N

N
N

HAL

open science

Alternative evaluation functions for the cyclic

bandwidth sum problem

Eduardo Rodriguez-Tello, Frédéric Lardeux, Abraham Duarte, Valentina

Narvaez-Teran

» To cite this version:

Eduardo Rodriguez-Tello, Frédéric Lardeux, Abraham Duarte, Valentina Narvaez-Teran. Alterna-
tive evaluation functions for the cyclic bandwidth sum problem. European Journal of Operational

Research, 2019, 273 (3), pp.904-919. 10.1016/j.ejor.2018.09.031 . hal-02715688

HAL Id: hal-02715688
https://univ-angers.hal.science/hal-02715688
Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://univ-angers.hal.science/hal-02715688
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

European Journal of Operational Research 273 (2019) 904-919

=

Contents lists available at ScienceDirect 3235%’»':@?"?5"&%85

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Alternative evaluation functions for the cyclic bandwidth sum problem n

Check for
updates

Eduardo Rodriguez-Tello**, Frédéric Lardeux”, Abraham Duarte€, Valentina Narvaez-Teran?

2 CINVESTAV-Tamaulipas Km. 5.5 Carretera Victoria-Soto La Marina, Victoria Tamps. 87130, Mexico
b LERIA, Université d’Angers., 2 Boulevard Lavoisier, Angers 49045, France
¢ Departamento de Ciencias de la Computacién, Universidad Rey Juan Carlos, Calle Tulipdn s/n. 28933 Méstoles, Madrid, Spain

ARTICLE INFO ABSTRACT

Article history: One essential element for the successful application of metaheuristics is the evaluation function. It should

Received 14 August 2017
Accepted 22 September 2018
Available online 9 October 2018

Keywords:
Combinatorial optimization
Fitness landscape neutrality

be able to make fine distinctions among the potential solutions in order to avoid producing wide plateaus
(valleys) in the fitness landscape, on which detecting a promising search direction could be hard for cer-
tain local search strategies. In the specific case of the cyclic bandwidth sum (CBS) problem, the heuristics
reported have used directly the objective function of the optimization problem to assess the quality of
potential solutions. Nevertheless, such a conventional function does not allow to efficiently establish pref-
erences among distinct potential solutions. In order to cope with this important issue, three new more

Enhanced evaluation function
Refined discrimination capability
Search guiding efficiency

refined evaluation functions for the CBS problem are introduced in this paper.

An in-depth comparative analysis considering the conventional and the three proposed evaluation func-
tions is carried out and presented. It includes an assessment of their: (a) discrimination potential, (b)
consistency with regard to the primary objective of the CBS problem, and (c) practical usefulness within
two different algorithms, best improvement local search and iterated local search. A validation of the
experimental results by means of a meticulous statistical significance analysis revealed that proposing
more informative evaluation schemes for the CBS problem could be a useful means of improving the per-
formance of metaheuristics. Indeed, our iterated local search implementation, using an alternative eval-
uation function, surpassed the best solutions yielded by the state-of-the-art algorithms and allow us to
attain new better upper bounds for 14 out of 20 well-known benchmark instances.

© 2018 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction cyclic bandwidth sum (the cost) for G with respect to ¢ is defined
as:
The cyclic bandwidth sum (CBS) is a well-studied combinato-
rial optimization problem. It was first studied by Yuan (1995) who ~ CPS(G,) = Y. lo) el (1)
demonstrated that it is a AP-hard problem. This problem arises (wv)eE

in some important application areas like VLSI designs (Bhatt &
Leighton, 1984; Ullman, 1984), code design (Harper, 1964), simula-
tion of network topologies for parallel computer systems (Monien
& Sudborough, 1990) and scheduling in broadcasting based net-
works (Liberatore, 2002).

The CBS problem can be formally defined as follows. Let G =
(V,E) be a finite undirected graph (guest) of order n and C, a cy-
cle graph (host) with vertex set |Vy| =n and edge set Ey. Given
an injection ¢: V— Vy, representing an embedding of G in G, the

where |x];, = min{ |x|,n —|x|} (with 1 <|x| <n-1) is called the
cyclic distance, and the label associated to vertex u is denoted ¢(u).
Then, the CBS problem consists in finding the optimal em-
bedding ¢* such that Cbs(G, ¢*) is minimum, ie., ¢*=
arg miny,.4{Cbs(G, @)}, with @ denoting the set of all possible em-
beddings. It is worth noting that an embedding can also be seen as
a labeling of the guest graph G using distinct vertices of the host
graph G, thus hereafter the terms embedding and labeling are used
indistinctly.
The past research on the CBS problem has been mainly focused
.) on the theoretical study of its properties, with the aim of find-
* Corresponding author.
E-mail addresses: ertello@tamps.cinvestav.mx (E. Rodriguez-Tello), ng optlmal solution values for some partlcular graph tOpOlOglESZ

frederic.lardeux@univ-angers.fr (F. Lardeux), abraham.duarte@urjc.es (A. Duarte), paths, cycles, wheels, kth power of cycles and complete bipartite
vnarvaez@tamps.cinvestav.mx (V. Narvaez-Teran). graphs (Chen & Yan, 2007; Jianxiu, 2001). Jianxiu (2001) studied

