight value to each number of cyclic distances d k . 

f 1 (G, ϕ) = 

� n/ 2 � ∑ 

k =1 

( 

k ∑ 

i =1 

i 3 

) 

· d k , (4)

f 2 (G, ϕ) = 

� n/ 2 � ∑ 

k =1 

n 

(k +1) · d k , (5)

f 3 (G, ϕ) = Cbs (G, ϕ) + 

� n/ 2 � ∑ 

k =1 

(
1 

n 2 

k 

)
· d k . (6)

Please observe that evaluation functions f 1 and f 2 assign small

eight values to small cyclic distances. By minimizing these evalu-

tion functions a search algorithm penalizes the cyclic distances d k 
aving large values of k which are closer to the cyclic bandwidth

b( G , ϕ) of the graph 

2 , and privileges those with small values of

 . As an indirect consequence, the Cbs value of the entire graph is

educed. 

On the contrary evaluation function f 3 attributes big weight val-

es to those cyclic distances d k having small k values. The logic

ehind this is that it could be easier to reduce the total cyclic

andwidth sum of an embedding if it has summands of bigger

alue. Besides, � f 3 � equals the integer value computed with Eq. (1) .

By attributing a different weight value to each cyclic distance

agnitude, the three new evaluation functions have the ability to

reate more equivalence classes with a lower cardinality. This is

n important characteristic which allows them to capture even the

mallest improvement that orients the searching process toward

etter embeddings. 

Once we have introduced the three alternative evaluations func-

ions, we proceed to analyze their computational complexity. Re-

all that evaluating the quality of an embedding ϕ, by using the

onventional evaluation function Cbs, requires analyzing all the

dges in the graph G = (V, E) , thus O(| E| ) instructions must be ex-

cuted. 

The alternative evaluation functions f 1 , f 2 , and f 3 can be com-

uted more efficiently if the weight values associated to each num-

er of cyclic distances d k (defined in Eqs. (4), (5) , and (6) , re-

pectively) are precomputed and stored in a separate array of size

 | V |/2 � . This requires to execute � | V |/2 � operations, i.e., O(| V | ) .
hen, each time that the value of one of the alternative evalu-

tion functions should be calculated, the weighted sum over all
(u, v ) ∈ E 
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d  
he edges (u, v ) ∈ E of the graph is computed. It implies a com-

utational complexity similar to that required to compute Cbs,

(| V | + | E| ) ≈ O(| E| ) . 
Additionally, the alternative evaluation functions f 1 , f 2 , and f 3 

ermit an incremental evaluation of neighboring solutions using

ppropriate data structures. 3 Indeed, suppose that the labels of

wo different vertices u, v are exchanged, then we should only re-

ompute the |A (u ) | + |A (v ) | cyclic distances that change, where

A (u ) | and |A (v ) | represent the number of adjacent vertices to u

nd v , respectively. As it can be seen this is faster than the O(| E| )
perations required originally. 

. Algorithmic approach 

Local search methods might easily get trapped into local op-

ima, which usually prevents them from finding global optimum

olutions ( Blum & Roli, 20 03; Talbi, 20 09 ). Therefore, there is a

eed to implement additional strategies for assisting the search

rocess to find trajectories getting away from local optima. Iter-

tively restarting the local search from a distinct initial solution

s one possible strategy, which has been implemented in the It-

rated Local Search (ILS) algorithm ( Lourenço, Martin, & Stützle,

003; 2010; Martin, Otto, & Felten, 1991 ). ILS has proved to be

n effective tool for approximating globally optimal solutions for

istinct N P -hard optimization problems. For this reason, in re-

ent years, there has been a growing interest in the Operational

esearch community for studying this kind of metaheuristic al-

orithm ( Avci & Topaloglu, 2017; Coelho et al., 2016; Cruz, Sub-

amanian, Bruck, & Iori, 2017; Godim da Fonseca, Gambini San-

os, Machado Toffolo, Souza Brito, & Freitas Souza, 2016; Porumbel,

oncalves, Allaoui, & Hsu, 2017; Silva, Subramanian, & Ochi, 2015;

ilva Paiva & Carvalho, 2017 ). 

To investigate into the suitability of the analyzed evaluations

unctions, an ILS procedure, outlined in Algorithm 1 , is used. The

Algorithm 1: Iterated Local Search algorithm. 

Input: Maximum allowed CPU time MT , perturbation strength P

1: Choose an initial solution ϕ ∈ φ uniformly at random 

2: ϕ 

∗ ← SteepestDescent (ϕ) 

3: repeat 

4: ϕ 

′ ← Perturbation (ϕ 

∗, P S) 

5: ϕ 

′′ ← SteepestDescent (ϕ 

′ ) 
6: if f (ϕ 

′′ ) < f (ϕ 

∗) then 

7: ϕ 

∗ ← ϕ 

′′ 
8: end if 

9: cpuT ime ← getElapsedCpuTime () 

10: until cpuT ime < MT 

11: return a local minimum ϕ 

∗

roposed method starts with a feasible embedding generated at

andom, denoted as ϕ (line 1). This initial solution is improved

ith a local search method, described below, to produce a local op-

imum ϕ∗, which becomes the incumbent solution (line 2). Then,

t performs the perturbation procedure, explained below (line 4),

o change slightly the incumbent solution which provides the em-

edding ϕ′ . This is followed by a new round of the local search

rocedure (line 5) to reach a new local optimum ϕ′ ′ from the per-

urbed solution. After each local search procedure call, the new

ocal optimum reached ϕ′ ′ is accepted as the new incumbent so-

ution if it scores a better cost value (computed with one of the

roposed evaluation functions) than the current incumbent solu-

ion ϕ∗ (lines 6–8). These three steps, considered as an iteration,
3 Note that Cbs can also be incrementally computed. 

r  

d  

w  
re repeated until a maximum predefined CPU time MT is con-

umed. Finally, the best solution found ϕ∗ is returned as the re-

ult of the ILS procedure. Note that our ILS implementation is not

quipped with an explicit mechanism to prevent the search from

enerating cycles (i.e., revisiting previously selected solutions). The

xperiments discussed in Section 5.6 demonstrate that the alterna-

ive evaluation functions reduce the emergence of such cycles. 

The proposed local search method follows a typical Steepest

escent (SD) strategy. The neighborhood structure N (ϕ) imple-

ented for our SD algorithm can be formally defined as: 

 (ϕ) = 

{
ϕ 

′ ∈ � : swap (ϕ, u, v ) = ϕ 

′ , u, v ∈ V, u 
 = v 
}
, (7) 

here swap (ϕ, u, v ) is a function permitting to exchange the labels

f two vertices u and v from an embedding ϕ. Given a graph G of

rder n , the size of such a neighborhood is |N (ϕ) | = n (n − 1) / 2 . 