https://doi.org/10.1016/j.ejor.2018.09.031
0377-2217/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.ejor.2018.09.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.09.031&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ertello@tamps.cinvestav.mx
mailto:frederic.lardeux@univ-angers.fr
mailto:abraham.duarte@urjc.es
mailto:vnarvaez@tamps.cinvestav.mx
https://doi.org/10.1016/j.ejor.2018.09.031
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 905

a special class of instances produced as the Cartesian product of
two graphs and proved upper bounds for the CBS problem when
those graphs are either a path, a cycle or a complete graph. Un-
fortunately, these theoretical results only permit to compute the
optimal solution value (or an upper/lower bound) of the objec-
tive function, but they do not provide a procedure to construct the
labeling responsible of that solution value. Therefore, heuristic or
metaheuristic approaches emerge as the best strategy to find high
quality embeddings in short computing times.

Satsangi, Srivastava, and Gursaran (2012) proposed the first
method to solve the CBS problem. It is inspired by the General
Variable Neighborhood Search methodology (GVNS) (Mladenovic &
Hansen, 1997). Specifically, it starts by labeling each vertex by us-
ing a consecutive label from 1 to n (i.e., in lexicographic order), and
improving this initial embedding with a Reduced Variable Neighbor-
hood Search (RVNS) method. The GVNS further improves this so-
lution by considering six different shake operators and two local
search strategies. As it is shown in the computational experiences,
carried out on graphs of order n <200, GVNS achieves the optimal
solution values for all the instances with known results and gives
values less than the upper bound for Cartesian product of certain
graphs like paths, cycles and complete graphs. For a thorough de-
scription of this method the reader is referred to Satsangi et al.
(2012).

The second method specially designated for solving the
CBS problem is a two-step algorithm, called MacH, which was
proposed by Hamon, Borgnat, Flandrin, and Robardet (2016). The
first step of this procedure consists in finding a collection of
paths in the graph (i.e., some sequences of vertices consecutively
connected). Each path is constructed by performing a depth-first
search in which the next vertex is selected according to the Jac-
card index (Jaccard, 1912). The second step consists in merging all
obtained paths by following a greedy approach. In particular, a par-
tial solution is augmented by inserting a new path at the position
(just after or just before another already inserted path) that min-
imizes the cyclic bandwidth sum. As far as we know, this method
currently provides the best results in the related literature. There-
fore, we consider it as the current state-of-the-art algorithm.

These two algorithms have a point in common, both of them
evaluate the quality of an embedding as the change in the objec-
tive function Cbs(G, ¢), see Eq. (1). Nevertheless, it provides re-
duced information during the search process because the conven-
tional evaluation function does not allow to establish preferences
among different potential embeddings resulting in the same cyclic
bandwidth sum.! The poor discrimination power of this function
could result into large plateaus in the fitness landscape (Pitzer &
Affenzeller, 2012; Stadler, 1992), on which detecting a promising
search direction could be hard for certain local search strategies
(Marmion, Dhaenens, Jourdan, Liefooghe, & Verel, 2011; Michiels,
Aarts, & Korst, 2007).

In recent Operational Research literature, different approaches
have been proposed to cope with this issue that could seri-
ously compromise the search efficiency. They include the intro-
duction of new alternative evaluation functions (Murovec, 2015;
Smet, Bilgin, De Causmaecker, & Vanden Berghe, 2014), special-
ized diversification mechanisms to better traverse plateaus in the
fitness landscape (Benlic, Epitropakis, & Burke, 2017), objective
space decomposition (Derbel, Humeau, Liefooghe, & Verel, 2014),
evaluation functions with aggregated penalty terms (Karapetyan,
Mitrovic Minic, Malladi, & Punnen, 2015; Umetani, 2017) and
multi-objectivization (Garza-Fabre, Toscano-Pulido, & Rodriguez-

T Note that multiple embeddings can produce different cyclic distance combina-
tions resulting in the same total cyclic bandwidth sum.

Tello, 2015; Lochtefeld & Ciarallo, 2015), just to mention some rel-
evant examples.

Based on our past experience designing more informative eval-
uation schemes (Rodriguez-Tello, Hao, & Romero-Monsivais, 2015;
Rodriguez-Tello, Hao, & Torres-Jimenez, 2008a; 2008b), in this pa-
per three new more discriminating evaluation functions for the
CBS problem are introduced. These evaluation functions were thor-
oughly devised to capture even the smallest improvement that ori-
ents the searching of better solutions and permits to find em-
beddings in which all the cyclic distances are minimized. An in-
depth comparative study considering the conventional and the
three novel evaluation schemes proposed by us is carried out by
following the methodology reported in Garza-Fabre, Rodriguez-
Tello, and Toscano-Pulido (2013). It includes: (a) an investigation
of their discrimination potential, (b) an analysis concerning the
consistency of the three new evaluation functions with regard to
the primary objective of the CBS problem, (c) an assessment of
the practical usefulness of the four evaluation approaches when
used within two distinct algorithms, local search with a best im-
provement move strategy and iterated local search, and (d) a val-
idation of the experimental results by means of a meticulous sta-
tistical significance analysis. To further understand the extent to
which the studied evaluation functions can influence the conver-
gence process of search algorithms, this comparative study was
complemented with an analysis of the evolution profiles of the av-
erage best cyclic bandwidth sum (cost) attained by the proposed
iterated local search implementation. All experiments presented
consider a test-suite composed of 20 standard benchmark graphs
for the CBS problem having different topologies.

The rest of this manuscript is structured as follows:
Section 2 highlights some potential drawbacks of the conven-
tional evaluation function and presents an analysis of its main
characteristics. Additionally, the three considered alternative eval-
uation functions for CBS problem are also formally described. We
introduce in Section 3 the algorithmic approach to deal with the
CBS problem, which is based on the Iterated Local Search method-
ology. Section 4 details the adopted benchmark instances and the
performance assessment methodology. Section 5 presents com-
putational experimentations that were carried out for examining
two relevant characteristics of the studied evaluation schemes, the
capacity for discrimination and the CBS-compatibility. This section
continues by assessing the usefulness to guide the search process
of these four evaluation schemes when they are used within
two distinct algorithms, as well as their influence in the global
convergence. Section 6 is devoted to compare the performance of
our iterated local search implementation, equipped with the best
identified evaluation function, with respect to two state-of-the-art
heuristics: GVNS (Satsangi et al., 2012) and MAcH (Hamon et al.,
2016). Finally, Section 7 provides the overall outcomes of this
work as well as some lines for future research.

2. Evaluation functions for the CBS problem

Metaheuristic algorithms depend on an effective evaluation ap-
proach to correctly direct the search process towards more promis-
ing zones in the solutions space (Marmion et al., 2011; Michiels
et al., 2007). Nevertheless, as it was previously indicated the con-
ventional evaluation function for the CBS problem, originally de-
fined in Eq. (1), discriminates poorly among potential embeddings
having the same cyclic bandwidth sum cost. For instance, con-
sider a Petersen (guest) graph G of order n = 10. For this particu-
lar graph, the same cyclic bandwidth sum cost Cbs(G) = 33 is ob-
tained by the three different embeddings depicted in Fig. 1. Each
of these embeddings is represented by the corresponding labels
placed inside the vertices, which are uniquely identified with the
blue numbers outside The cyclic distance of each edge (u,v) € E is

906 E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

(a) Embedding ¢.

(b) Embedding ¢’.

(c) Embedding ¢”.

Fig. 1. Three different embeddings for a Petersen (guest) graph G of order n = 10. All of them have the same cyclic bandwidth sum, Cbs(G) = 33. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

computed as it was aforementioned and represented by the num-
ber close to each edge.

More precisely, given a graph G= (V,E) of order n = |V| and
size m = |E|, the conventional evaluation function Cbs(G, ¢), called
hereafter Cbs for simplicity, can only take values in the range from
n—1 (the optimal value for a path graph) to the upper bound
value for any graph given by the following expression (Jianxiu,
2001):

mn/2][n/2]

PO (2)
These values are used for ranking a total of |®|=(n—1)!/2 em-
beddings, i.e., the entire search space. Note that each possible
Cbs value induces one equivalence class grouping the embed-
dings in & with the same cost. For instance, given a complete
graph K, of order n =200 and size m = 19,900 there are only
999,802 different Cbs values (199 <Cbs <1, 000, 000) which can
be employed to rank a total of 3.9416E+372 potential embeddings.
Nevertheless, some equally ranked embeddings (within the same
equivalence class) could lead the search algorithm to reach better
solutions than others in further iterations.

The weak capacity for discrimination furnished by the con-
ventional evaluation function of the CBS problem generates the
existence of wide plateaus in the search landscape. In such neu-
tral zones, metaheuristics (principally those based on local search
methods) could fail to identify a promising search direction, lead-
ing to an almost randomly guided search process.

In order to overcome the negative features of the conventional
evaluation function Cbs, three alternative evaluation functions for
the CBS problem are proposed. The aim of these alternative eval-
uations schemes is to provide a more fine-grained discrimination
among potential solutions, which allows metaheuristic algorithms
to make the most appropriate choice at each iteration of the opti-
mization process. These functions take into consideration not only
the total cyclic bandwidth sum of an embedding, but also addi-
tional semantic information related to the potential solution.

In these new evaluation functions d, represents the number
of cyclic distances with value (magnitude) k between adjacent
vertices of G, i.e., dk:Z(u,v)eE Ly, with Ly equals 1 if |@(u) —
@()|n =k, and 0 otherwise. Observe that the conventional func-
tion Cbs can be expressed in terms of the number of cyclic dis-
tances d, in the graph using the following equation:

[n/2]
Cbs(G.) = > k-dy. (3)
k=1
since the maximum value k that a cyclic distance can reach is
Ln/2].
The main idea of the following three new functions is to con-
sider that each number of cyclic distances d; should have a dis-

tinct level of contribution when they are used to compute the cost
value of an embedding. It is accomplished by assigning a different
weight value to each number of cyclic distances d;.

2] [k
fl (Ga(p) = Z 213 'dk’ (4)
k=1 i=1
[n/2]
fH(G.p) =" n*D . d, (5)
k=1
[n/2]
12(6.0) = Cbs(G.9) + 3 () - dic (6)
k=1

Please observe that evaluation functions f; and f, assign small
weight values to small cyclic distances. By minimizing these evalu-
ation functions a search algorithm penalizes the cyclic distances dj,
having large values of k which are closer to the cyclic bandwidth
Cb(G, @) of the graph?, and privileges those with small values of
k. As an indirect consequence, the Cbs value of the entire graph is
reduced.