The proposed local search proceeds as follows. Given a feasi-

le solution ϕ ∈ �, SD replaces it with the best solution found in

ts neighborhood N (ϕ) , where ties are broken randomly. This iter-

tive process terminates automatically when ϕ is locally optimal,

.e., no better embedding can be found within its neighborhood. 

The motivation for using such a simple local search algorithm is

he following. First, SD can be an appropriate option for measuring

he effect of changing the evaluation scheme because its perfor-

ance is only determined by the guiding capabilities of the ana-

yzed evaluation functions, once a neighborhood relation has been

xed ( Blum & Roli, 2003; Gendreau & Potvin, 2010 ). Furthermore,

t is expected that the SD algorithm stops after a small number of

terations, given the poor capacity of discrimination furnished by

ome of the studied evaluation approaches. Second, the parameter-

ree nature of the SD algorithm allows to avoid the influence of a

on appropriate tunning process over the behavior induced by the

tudied evaluation functions. 

Within our ILS implementation, the perturbation operator (see

lgorithm 2 ) is designed to jump out of the current local

Algorithm 2: Perturbation. 

Input: Input solution ϕ, perturbation strength P S 

1: ϕ 

� ← ϕ
2: for L ← 1 to P S do 

3: Choose randomly a neighbor solution ϕ 

′ ∈ N(ϕ 

� ) 

4: for � ← 1 to | V | do 

5: Choose randomly a neighbor solution ϕ 

′′ ∈ N(ϕ 

� ) 

6: if f (ϕ 

′′ ) < f (ϕ 

′ ) then 

7: ϕ 

′ ← ϕ 

′′ 
8: end if 

9: end for 

10: ϕ 

� ← ϕ 

′ 
11: end for 

12: return a perturbed solution ϕ 

� 

ptimum trap by accepting some deteriorating solutions. A prelim-

nary experiment testing different perturbation functions allowed

s to identify that the perturbation procedure described next is

he one that attains the best results. This perturbation mechanism

elps the local search to escape from the basin of attraction of the

ocal optima found, without an important cost deterioration of the

ew incumbent solution. Given an embedding, passed as a param-

ter, our perturbation operator executes a predefined number PS

f controlled label exchange moves swap( · ), where PS is called the

trength of perturbation. More in detail, for each perturbation step

i.e., each iteration of the outer for loop, line 2), the best embed-

ing among | V | randomly sampled neighbor solutions of the cur-

ent solution ϕ� is identified (lines 3–9). Then, this best embed-

ing ϕ′ is used to replace the current solution ϕ� (line 10), which

ill be the starting point for the next perturbation step. The new
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embedding generated after these PS perturbation steps is returned

as the incumbent solution of the next round of the local search

procedure. Please note that this perturbation procedure is guided

by an evaluation function f (line 6) which can be one of the four

analyzed evaluation functions in this work. 

4. Experimental setup 

The experimentation in this research work was carried out

on 20 benchmark instances 4 previously reported in the litera-

ture ( Hamon et al., 2016; Satsangi et al., 2012 ). These instances

are grouped into four different subsets which include: six Carte-

sian products of graphs with known upper bounds ( Jianxiu, 2001 ),

five standard graphs with known optimal solution values ( Chen

& Yan, 2007; Jianxiu, 2001 ), five graphs arising from scientific

and engineering practical problems coming from the Harwell–

Boeing Sparse Matrix Collection, 5 and four random graphs con-

structed with the Erdös–Rényi generator provided by NetworkX 1.11

( Hagberg, Schult, & Swart, 2016; 2008 ). 

Even though new alternative evaluation schemes for the

CBS problem are analyzed in this work, it is worth mentioning that

the target of the optimization process remains to minimize the to-

tal cyclic bandwidth sum (Cbs). Therefore, all the results furnished

by this experimental comparison are assessed with respect to the

conventional evaluation function of the CBS problem. 

Two additional performance measures were considered, both

computed over multiple independent executions of the imple-

mented search algorithms. First, the relative root mean square error

(RMSE) for a given test instance t is defined as follows: 

RMSE (t) = 100% 

√ √ √ √ 

∑ R 
r=1 

(
Cbs r (t) −Cbs 

∗
(t) 

Cbs 
∗(t) 

)
2 

R 

, (8)

where Cbs r ( t ) denotes the cyclic bandwidth sum of the best em-

bedding found during a single execution r , R is the total num-

ber of executions carried out in the experiment, and Cbs ∗( t ) is the

optimal (or best-known) solution value for instance t . Given that

the range of possible cost values varies from instance to instance

in the CBS problem, RMSE( t ) is defined in a common 0% to 100%

scale, making possible to evaluate together the results obtained for

the different considered test instances. The preferred value for this

measure is RMSE (t) = 0% , corresponding to a perfect performance.

Second, the overall relative root mean square error (O-RMSE)

measure extends RMSE in order to evaluate the global performance

of the studied approaches, considering all the set of benchmark in-

stances. Formally, O-RMSE can be stated as follows: 

O-RMSE = 

1 

|T | 
∑ 

t∈T 
RMSE (t) , (9)

where T is the set of all benchmark instances. In this way,

O-RMSE = 0% suggests the ideal situation where the optimal so-

lution value for each instance was attained at each performed ex-

ecution. 

A statistical significance analysis was performed for all the ex-

periments presented in this paper. Each analysis was conducted

using the following methodology. First, the normality of data dis-

tributions was evaluated by applying the Shapiro–Wilk test. In the

case of normally distributed data, either ANOVA or Welch’s t para-

metric tests were used depending on the result of Bartlett’s test,

which was used to investigate if the variances across the samples

were homogeneous ( homoskedasticity ) or not. On the contrary, the

nonparametric Kruskal–Wallis test was employed for non-normal
4 Available at http://www.tamps.cinvestav.mx/ ∼ertello/cbsp.php . 
5 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing . 
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ata. These tests are carried out by consistently considering a sig-

ificance level of 0.05. 

The C programming language was used to make the algorithmic

mplementations needed for this experimental study. These imple-

entations were then compiled with gcc using the optimization

ag - O 3 and executed sequentially into a CPU Xeon X5650 at 2.66

igahertz, 2 gigabytes of RAM with Linux operating system. 

. Discussion and analysis of the alternative evaluation 

unctions 

In this section four different experiments are presented to eval-

ate and to compare the four different evaluation functions for

he CBS problem: the conventional evaluation function Cbs, and

hree new alternative evaluation schemes introduced in Section 2 .

hrough the first pair of experiments two essential characteris-

ics of the analyzed evaluation functions are examined in detail in

ections 5.1 and 5.2 . Then, the search guiding efficiency of these

valuation schemes is assessed in Sections 5.3 and 5.4 . 

.1. Potential of discrimination 

The potential of discrimination is an essential property of any

valuation scheme that has direct influence on the global behavior

f metaheuristic algorithms. If an evaluation function is unable to

stablish an appropriate ranking among candidate solutions, then

he optimization process could be practically guided by random

ecisions. 

The potential of discrimination provided by the analyzed evalu-

tion approaches is investigated next. This is carried out by study-

ng the distribution of ranks that these evaluation methods pro-

uce for a given set of potential embeddings. A ranking establishes

n order relation over the items contained in a set by considering a

redefined criterion. In this research work, embeddings should be

anked and the criterion to establish such an order relation is their

yclic bandwidth sum value (cost). Given a set of potential embed-

ings, the first ranking position is assigned to the solution with

he best (smaller) Cbs value, the next ranking position is allotted

o the one with the second best cyclic bandwidth sum value, and

o forth. If two or more embeddings present the same cost, then

hey will share the same rank. 

The relative entropy (RE) measure proposed by Corne and

nowles (2007) was adopted for this experiment. Given a set hav-

ng c ranked embeddings (there are at most c ranks, and at least

), the relative entropy RE( D ) for the distribution of ranks D can be

omputed with the following expression: 

E (D ) = 

∑ c 
j=1 

D j 
c 

log 

(
D j 
c 

)
log 

(
1 
c 

) , (10)

here D j denotes the number of embeddings with rank j . RE( D )

ends to 1 as the rank distribution D approaches to the ideal case

here each embedding has a different rank (i.e., the maximum po-

ential of discrimination). On the contrary, when all the potential

olutions share the same ranking position (i.e., the weakest dis-

rimination), RE( D ) equals zero. 

In this experiment, 10 0,0 0 0 different embeddings were gener-

ted at random. Using each one of the four studied evaluation

unctions these embeddings were evaluated and ranked in order to

ompute the corresponding RE measures. This experiment was per-

ormed 50 times using all the selected benchmark instances. The

lobal results produced by this experiment are summarized with

oxplots in Fig. 2 , while Fig. 3 depicts for each test instance the

verage RE values obtained by the distinct analyzed functions us-

ng points. 

http://www.tamps.cinvestav.mx/~ertello/cbsp.php
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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Fig. 2. Boxplots representing the global relative entropy (RE) of the distribution of ranks computed for each studied evaluation function. Overall statistics for the 20 selected 

benchmark instances. 

Fig. 3. Relative entropy (RE) of the distribution of ranks computed for each analyzed evaluation function. Each point represents the average of 50 independent executions 

over one tested instance. 
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By inspecting Fig. 2 (a) it is possible to observe that certain of

he studied evaluation functions are able to discriminate stronger

han others. In all the benchmark instances tested, the conven-

ional evaluation function for the CBS problem, Cbs, achieved in

verage the lowest RE score ( 6 . 89496912e −01 ). This confirms the

eak capacity for discrimination furnished by this function, which

as been the principal motivation for exploring the use of al-

ernative evaluation approaches. Among the alternative functions,

 2 presented the worst performance in terms of discrimination

 9 . 65213479e −01 ). The evaluation function f 1 most of the time

cores high RE values. Nevertheless, it suffered slight decreases

n some of the tested instances, see Fig. 3 (b), leading to an av-

rage RE value of 9 . 99913033e −01 as can be appreciated in the

oom depicted in Fig. 2 (b). Finally, it is important to remark

hat according to the obtained results ( 9 . 99999999e −01 ), f 3 is the

unction offering the higher capacity for discrimination among po-

ential solutions. 6 Furthermore, this property is conserved over all

he graph topologies evaluated, see Fig. 3 (a) and its zoom-in view

n Fig. 3 (b). 
6 Note that double precision floating point numbers were used for computing the 

E values presented in this experiment. 

D  

t  

f  

p  

f

.2. CBS -compatibility 

The alternative evaluation functions for the CBS problem in-

roduced in Section 2 aim at performing a more effective ex-

loration through the space of potential embeddings. Neverthe-

ess, they should remain consistent with the original objective of

BS problem, which consists in minimizing the cyclic bandwidth

um function Cbs. Otherwise, false optima can potentially be in-

roduced and the search algorithm could be oriented towards em-

eddings diverging from the optimal solutions of the original op-

imization problem. Hence, investigating whether or not the pro-

osed evaluation schemes are consistent with the original objec-

ive is an important issue. 

In this work, functions respecting this requirement (not contra-

icting function Cbs) are said to be CBS -compatible . Thus, the ca-

acity of an alternative evaluation function to preserve the conven-

ional rank ordering among potential embeddings can be defined

s its CBS -compatibility. More formally: 

efinition 1. An alternative evaluation function f : � → R is said

o be CBS -compatible if and only if f ( ϕ) < f ( ϕ′ ) ⇒ Cbs( ϕ) ≤ Cbs( ϕ′ )
or every pair of solutions ϕ , ϕ 

′ ∈ �. Otherwise, if at least one

air of embeddings ϕ , ϕ 

′ exists such that Cbs( ϕ ) < Cbs( ϕ′ ) but

 ( ϕ) > f ( ϕ′ ), then function f is not CBS -compatible. 
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Fig. 4. Relative compatibility (RC) values computed for each alternative evaluation scheme studied. 
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Note, however, that the case where Cbs (ϕ) = Cbs (ϕ 

′ ) but

f ( ϕ) 
 = f ( ϕ′ ) is not considered a contradiction. This is a convenient

scenario, because the main objective of using the alternative func-

tion f is to enable a more fine-grained discrimination among po-

tential embeddings. 

In this section, the CBS -compatibility property is explored for

all the alternative evaluation functions introduced in this work. An

experiment was conducted where 10 0,0 0 0 different embeddings

were randomly generated, then all pairwise comparisons among

them were performed. The percentage of such comparisons where

an agreement of the alternative evaluation approach with respect

to the conventional one is computed and referred to as relative

compatibility (RC). 

Even though the value RC = 100% does not offer the assurance

of the CBS -compatibility property for a given function, RC < 100%

is sufficient to negate it. In other words, the gravity of the cases

where the CBS -compatibility property is not satisfied could be as-

sessed with the aid of the RC value. For every selected bench-

mark instance, 50 independent repetitions of this experiment were

performed. The overall statistics produced in this experiment are

depicted as boxplots in Fig. 4 (a), while the average RC values

obtained for each one of the tested instances are presented in

Fig. 4 (b). 

From Fig. 4 (a) and (b), it is possible to note that function f 3 
showed 100% of agreement with the conventional Cbs evaluation

function for all the benchmark instances used in this experiment.