On the contrary evaluation function f3 attributes big weight val-
ues to those cyclic distances d, having small k values. The logic
behind this is that it could be easier to reduce the total cyclic
bandwidth sum of an embedding if it has summands of bigger
value. Besides, |f;] equals the integer value computed with Eq. (1).

By attributing a different weight value to each cyclic distance
magnitude, the three new evaluation functions have the ability to
create more equivalence classes with a lower cardinality. This is
an important characteristic which allows them to capture even the
smallest improvement that orients the searching process toward
better embeddings.

Once we have introduced the three alternative evaluations func-
tions, we proceed to analyze their computational complexity. Re-
call that evaluating the quality of an embedding ¢, by using the
conventional evaluation function Cbs, requires analyzing all the
edges in the graph G = (V, E), thus O(|E|) instructions must be ex-
ecuted.

The alternative evaluation functions fi, f,, and f; can be com-
puted more efficiently if the weight values associated to each num-
ber of cyclic distances d; (defined in Egs. (4), (5), and (6), re-
spectively) are precomputed and stored in a separate array of size
LIVl/2]. This requires to execute ||V|/2] operations, i.e., O(|V]).
Then, each time that the value of one of the alternative evalu-
ation functions should be calculated, the weighted sum over all

2 Cb(G,p) = (g}gé{\w(u) -9}

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

the edges (u,v) € E of the graph is computed. It implies a com-
putational complexity similar to that required to compute Cbs,
O(|V| + |E]) ~ O(|E]).

Additionally, the alternative evaluation functions f;, f,, and f3
permit an incremental evaluation of neighboring solutions using
appropriate data structures.’ Indeed, suppose that the labels of
two different vertices u, v are exchanged, then we should only re-
compute the |A(u)|+ |A(v)| cyclic distances that change, where
|A(u)| and |A(v)| represent the number of adjacent vertices to u
and v, respectively. As it can be seen this is faster than the O(|E|)
operations required originally.

3. Algorithmic approach

Local search methods might easily get trapped into local op-
tima, which usually prevents them from finding global optimum
solutions (Blum & Roli, 2003; Talbi, 2009). Therefore, there is a
need to implement additional strategies for assisting the search
process to find trajectories getting away from local optima. Iter-
atively restarting the local search from a distinct initial solution
is one possible strategy, which has been implemented in the It-
erated Local Search (ILS) algorithm (Lourenco, Martin, & Stiitzle,
2003; 2010; Martin, Otto, & Felten, 1991). ILS has proved to be
an effective tool for approximating globally optimal solutions for
distinct A"P-hard optimization problems. For this reason, in re-
cent years, there has been a growing interest in the Operational
Research community for studying this kind of metaheuristic al-
gorithm (Avci & Topaloglu, 2017; Coelho et al.,, 2016; Cruz, Sub-
ramanian, Bruck, & lori, 2017; Godim da Fonseca, Gambini San-
tos, Machado Toffolo, Souza Brito, & Freitas Souza, 2016; Porumbel,
Goncalves, Allaoui, & Hsu, 2017; Silva, Subramanian, & Ochi, 2015;
Silva Paiva & Carvalho, 2017).

To investigate into the suitability of the analyzed evaluations
functions, an ILS procedure, outlined in Algorithm 1, is used. The

Algorithm 1: Iterated Local Search algorithm.

Input: Maximum allowed CPU time MT, perturbation strength PS
1: Choose an initial solution ¢ € ¢ uniformly at random

2: @* « SteepestDescent(¢)

3: repeat

4: ¢’ < Perturbation(¢*, PS)
5: ¢” <« SteepestDescent(¢’)
6: if f(¢") < f(e*) then

7: (p* <« g0//

8: end if

9: cpuTime < getElapsedCpuTime()
10: until cpuTime < MT
11: return a local minimum ¢*

proposed method starts with a feasible embedding generated at
random, denoted as ¢ (line 1). This initial solution is improved
with a local search method, described below, to produce a local op-
timum @*, which becomes the incumbent solution (line 2). Then,
it performs the perturbation procedure, explained below (line 4),
to change slightly the incumbent solution which provides the em-
bedding ¢’. This is followed by a new round of the local search
procedure (line 5) to reach a new local optimum ¢’’ from the per-
turbed solution. After each local search procedure call, the new
local optimum reached ¢’ is accepted as the new incumbent so-
lution if it scores a better cost value (computed with one of the
proposed evaluation functions) than the current incumbent solu-
tion ¢* (lines 6-8). These three steps, considered as an iteration,

3 Note that Cbs can also be incrementally computed.

907

are repeated until a maximum predefined CPU time MT is con-
sumed. Finally, the best solution found ¢* is returned as the re-
sult of the ILS procedure. Note that our ILS implementation is not
equipped with an explicit mechanism to prevent the search from
generating cycles (i.e., revisiting previously selected solutions). The
experiments discussed in Section 5.6 demonstrate that the alterna-
tive evaluation functions reduce the emergence of such cycles.