Thus, it appears that evaluation function f 3 is CBS -compatible. On

the contrary, the experimental results disclose that functions f 1 
and f 2 do not present the CBS -compatibility property for any of

the graph topologies evaluated, since they scored an average RC

value of 83.410% and 92.012%, respectively. One can observe, from

Fig. 4 (b), that functions f 1 and f 2 reached slightly lower average

RC values (81.692% and 89.968%) for the instance bip100-100 (a

complete bipartite graph of order n = 200 ). After analyzing this

particular case, we noticed that the embeddings for this instance

generated in average a distribution of the number of cyclic dis-

tances with d k = 100 . 503 for 1 ≤ k ≤ 99 and d 100 = 50 . 236 , while

most of the other tested instances induced distributions with at

most d k = 20 . 010 for 1 ≤ k ≤ 99 and d 100 = 9 . 984 . Furthermore, in

average only 5,406 different cost values were produced by the

evaluation function Cbs for assessing the 10 0,0 0 0 embeddings pro-

duced for the instance bip100-100 in this experiment. In contrast,

the alternative evaluation functions f 1 and f 2 delivered much more

different cost values (99,995 and 72,200, respectively). These sit-
ations could explain the difficulties of the alternative evaluation

unctions for respecting the extremely restrictive order relation es-

ablished by the conventional evaluation function Cbs for this par-

icular instance. 

Finally, it can be highlighted the poor performance exhibited

y function f 1 . For all the selected benchmark instances, this eval-

ation scheme scored the lowest RC values leading to an aver-

ge of 83.410%. Fig. 5 presents an example scenario where func-

ion f 1 contradicts the conventional function Cbs. In this example,

 pair of different embeddings ϕ and ϕ′ for a Petersen graph of

rder n = 10 are compared against each other by applying the Cbs

nd f 1 evaluation functions. As a result, the conventional evalu-

tion function Cbs prefers the solution ϕ (with a smaller value

bs (G, ϕ) = 33 ) to ϕ′ (with value Cbs (G, ϕ) = 45 ), while function

 1 delivers the inverse preference order among them. 

The low RC values attained by certain analyzed evaluation

chemes, particularly f 1 , bring evidence of a serious issue. It is

ore likely that the global optimum produced by an alternative

valuation function differs largely from the global optimum of the

riginal optimization problem when this function scores lower RC

alues. Therefore, it is expected that CBS -incompatible alternative

unctions could have problems to effectively guide the search pro-

ess. 

.3. Search performance using a basic local search algorithm 

The experimental performance of the SD algorithm was eval-

ated when using each of the presented evaluation functions.

hrough this experimentation, the following methodology was

onsistently followed. First, 50 embeddings were randomly gener-

ted for every one of the 20 studied benchmark instances. Then,

ach one of these embeddings was used as initial solution for

ne independent run of the four analyzed evaluation schemes over

ach considered graph. The main objective was to guarantee that

ll the studied functions start the search of better solutions from

he same set of initial embeddings, and thus to reduce the bias

roduced by this important design element in our comparisons.

he average results achieved in this experimental comparison are

rovided in Table 1 . The first three columns in this table list the

nstance (graph), its order (| V |) and size (| E |). Column four reports

he best-known cyclic bandwidth sum value ( B ) for each instance.

t was either attained by Mach , when compiled and executed
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Fig. 5. Two different embeddings for a Petersen graph of order n = 10 . This is an example where function f 1 contradicts function Cbs: Cbs (ϕ) = 33 < Cbs (ϕ ′ ) = 45 but 

f 1 (ϕ) = 810 > f 1 (ϕ ′ ) = 800 . 
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ndependently (50 times) in our computational platform, 7 or by

ur SD algorithm when value is marked with a � . For each of the

ompared evaluation functions three columns are used to depict

he average ( A v g) and standard deviation ( De v ) of the cyclic band-

idth sum attained with the SD algorithm equipped with the cor-

esponding solution assessment scheme, and the average number

f iterations ( I ) needed to obtain that solution cost. The O-RMSE

alue computed for each compared evaluation scheme is presented

t the bottom of the table. The lowest average cyclic bandwidth

um value ( A v g) for each of the tested instances is shown in bold. 

The data presented in Table 1 allow us to observe that among

he three considered alternative evaluation functions for CBS prob-

em, f 1 has the most negative effect on the overall efficiency of the

D algorithm (it has the highest O-RMSE value 169.67%). This could

e explained by its poor relative CBS -compatibility ( RC = 83 . 410% )

videnced in the experiments presented in Section 5.2 . Function

 2 has a better performance than both, f 1 and the original objective

unction (Cbs); and is able to reach for 4 instances the smaller av-

rage cyclic bandwidth values. For 80% of the tested benchmark in-

tances the best performer is clearly the SD algorithm using func-

ion f 3 (attaining an O-RMSE = 76 . 51% ). Notice that the search with

 3 last always longer time than with Cbs (contrast the values in

olumns 7 and 16), leading to better quality local optima. The con-

entional function Cbs stops early because it is unable to differ-

ntiate among neighboring embeddings having equal cyclic band-

idth sum value. 

The methodology described in Section 4 was used to perform a

tatistical significance analysis of the results produced by this ex-

eriment. Table 2 highlights whether the performance differences

etween the studied evaluation approaches were statistically sig-

ificant or not. Each row in this table compares two strategies,

ay A and B, which is denoted as A / B . If a significant performance

ifference exists between A and B for a particular instance, the

orresponding cell is marked either + or − providing that such a

ifference was in favor of, or against A . Please note that a signif-

cant performance difference against A , marked as −, implies that

 significantly outperformed A . Unmarked cells indicate that there

as not a statistically important difference between the compared

valuation strategies. The rightmost column of the table summa-

izes the results of this analysis. 

As shown in Table 2 , Cbs significantly outperformed functions f 1 
nd f 2 in 15 and 10 of the instances. Function f 3 achieved a statis-

ically significant performance increase with regard to Cbs for 9 of

he adopted test graphs, while for the rest of the benchmarks a sig-

ificant difference could not be concluded. The f and f evaluation
1 2 

7 Using the input parameters suggested by their authors ( Hamon et al., 2016 ). 

i

 

t  
trategies scored significantly worst results than f 3 in 18 and 14

nstances, respectively. Nevertheless, f 3 was significantly surpassed

y f 2 in 2 of the benchmark instances. 

.4. Search performance using an Iterated Local Search algorithm 

The main objective of the first experiment presented in this

ection is to analyze the performance fluctuations of our ILS im-

lementation produced when varying the selected evaluation func-

ion and the input parameter values for the perturbation strength

 PS ) and the maximum allowed CPU time in seconds ( MT ). To

his end, a full factorial experimental design was carried out con-

idering the four studied evaluation schemes, as well as three

ifferent values for each of the parameters P S = { 5 , 10 , 15 } , and

T = { 30 0 , 60 0 , 90 0 } (see Algorithm 1 ). This leads to a total of

6 configurations for our ILS implementation. All these configura-

ions were evaluated using 50 independent executions over each

f the 20 selected benchmark instances for a total of 36,0 0 0 exe-

utions. Fig. 6 presents the overall relative root mean square error

O-RMSE) measure obtained by each of the analyzed ILS configura-

ions, grouped by the MT parameter values. Lower O-RMSE values

re preferred, see Section 4 . 

Fig. 6 reveals that function f 1 consistently presented the worst

earch performance for the different ILS parameter configurations

ested. It seems that function f 1 is negatively affected by higher

erturbation strength values, even when the maximum allowed

omputational time MT is augmented. This can be the consequence

f the incapability of function f 1 to guide the search to better local

ptima after a medium or high strength perturbation, produced by

ts low relative compatibility with respect to the original objective

f the CBS problem (see Section 5.2 ). In contrast, the conventional

valuation function Cbs has a much better performance than f 1 ,

nd is outperformed by f 2 when the maximum allowed computa-

ional time MT is limited to 300 seconds. Nevertheless, the results

rovided by Cbs are slightly better than those furnished by f 2 when

T is augmented. From Fig. 6 it can also be observed that f 3 was

ble to consistently outperform the search performance provided

y the other 3 analyzed functions in the 9 ILS parameter configu-

ations tested. Furthermore, by analyzing the behavior of this par-

icular function one observes that the ILS algorithm equipped with

 3 is able to discover better new local optima when both the per-

urbation strength and the CPU time allowed are increased. This

emarkable performance can be related with the fact that function

 3 scored the best discrimination potential and CBS -compatibility

n the precedent experiments. 

In order to provide a more detailed analysis, the parame-

er configurations which allowed each of the studied evaluation
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Table 1 

Performance of the SD algorithm when using the four studied evaluation functions. 

Cbs f 1 f 2 f 3 

Graph | V | | E | B A v g De v I A v g De v I A v g De v I A v g De v I 

c20c10 200 400 2360 � 4993 .24 585 .13 1561 .46 8692 .44 683 .55 4766 .96 6049 .16 632 .13 4739 .20 4197 .64 703 .10 3803 .36 

c20k10 200 1100 5300 10976 .28 1304 .90 1873 .26 13787 .64 2949 .38 4820 .22 9525 .32 923 .80 3378 .38 11067 .44 1366 .13 2607 .32 

k20k10 200 2800 62,300 � 62436 .00 755 .59 2280 .46 84772 .16 862 .00 3302 .62 62304 .92 2 .50 3633 .68 62300 .00 0 .00 3455 .10 

p20c10 200 390 2256 4809 .28 600 .77 1572 .40 8342 .26 738 .01 4888 .98 5585 .40 802 .18 4873 .40 4062 .96 551 .73 3518 .82 

p20k10 200 1090 5200 10537 .88 1227 .61 1899 .76 13101 .64 3262 .07 4727 .20 9056 .20 804 .87 3393 .70 10464 .00 1104 .77 2596 .04 

p20p10 200 370 2385 4082 .90 619 .52 1653 .46 7315 .62 926 .58 4827 .54 4657 .02 730 .89 5159 .54 3354 .56 489 .50 3335 .00 

bip100-100 200 10,0 0 0 50 0,0 0 0 50 0 0 0 0 .00 0 .00 115 .02 50 0 0 0 0 .00 0 .00 914 .74 50 0 0 0 0 .00 0 .00 870 .84 50 0 0 0 0 .00 0 .00 133 .94 

path200 200 199 199 1817 .30 209 .11 831 .34 1799 .12 260 .51 6812 .78 1366 .92 219 .50 5961 .18 1066 .42 175 .07 4975 .28 

cycle200 200 200 200 1888 .56 207 .06 850 .68 1894 .00 262 .91 6639 .96 1445 .96 242 .10 6201 .88 1080 .16 200 .13 5226 .80 

cycleP200-10 200 20 0 0 11,0 0 0 � 20534 .36 4437 .49 2851 .96 18292 .24 7242 .48 7333 .08 15249 .36 6166 .86 6184 .46 15624 .40 5275 .83 5543 .84 

wheel200 200 398 10,200 11885 .32 206 .32 819 .16 11854 .64 261 .79 6801 .38 11455 .80 254 .86 6136 .12 11082 .36 173 .86 5158 .52 

can_229 229 774 6301 � 9281 .88 1409 .97 3260 .88 15772 .50 2090 .70 6498 .38 10778 .56 1910 .59 6577 .76 8577 .52 1566 .76 4946 .46 

dwt_209 209 767 7119 � 8964 .78 817 .21 2171 .70 13774 .14 1721 .82 6805 .96 9382 .72 1410 .75 6062 .88 8978 .40 681 .48 2815 .02 

steam1 240 1761 24,158 � 30878 .12 3037 .17 3422 .12 43278 .28 5591 .47 4852 .92 31692 .08 4180 .80 4890 .12 30305 .04 3396 .44 3753 .00 

ash219 219 431 6705 � 8269 .36 542 .69 1953 .90 12586 .34 472 .12 4731 .16 9480 .28 652 .37 5555 .60 7848 .82 645 .95 4256 .12 

will199 199 660 14,116 � 15722 .04 653 .69 2239 .12 21010 .08 606 .12 3786 .00 17658 .28 817 .34 4135 .80 15522 .24 629 .90 3361 .78 

ran200P1 200 1991 71,394 � 72802 .78 705 .67 2422 .18 80034 .24 938 .28 3039 .18 75927 .04 654 .93 3567 .24 72693 .96 619 .91 3269 .74 

ran200P3 200 5970 256,987 � 259502 .00 1061 .70 2770 .02 269017 .16 1041 .76 2812 .12 263671 .86 1043 .50 3453 .40 259250 .16 923 .42 3476 .50 

ran200P5 200 9955 452,486 � 455109 .68 1167 .33 2955 .38 465122 .66 1223 .02 2646 .84 459212 .96 1329 .09 3380 .70 454989 .04 1178 .27 3542 .62 

ran200P7 200 13,827 651,128 � 653407 .40 1134 .01 2816 .72 661903 .78 1417 .15 2274 .00 656706 .26 1221 .45 3135 .66 653187 .90 837 .67 3448 .70 

O-RMSE 122.86% 169.67% 105.44% 76.51% 

Table 2 

Statistical analysis for comparing the performance of the SD algorithm when using the four analyzed evaluation approaches. 