The proposed local search method follows a typical Steepest
Descent (SD) strategy. The neighborhood structure A'(¢) imple-
mented for our SD algorithm can be formally defined as:

(7)
where swap(g, u, v) is a function permitting to exchange the labels
of two vertices u and v from an embedding ¢. Given a graph G of
order n, the size of such a neighborhood is |V (¢)| =n(n—1)/2.

The proposed local search proceeds as follows. Given a feasi-
ble solution ¢ € ®, SD replaces it with the best solution found in
its neighborhood N'(¢), where ties are broken randomly. This iter-
ative process terminates automatically when ¢ is locally optimal,
i.e., no better embedding can be found within its neighborhood.

The motivation for using such a simple local search algorithm is
the following. First, SD can be an appropriate option for measuring
the effect of changing the evaluation scheme because its perfor-
mance is only determined by the guiding capabilities of the ana-
lyzed evaluation functions, once a neighborhood relation has been
fixed (Blum & Roli, 2003; Gendreau & Potvin, 2010). Furthermore,
it is expected that the SD algorithm stops after a small number of
iterations, given the poor capacity of discrimination furnished by
some of the studied evaluation approaches. Second, the parameter-
free nature of the SD algorithm allows to avoid the influence of a
non appropriate tunning process over the behavior induced by the
studied evaluation functions.

Within our ILS implementation, the perturbation operator (see
Algorithm 2) is designed to jump out of the current local

N(p)={¢' e @ :swap(p.u.v)=¢ uveV, uzv}

Algorithm 2: Perturbation.

Input: Input solution ¢, perturbation strength PS

1. ¢ <@

2: for L < 1 to PS do
Choose randomly a neighbor solution ¢’ € N(¢*)
for ¢ < 1 to |V| do

Choose randomly a neighbor solution ¢” € N(¢*)

if f(¢") < f(¢’) then

(p/ « (p//

end if
end for
10: @* < ¢’
11: end for
12: return a perturbed solution ¢*

© X NI AW

optimum trap by accepting some deteriorating solutions. A prelim-
inary experiment testing different perturbation functions allowed
us to identify that the perturbation procedure described next is
the one that attains the best results. This perturbation mechanism
helps the local search to escape from the basin of attraction of the
local optima found, without an important cost deterioration of the
new incumbent solution. Given an embedding, passed as a param-
eter, our perturbation operator executes a predefined number PS
of controlled label exchange moves swap(-), where PS is called the
strength of perturbation. More in detail, for each perturbation step
(i.e., each iteration of the outer for loop, line 2), the best embed-
ding among |V| randomly sampled neighbor solutions of the cur-
rent solution ¢* is identified (lines 3-9). Then, this best embed-
ding ¢’ is used to replace the current solution ¢* (line 10), which
will be the starting point for the next perturbation step. The new

908 E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

embedding generated after these PS perturbation steps is returned
as the incumbent solution of the next round of the local search
procedure. Please note that this perturbation procedure is guided
by an evaluation function f (line 6) which can be one of the four
analyzed evaluation functions in this work.

4. Experimental setup

The experimentation in this research work was carried out
on 20 benchmark instances® previously reported in the litera-
ture (Hamon et al., 2016; Satsangi et al., 2012). These instances
are grouped into four different subsets which include: six Carte-
sian products of graphs with known upper bounds (Jianxiu, 2001),
five standard graphs with known optimal solution values (Chen
& Yan, 2007; Jianxiu, 2001), five graphs arising from scientific
and engineering practical problems coming from the Harwell-
Boeing Sparse Matrix Collection,” and four random graphs con-
structed with the Erd6s-Rényi generator provided by NetworkX 1.11
(Hagberg, Schult, & Swart, 2016; 2008).

Even though new alternative evaluation schemes for the
CBS problem are analyzed in this work, it is worth mentioning that
the target of the optimization process remains to minimize the to-
tal cyclic bandwidth sum (Cbs). Therefore, all the results furnished
by this experimental comparison are assessed with respect to the
conventional evaluation function of the CBS problem.

Two additional performance measures were considered, both
computed over multiple independent executions of the imple-
mented search algorithms. First, the relative root mean square error
(RMSE) for a given test instance t is defined as follows:

TL ()
R)
where Cbs,(t) denotes the cyclic bandwidth sum of the best em-
bedding found during a single execution r, R is the total num-
ber of executions carried out in the experiment, and Cbs*(t) is the
optimal (or best-known) solution value for instance t. Given that
the range of possible cost values varies from instance to instance
in the CBS problem, RMSE(t) is defined in a common 0% to 100%
scale, making possible to evaluate together the results obtained for
the different considered test instances. The preferred value for this
measure is RMSE(t) = 0%, corresponding to a perfect performance.
Second, the overall relative root mean square error (O-RMSE)
measure extends RMSE in order to evaluate the global performance
of the studied approaches, considering all the set of benchmark in-
stances. Formally, O-RMSE can be stated as follows:
1

O-RMSE = —) "RMSE(1). (9)
|T| teT

RMSE(t) = 100% (8)

where 7 is the set of all benchmark instances. In this way,
O-RMSE = 0% suggests the ideal situation where the optimal so-
lution value for each instance was attained at each performed ex-
ecution.