Instance 

Function c20c10 c20k10 k20k10 p20c10 p20k10 p20p10 bip100-100 path200 cycle200 cycleP200-10 wheel200 can_229 dwt_209 steam1 ash219 will199 ran200P1 ran200P3 ran200P5 ran200P7 Overall 

Cbs / f 1 + + + + + + + + + + + + + + + 15 + 0 −
Cbs / f 2 + − − + − + − − − − + + + + + + + 10 + 7 −
Cbs / f 3 − − − − − − − − − 0 + 9 −
f 1 / f 2 − − − − − − − − − − − − − − − − − − − 0 + 19 −
f 1 / f 3 − − − − − − − − − − − − − − − − − − 0 + 18 −
f 2 / f 3 − + − − + − − − − − − − − − − − 2 + 14 −
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Fig. 6. Overall relative root mean square error (O-RMSE) obtained by 9 different parameter configurations of the ILS algorithm equipped with each of the four analyzed 

evaluation function. 

Table 3 

Selected parameter settings for 

the ILS algorithm. 

Function MT PS 

Cbs 900 10 

f 1 900 5 

f 2 900 10 

f 3 900 15 
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t  
unctions to reach the lowest O-RMSE value have been selected

see Table 3 ). The detailed results from this experimental com-

arison are depicted in Table 4 by using the same column head-

ngs defined previously for Table 1 . Column four reports the best-

nown cyclic bandwidth sum value ( B ), which was obtained either

y Mach , when compiled and executed independently (50 times)

n our computational platform, or by our ILS algorithm when value

s marked with a � . For each of the tested instances the lowest av-

rage cyclic bandwidth sum value ( A v g) is shown in bold. 

It is evident, from Table 4 , that employing f 3 for assessing so-

ution quality within the ILS algorithm permits to obtain for 12

ut of 20 instances better results (smaller average cyclic band-

idth sum values, A v g) than those produced by the other three

ompared evaluation approaches, resulting in the smallest O-RMSE

alue (21.50%). In the particular case of instance bip100-100 , func-

ion f 3 attains the same results than the best performing ap-

roaches. In fact, it seems that instance bip100-100 is not as hard

o solve as other graphs in the test suite, since all the evaluation

chemes found the same average cyclic bandwidth sum with a zero

tandard deviation ( De v ). 
A statistical significance analysis was carried out on the exper-

mental results presented above by employing the methodology

escribed in Section 4 . The details of this analysis are depicted

n Table 5 using the same format and conventions presented in

ection 5.3 . From Table 5 one observes that even when Cbs sig-

ificantly outperformed functions f 1 and f 2 in 16 and 10 bench-

ark instances, it scored significantly worse results than f 3 in 12

raphs. Function f 3 significantly increased the performance of the

LS algorithm in 16 and 14 of the test cases with respect to f and
1 
 2 , respectively. However, f 1 was able to reach a statistically sig-

ificant performance improvement with regard to the three other

ested evaluation schemes for the instances c20k10 and p20k10 . 

.5. Influence of the evaluation scheme over the ILS convergence 

rocess 

In order to further investigate the degree of influence that the

ifferent evaluation schemes have over the convergence process of

he ILS algorithm, their evolution profiles of the average best cyclic

andwidth sum (Cbs) along the search process (ILS iterations) were

omputed using the data produced in the previous experiment and

ndividually analyzed. To reduce the space needed for reporting the

esults of this analysis, they are presented using plots (see Fig. 7 )

or only four instances (one representing each subset of graphs de-

cribed in Section 4 ): c20k10 , path200 , dwt_209 and ran200P1 . In

hese figures each line represents the average result of 50 execu-

ions, and points indicate improvements of the incumbent solution.

The plot in Fig. 7 (a) permits to find out why function f 1 was

ble to statistically outperform the rest of the evaluation ap-

roaches when solving the instance c20k10 . It is possible to ob-

erve that starting from iteration 6, the convergence curve for f 1 
resents more frequent improvements (points) of the incumbent

olution compared with the other curves in the plot. It indicates

hat this evaluation approach exhibits a greater capacity to de-

ect a promising search direction for this particular instance. It is

orth noting, that f 1 and f 2 avoid getting stuck in local optima,

ecause they allow deteriorating cost moves as a consequence of

heir 83.49% and 92.11% of agreement with the conventional eval-

ation function. In contrast, function Cbs gets easily trapped in lo-

al optima due to its inability to perform a proper discrimination

mong potential embeddings. 

A quite different scenario can be observed in Fig. 7 (b). Function

bs reached the best average solution value for the graph path200

aster than the other evaluation approaches (similar results were

btained for the graph cycle200 ). For this particular instance the

eutrality of the search landscape is high, since Cbs takes only

801 possible values (199 ≤ Cbs ≤ 10, 0 0 0) to discriminate among a

otal of 3.9416E+372 potential embeddings (see Section 2 ). How-
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Table 4 

Performance of the ILS algorithm when using the four studied evaluation functions. 

Cbs f 1 f 2 f 3 

Graph | V | | E | B A v g De v I A v g De v I A v g De v I A v g De v I 

c20c10 200 400 2360 � 2521 .36 489 .60 26 .10 3492 .92 1228 .57 139 .02 2395 .96 254 .28 73 .30 2422 .44 309 .24 246 .38 

c20k10 200 1100 5300 10251 .40 946 .65 2 .44 6725 .40 1253 .63 37 .08 7596 .00 943 .50 20 .88 7943 .28 1502 .48 39 .02 

k20k10 200 2800 62,300 � 63755 .28 2022 .45 1 .02 83941 .12 925 .83 37 .42 62300 .24 0 .66 23 .86 62300 .00 0 .00 33 .08 

p20c10 200 390 2238 � 2455 .68 399 .46 25 .42 3251 .12 897 .94 140 .94 2263 .92 1 .66 71 .70 2335 .58 268 .12 240 .90 

p20k10 200 1090 5200 9925 .76 1040 .17 2 .96 6169 .62 702 .93 38 .20 7016 .00 831 .61 21 .72 7119 .30 1228 .09 43 .64 

p20p10 200 370 1991 � 2092 .58 168 .86 47 .42 2684 .10 363 .98 141 .56 2199 .94 152 .18 61 .78 2015 .12 34 .83 229 .06 

bip100-100 200 10,0 0 0 50 0,0 0 0 � 50 0 0 0 0 .00 0 .00 8 .96 50 0 0 0 0 .00 0 .00 4 .28 50 0 0 0 0 .00 0 .00 4 .50 50 0 0 0 0 .00 0 .00 8 .06 

path200 200 199 199 352 .12 69 .76 57 .40 738 .94 65 .79 111 .18 489 .66 74 .28 36 .88 363 .26 51 .51 97 .92 

cycle200 200 200 200 378 .68 81 .20 58 .76 760 .92 71 .55 107 .72 531 .28 80 .94 37 .84 389 .08 56 .41 93 .16 

cycleP200-10 200 20 0 0 11,0 0 0 � 16951 .28 5441 .33 22 .70 15153 .60 5602 .16 61 .02 15230 .60 6110 .02 64 .14 16238 .20 5297 .60 48 .62 

wheel200 200 398 10,200 10439 .72 75 .58 27 .70 10837 .24 74 .86 56 .22 10611 .28 89 .39 18 .68 10421 .64 53 .25 49 .98 

can_229 229 774 6243 � 6915 .46 1169 .85 12 .80 9402 .98 1988 .30 61 .26 6671 .48 885 .43 31 .30 6264 .80 4 .23 91 .88 

dwt_209 209 767 6355 � 7369 .46 508 .75 9 .48 9629 .50 962 .30 50 .18 7587 .88 525 .68 26 .92 6677 .90 328 .73 120 .04 

steam1 240 1761 24,158 � 31853 .64 3633 .94 1 .00 45230 .10 4189 .08 1 .00 34145 .88 3490 .00 1 .00 31261 .18 2842 .05 1 .00 

ash219 219 431 6229 � 6644 .94 239 .91 11 .32 9766 .48 490 .43 130 .04 7357 .54 352 .16 40 .40 6410 .88 216 .71 137 .30 

will199 199 660 13,699 � 13976 .68 218 .81 18 .58 17658 .06 625 .05 115 .94 15132 .26 256 .08 48 .82 13801 .82 50 .37 144 .76 

ran200P1 200 1991 69,993 � 71291 .26 386 .19 5 .84 76954 .72 564 .40 52 .44 73234 .92 456 .13 26 .64 704 4 4 .86 230 .92 44 .64 

ran200P3 200 5970 255,001 � 258634 .08 931 .37 1 .30 265569 .88 941 .25 21 .90 260282 .90 811 .22 10 .24 256094 .34 467 .71 13 .34 

ran200P5 200 9955 451,266 � 455114 .62 995 .99 1 .00 461683 .78 1167 .28 12 .74 456302 .98 826 .20 6 .42 452517 .20 592 .95 6 .24 

ran200P7 200 13,827 648,917 � 654312 .52 1174 .19 1 .00 658789 .40 1049 .85 11 .08 654406 .30 885 .77 4 .34 651048 .42 697 .50 4 .30 

O-RMSE 29.57% 59.76% 31.05% 21.50% 

Table 5 

Statistical analysis for comparing the performance of the ILS algorithm when using the four analyzed evaluation approaches. 

Instance 

Function c20c10 c20k10 k20k10 p20c10 p20k10 p20p10 bip100-100 path200 cycle200 cycleP200-10 wheel200 can_229 dwt_209 steam1 ash219 will199 ran200P1 ran200P3 ran200P5 ran200P7 Overall 

Cbs / f 1 + − + + − + + + + + + + + + + + + + 16 + 2 −
Cbs / f 2 − − − − + + + + − + + + + + + 10 + 5 −
Cbs / f 3 − − − − − − − − − − − − 0 + 12 −
f 1 / f 2 − + − − + − − − − − − − − − − − − − 2 + 16 −
f 1 / f 3 − + − − + − − − − − − − − − − − − − 2 + 16 −
f 2 / f 3 − + − − − − − − − − − − − − − 1 + 14 −
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Fig. 7. Comparison of the convergence profiles of the ILS algorithm equipped with the studied evaluation functions on four representative instances. 
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ver, the results show that even when Cbs assigns the same cost

o many neighboring solutions, breaking ties randomly within the

mbedded local search heuristic could be enough to guide the

earch out of those plateaus. Function f 3 , makes a more fine-

rained discrimination among potential solutions than Cbs, thus

assing from one plateau (with respect to Cbs) to another one de-

ands the execution of a most important number of local search

teps to reach a similar final solution cost. This suggests that un-

er certain circumstances it is possible that a high degree of dis-

rimination among solutions, like that provided by f 3 , may also

inder the ability of an algorithm to identify a promising search

irection. 

Fig. 7 (c) and (d) depict the convergence results for the instances

wt_209 and ran200P1 . The former arises from a practical struc-

ural engineering problem, while the latter corresponds to a graph

andomly generated. Both instances have non-structured topolo-

ies. These figures illustrate that using the same number of ILS it-

rations, f 3 reaches always a better average cyclic bandwidth sum

han the other compared evaluation approaches through the search

rocess. It is noteworthy that the performance of Cbs and f 3 is al-

ost the same at the begin of the search. However, f 3 enables the

LS algorithm to explore the search space more efficiently, leading

n general to better quality final embeddings. This is because the
econd term in Eq. (6) (a non-integer value) permits to better dis-

inguish embeddings having the same cyclic bandwidth sum. Fi-

ally, the strategy used by f 3 for assigning big weight values to

hose cyclic distances d k having small k values in an embedding

eems to yield better final results than that used by both f 1 and f 2 .

.6. Investigating the existence of search cycles in the proposed ILS 

The existence of frequent cycles during the search process can

ave a negative influence in the global performance of a local

earch algorithm. To investigate this important issue in the pro-

osed ILS algorithm, equipped with the four studied evaluation

unctions, the following experiment was carried out on the four

epresentative instances employed in the previous section: c20k10 ,

ath200 , dwt_209 and ran200P1 . For each evaluation scheme and

nstance combination a total of 10,0 0 0 local search steps of the

LS algorithm (visited potential solutions) were recorded in a file.

hen, the interchange distance ( Cicirello & Cernera, 2013 ) between

ach pair of them was calculated to produce square distance ma-

rices like those depicted in Fig. 8 for the instance dwt_209 . Since

ery similar results were obtained for the other three tested in-

tances, for the sake of space, only this figure is presented. In this

ind of matrices a red point is depicted in coordinates ( a , b ) if the
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Fig. 8. Interchange distances matrices for instance dwt_209 using ILS and the four compared evaluation functions. 
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e  
visited potential solutions at iterations a and b have an interchange

distance equal to zero between them, otherwise a white point is

printed at those coordinates. In this way red points in consecutive

rows and columns (local search iterations) can reveal the existence

of potential cycles in the search. For allowing an easy visualization

of data, only the first 250 local search steps are depicted in these

plots. 

From Fig. 8 (a) it can be observed that the conventional eval-

uation function Cbs produces a large number of cycles along the

search. It may be explained by the fact that Cbs is unable to

differentiate among distinct potential embeddings resulting in the

same cost. On the contrary, Fig. 8 (b)–(d) reveal that the more re-

fined evaluation schemes proposed in this work, have the ability to

strongly reduce the possibility of visiting twice the same configura-

tion in consecutive local search iterations, thanks to their improved

guiding capacities. 