A statistical significance analysis was performed for all the ex-
periments presented in this paper. Each analysis was conducted
using the following methodology. First, the normality of data dis-
tributions was evaluated by applying the Shapiro-Wilk test. In the
case of normally distributed data, either ANOVA or Welch’s t para-
metric tests were used depending on the result of Bartlett’s test,
which was used to investigate if the variances across the samples
were homogeneous (homoskedasticity) or not. On the contrary, the
nonparametric Kruskal-Wallis test was employed for non-normal

4 Available at http://www.tamps.cinvestav.mx/~ertello/cbsp.php.
5 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing.

data. These tests are carried out by consistently considering a sig-
nificance level of 0.05.

The C programming language was used to make the algorithmic
implementations needed for this experimental study. These imple-
mentations were then compiled with gcc using the optimization
flag -03 and executed sequentially into a CPU Xeon X5650 at 2.66
gigahertz, 2 gigabytes of RAM with Linux operating system.

5. Discussion and analysis of the alternative evaluation
functions

In this section four different experiments are presented to eval-
uate and to compare the four different evaluation functions for
the CBS problem: the conventional evaluation function Cbs, and
three new alternative evaluation schemes introduced in Section 2.
Through the first pair of experiments two essential characteris-
tics of the analyzed evaluation functions are examined in detail in
Sections 5.1 and 5.2. Then, the search guiding efficiency of these
evaluation schemes is assessed in Sections 5.3 and 5.4.

5.1. Potential of discrimination

The potential of discrimination is an essential property of any
evaluation scheme that has direct influence on the global behavior
of metaheuristic algorithms. If an evaluation function is unable to
establish an appropriate ranking among candidate solutions, then
the optimization process could be practically guided by random
decisions.

The potential of discrimination provided by the analyzed evalu-
ation approaches is investigated next. This is carried out by study-
ing the distribution of ranks that these evaluation methods pro-
duce for a given set of potential embeddings. A ranking establishes
an order relation over the items contained in a set by considering a
predefined criterion. In this research work, embeddings should be
ranked and the criterion to establish such an order relation is their
cyclic bandwidth sum value (cost). Given a set of potential embed-
dings, the first ranking position is assigned to the solution with
the best (smaller) Cbs value, the next ranking position is allotted
to the one with the second best cyclic bandwidth sum value, and
so forth. If two or more embeddings present the same cost, then
they will share the same rank.

The relative entropy (RE) measure proposed by Corne and
Knowles (2007) was adopted for this experiment. Given a set hav-
ing ¢ ranked embeddings (there are at most c ranks, and at least
1), the relative entropy RE(D) for the distribution of ranks D can be
computed with the following expression:

25:1 % log (%)
log(¢)

where D; denotes the number of embeddings with rank j. RE(D)
tends to 1 as the rank distribution D approaches to the ideal case
where each embedding has a different rank (i.e., the maximum po-
tential of discrimination). On the contrary, when all the potential
solutions share the same ranking position (i.e., the weakest dis-
crimination), RE(D) equals zero.

In this experiment, 100,000 different embeddings were gener-
ated at random. Using each one of the four studied evaluation
functions these embeddings were evaluated and ranked in order to
compute the corresponding RE measures. This experiment was per-
formed 50 times using all the selected benchmark instances. The
global results produced by this experiment are summarized with
boxplots in Fig. 2, while Fig. 3 depicts for each test instance the
average RE values obtained by the distinct analyzed functions us-
ing points.

RE(D) = (10)

http://www.tamps.cinvestav.mx/~ertello/cbsp.php
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

1.0000e+00

9.5000e-01

9.0000e-01

8.5000e-01

8.0000e-01

RE

7.5000e-01

7.0000e-01

6.5000e-01

6.0000e-01

Cbs f1 f2 fs

(a) Overall view.

909

1.00000000e+00

9.99995000e-01

9.99990000e-01

RE

9.99985000e-01

9.99980000e-01

9.99975000e-01

9.99970000e-01
Cbs f1 fa fs

(b) Zoom-in view.

Fig. 2. Boxplots representing the global relative entropy (RE) of the distribution of ranks computed for each studied evaluation function. Overall statistics for the 20 selected

benchmark instances.

1.0000e+00

9.5000e-01

9.0000e-01

8.5000e-01

8.0000e-01

RE

7.5000e-01

7.0000e-01

6.5000e-01

6.0000e-01

(a) Overall view.

RE

Cbs —m— fy —5— f»

1.0000000064+00 |- 4 A A& A A A A A A A A A A A & & A A 4 a

9.99995000e-01

9.99990000e-01

9.99985000e-01

(b) Zoom-in view.

Fig. 3. Relative entropy (RE) of the distribution of ranks computed for each analyzed evaluation function. Each point represents the average of 50 independent executions

over one tested instance.

By inspecting Fig. 2(a) it is possible to observe that certain of
the studied evaluation functions are able to discriminate stronger
than others. In all the benchmark instances tested, the conven-
tional evaluation function for the CBS problem, Cbs, achieved in
average the lowest RE score (6.89496912e—01). This confirms the
weak capacity for discrimination furnished by this function, which
has been the principal motivation for exploring the use of al-
ternative evaluation approaches. Among the alternative functions,
f> presented the worst performance in terms of discrimination
(9.65213479e—01). The evaluation function f; most of the time
scores high RE values. Nevertheless, it suffered slight decreases
on some of the tested instances, see Fig. 3(b), leading to an av-
erage RE value of 9.99913033e—01 as can be appreciated in the
zoom depicted in Fig. 2(b). Finally, it is important to remark
that according to the obtained results (9.99999999e-01), f5 is the
function offering the higher capacity for discrimination among po-
tential solutions.® Furthermore, this property is conserved over all
the graph topologies evaluated, see Fig. 3(a) and its zoom-in view
in Fig. 3(b).