6. Comparing ILS with the state-of-the-art algorithms 

Given the promising results obtained in the experiments re-

ported before, we have decided to asses the performance of our
LS algorithm, equipped with the evaluation function f 3 , with re-

pect to two state-of-the-art heuristics: GVNS ( Satsangi et al.,

012 ) and Mach ( Hamon et al., 2016 ). The source codes of

hese algorithms were kindly provided by their respective authors.

hese codes were compiled and run independently (50 times) in

ur computational platform by using the input parameters sug-

ested by their authors and setting a maximum allowed com-

uting time of 900 seconds for each execution. The experimental

esults from this comparison are shown in Table 6 . The bench-

ark instance, its order (| V |), size (| E |) and known optimal solution

alues ( Chen & Yan, 2007; Jianxiu, 2001 ) are listed in the first four

olumns. Column 5 depicts known upper bounds. Lines 1–6 (Carte-

ian products of graphs) were computed as indicated by Jianxiu

2001) , while for the rest of the graphs (arising from practical

roblems and random instances) it was done by using the expres-

ion (m � n/ 2 �� n/ 2 	 ) / (n − 1) . Next, the best ( Best ), average ( A v g)

nd standard deviation ( De v ) of the cyclic bandwidth sum reached

y each compared algorithm are depicted. In this table, the lowest

verage cyclic bandwidth sum value ( A v g) for each of the tested

nstances is written in bold, and the O-RMSE value computed for

ach compared algorithm is presented at the bottom of the table.
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mploying the procedure detailed in Section 4 the statistical sig-

ificance of the results of this experiment was also investigated.

able 7 summarizes whether the performance differences between

he studied algorithms were statistically significant or not. 

Analyzing the data presented in Table 6 allowed us to make

he following observations. First, our ILS algorithm is able to sur-

ass the best solutions attained by GVNS and Mach in 14 out

f 20 graphs (70.00%) and to equal the best results furnished by

ach for other 3 benchmark instances. The analysis presented

n Table 7 shows that ILS achieved statistically significant better

esults than GVNS and Mach on 20 and 12 graphs, respectively.

his highlights the suitability of the studied ILS approach which

btains the lower O-RMSE value in this experiment. 

Second, Table 6 lists 15 graphs with known upper bounds

lines 1–6 and 12–20), for 14 of them our ILS algorithm equipped

ith evaluation function f 3 was able to improve these bounds.

ur ILS algorithm is even able to furnish optimal solutions for

he instances bip100-100 and cycleP200-10 and to supply embed-

ings with a small RMSE for the instances path20 0 , cycle20 0 and

heel200 . 

Third, one can notice that for 15 of the 20 graphs analyzed

ach found embeddings having lower cost than those provided

y GVNS . We found out that graphs with a non-structured topol-

gy (i.e., random graphs and instances arising from practical prob-

ems) are difficult to solve for the Mach algorithm, given its work-

ng principle which is based on decomposing the graph in different

aths. Indeed, a statistically significant performance improvement

as reached by GVNS with respect to Mach on 6 benchmark in-

tances, as can be observed in Table 7 . 

. Conclusions and future work 

The conventional evaluation function for the CBS problem pro-

ides a very poor discrimination among potential embeddings that

ould produce large plateaus in the fitness landscape, on which de-

ecting a promising search direction could be hard for certain local

earch strategies. Three new evaluation functions for this combi-

atorial optimization problem have been carefully devised and in-

roduced in this paper. All of them have the ability to create more

quivalence classes with a lower cardinality, by attributing a differ-

nt weight value to each cyclic distance magnitude in the graph. 

Extensive comparative experiments were performed, using 20

ell-known test instances, for assessing these three new evalua-

ion approaches with respect to the conventional evaluation func-

ion for the CBS problem. The first experiments were aimed at ana-

yzing the degree of discrimination that each considered evaluation

unction is able to provide. By means of the results produced by

his analysis, it was possible to confirm the weak capacity for dis-

rimination supplied by the conventional CBS evaluation function,

hich has been the main motivation for exploring alternative eval-

ation formulations. It was found that all the alternative functions

re able to provide a higher capacity for discrimination among po-

ential solutions. The functions offering the most fine-grained dis-

rimination are f 3 and f 1 , followed by f 2 and Cbs, in this order. 

The CBS -compatibility property was defined and investigated

or each of the alternative evaluation functions. This essential char-

cteristic assesses the capacity of an alternative evaluation function

o preserve the rank ordering offered by the conventional evalua-

ion scheme among potential embeddings of the CBS problem. The

btained results suggest that function f 3 possesses this property.

ery competitive results were also obtained by function f 2 . In con-

rast, f 1 scored the worst CBS -compatibility in this experiment. 

The effectiveness of the four analyzed evaluation approaches

o guide the search process was assessed experimentally using a

teepest Descent (SD) algorithm. The poorest performance of the

lgorithm was observed when using the alternative function f , fol-
1 
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owed by that attained by the conventional evaluation approach

bs. Function f 2 had a slightly better performance than f 1 and Cbs.

n contrast, the alternative function f 3 presented a very promising

ehavior in most of the tested graphs. 

To further explore the suitability of the studied evaluation func-

ions, a more sophisticated metaheuristic was implemented: Iter-

ted Local Search (ILS). The results of this experimental compari-

on disclosed that among the analyzed evaluation functions, f 2 ex-

osed a promising behavior, while function f 1 presented the worst

verall performance in this experiment. The results produced by

he conventional evaluation scheme Cbs indicate that the neutral-

ty of the search landscape ( Pitzer & Affenzeller, 2012 ), induced by

he low discrimination of this function, could be exploited by im-

lementing an appropriate perturbation procedure. Finally, it was

ound that function f 3 helped the ILS algorithm to make a more ef-

ective search than Cbs. Considering that function f 3 was designed

o work independently of other algorithmic components, it can be

eployed within other advanced metaheuristics for the CBS prob-

em to ameliorate their search capacity. 

All the experimental evidence presented confirms the practi-

al benefits of employing more refined evaluations schemes as

 means of improving the search capacities of the implemented

etaheuristic algorithms for the CBS problem. In particular our ILS

lgorithm, employing f 3 as evaluation function, was able to outper-

orm the best solutions provided by the state-of-the-art algorithms

VNS and Mach in 14 out of 20 benchmark instances. Indeed,

his algorithm was able to contribute to the state-of-the-art of the

BS problem by reaching optimal solutions for 2 instances in the

enchmark set and the establishment of 14 new upper bounds for

ther graphs. 

Although very promising average results were obtained by us-

ng f 3 as evaluation function within our ILS implementation, we

bserved that for some graph topologies certain alternative evalu-

tion schemes provided better final embeddings (see Section 5.5 ).

or this reason, our future work will concentrate on: (1) identifying

ssential properties (besides the degree of discrimination and the

BS -compatibility) of the studied evaluation functions that permit

o better explain why one function works better than others on

ertain graph types, and (2) designing an adaptive mechanism for

ombining the best guiding properties of different evaluation func-

ions through the search process for producing even better quality

olutions at a reasonable computational effort. 
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