6 Note that double precision floating point numbers were used for computing the
RE values presented in this experiment.

5.2. CBS-compatibility

The alternative evaluation functions for the CBS problem in-
troduced in Section 2 aim at performing a more effective ex-
ploration through the space of potential embeddings. Neverthe-
less, they should remain consistent with the original objective of
CBS problem, which consists in minimizing the cyclic bandwidth
sum function Cbs. Otherwise, false optima can potentially be in-
troduced and the search algorithm could be oriented towards em-
beddings diverging from the optimal solutions of the original op-
timization problem. Hence, investigating whether or not the pro-
posed evaluation schemes are consistent with the original objec-
tive is an important issue.

In this work, functions respecting this requirement (not contra-
dicting function Cbs) are said to be CBS-compatible. Thus, the ca-
pacity of an alternative evaluation function to preserve the conven-
tional rank ordering among potential embeddings can be defined
as its CBS-compatibility. More formally:

Definition 1. An alternative evaluation function f: ® — R is said
to be CBS-compatible if and only if flg)<fl¢’)=Cbs(p)<Cbs(¢p’)
for every pair of solutions ¢, ¢’ € ®. Otherwise, if at least one
pair of embeddings ¢, ¢’ exists such that Cbs(¢)<Cbs(¢’) but
flo)>fle’), then function f is not CBS-compatible.

910

100

98

96

94

92

RC (%)

90

88

86

84

82

f1 f2 fa

(a) Overall statistics for the 20 selected benchmark instances.

RC (%)

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

fi —8—f2

100 7 S S Sy S Sy Sy S S —Y

98

96

94

90

88

86

84

82

L PR L P R
o S o S O O O
NSRS § S PLIRXLSLL
T FF S FL NI Y v 4 @ T X &S &S S
SIS FIHST g & & § & PSS S
> & P P PSS F FQS L LS
TP ITIFTFLFLFTTd S Fgyes
3 O ESAEER NN
3 §

(b) Average results for each benchmark instance.

Fig. 4. Relative compatibility (RC) values computed for each alternative evaluation scheme studied.

Note, however, that the case where Cbs(p) = Cbs(¢’) but
flp)#f(¢’) is not considered a contradiction. This is a convenient
scenario, because the main objective of using the alternative func-
tion f is to enable a more fine-grained discrimination among po-
tential embeddings.

In this section, the CBS-compatibility property is explored for
all the alternative evaluation functions introduced in this work. An
experiment was conducted where 100,000 different embeddings
were randomly generated, then all pairwise comparisons among
them were performed. The percentage of such comparisons where
an agreement of the alternative evaluation approach with respect
to the conventional one is computed and referred to as relative
compatibility (RC).

Even though the value RC = 100% does not offer the assurance
of the CBS-compatibility property for a given function, RC < 100%
is sufficient to negate it. In other words, the gravity of the cases
where the CBS-compatibility property is not satisfied could be as-
sessed with the aid of the RC value. For every selected bench-
mark instance, 50 independent repetitions of this experiment were
performed. The overall statistics produced in this experiment are
depicted as boxplots in Fig. 4(a), while the average RC values
obtained for each one of the tested instances are presented in
Fig. 4(b).

From Fig. 4(a) and (b), it is possible to note that function f;
showed 100% of agreement with the conventional Cbs evaluation
function for all the benchmark instances used in this experiment.
Thus, it appears that evaluation function f; is CBS-compatible. On
the contrary, the experimental results disclose that functions f;
and f, do not present the CBS-compatibility property for any of
the graph topologies evaluated, since they scored an average RC
value of 83.410% and 92.012%, respectively. One can observe, from
Fig. 4(b), that functions f; and f, reached slightly lower average
RC values (81.692% and 89.968%) for the instance bip100-100 (a
complete bipartite graph of order n = 200). After analyzing this
particular case, we noticed that the embeddings for this instance
generated in average a distribution of the number of cyclic dis-
tances with d, = 100.503 for 1<k<99 and dygo = 50.236, while
most of the other tested instances induced distributions with at
most d, =20.010 for 1<k<99 and dypg = 9.984. Furthermore, in
average only 5,406 different cost values were produced by the
evaluation function Cbs for assessing the 100,000 embeddings pro-
duced for the instance bip100-100 in this experiment. In contrast,
the alternative evaluation functions f; and f, delivered much more
different cost values (99,995 and 72,200, respectively). These sit-

uations could explain the difficulties of the alternative evaluation
functions for respecting the extremely restrictive order relation es-
tablished by the conventional evaluation function Cbs for this par-
ticular instance.

Finally, it can be highlighted the poor performance exhibited
by function f;. For all the selected benchmark instances, this eval-
uation scheme scored the lowest RC values leading to an aver-
age of 83.410%. Fig. 5 presents an example scenario where func-
tion f; contradicts the conventional function Cbs. In this example,
a pair of different embeddings ¢ and ¢’ for a Petersen graph of
order n = 10 are compared against each other by applying the Cbs
and f; evaluation functions. As a result, the conventional evalu-
ation function Cbs prefers the solution ¢ (with a smaller value
Cbs(G,) =33) to ¢’ (with value Cbs(G, ¢) = 45), while function
f1 delivers the inverse preference order among them.

The low RC values attained by certain analyzed evaluation
schemes, particularly f;, bring evidence of a serious issue. It is
more likely that the global optimum produced by an alternative
evaluation function differs largely from the global optimum of the
original optimization problem when this function scores lower RC
values. Therefore, it is expected that CBS-incompatible alternative
functions could have problems to effectively guide the search pro-
cess.

5.3. Search performance using a basic local search algorithm

The experimental performance of the SD algorithm was eval-
uated when using each of the presented evaluation functions.
Through this experimentation, the following methodology was
consistently followed. First, 50 embeddings were randomly gener-
ated for every one of the 20 studied benchmark instances. Then,
each one of these embeddings was used as initial solution for
one independent run of the four analyzed evaluation schemes over
each considered graph. The main objective was to guarantee that
all the studied functions start the search of better solutions from
the same set of initial embeddings, and thus to reduce the bias
produced by this important design element in our comparisons.
The average results achieved in this experimental comparison are
provided in Table 1. The first three columns in this table list the
instance (graph), its order (|V]) and size (|E|). Column four reports
the best-known cyclic bandwidth sum value (B) for each instance.
It was either attained by MacH, when compiled and executed

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 9

(a) Embedding ¢.

(b) Embedding ¢’.

Fig. 5. Two different embeddings for a Petersen graph of order n = 10. This is an example where function f; contradicts function Cbs: Cbs(¢) =33 < Cbs(¢’) = 45 but

fi(p) =810 > fi(¢") = 800.

independently (50 times) in our computational platform,” or by
our SD algorithm when value is marked with a . For each of the
compared evaluation functions three columns are used to depict
the average (Avg) and standard deviation (Dev) of the cyclic band-
width sum attained with the SD algorithm equipped with the cor-
responding solution assessment scheme, and the average number
of iterations (I) needed to obtain that solution cost. The O-RMSE
value computed for each compared evaluation scheme is presented
at the bottom of the table. The lowest average cyclic bandwidth
sum value (Avg) for each of the tested instances is shown in bold.

The data presented in Table 1 allow us to observe that among
the three considered alternative evaluation functions for CBS prob-
lem, f; has the most negative effect on the overall efficiency of the
SD algorithm (it has the highest O-RMSE value 169.67%). This could
be explained by its poor relative CBS-compatibility (RC = 83.410%)
evidenced in the experiments presented in Section 5.2. Function
f> has a better performance than both, f; and the original objective
function (Cbs); and is able to reach for 4 instances the smaller av-
erage cyclic bandwidth values. For 80% of the tested benchmark in-
stances the best performer is clearly the SD algorithm using func-
tion f3 (attaining an O-RMSE = 76.51%). Notice that the search with
f3 last always longer time than with Cbs (contrast the values in
columns 7 and 16), leading to better quality local optima. The con-
ventional function Cbs stops early because it is unable to differ-
entiate among neighboring embeddings having equal cyclic band-
width sum value.

The methodology described in Section 4 was used to perform a
statistical significance analysis of the results produced by this ex-
periment. Table 2 highlights whether the performance differences
between the studied evaluation approaches were statistically sig-
nificant or not. Each row in this table compares two strategies,
say A and B, which is denoted as A/B. If a significant performance
difference exists between A and B for a particular instance, the
corresponding cell is marked either + or — providing that such a
difference was in favor of, or against A. Please note that a signif-
icant performance difference against A, marked as —, implies that
B significantly outperformed A. Unmarked cells indicate that there
was not a statistically important difference between the compared
evaluation strategies. The rightmost column of the table summa-
rizes the results of this analysis.

As shown in Table 2, Cbs significantly outperformed functions f;
and f; in 15 and 10 of the instances. Function f3 achieved a statis-
tically significant performance increase with regard to Cbs for 9 of
the adopted test graphs, while for the rest of the benchmarks a sig-
nificant difference could not be concluded. The f; and f, evaluation

7 Using the input parameters suggested by their authors (Hamon et al., 2016).

strategies scored significantly worst results than f3 in 18 and 14
instances, respectively. Nevertheless, f; was significantly surpassed
by f, in 2 of the benchmark instances.

5.4. Search performance using an Iterated Local Search algorithm

The main objective of the first experiment presented in this
section is to analyze the performance fluctuations of our ILS im-
plementation produced when varying the selected evaluation func-
tion and the input parameter values for the perturbation strength
(PS) and the maximum allowed CPU time in seconds (MT). To
this end, a full factorial experimental design was carried out con-
sidering the four studied evaluation schemes, as well as three
different values for each of the parameters PS = {5, 10,15}, and
MT = {300, 600, 900} (see Algorithm 1). This leads to a total of
36 configurations for our ILS implementation. All these configura-
tions were evaluated using 50 independent executions over each
of the 20 selected benchmark instances for a total of 36,000 exe-
cutions. Fig. 6 presents the overall relative root mean square error
(O-RMSE) measure obtained by each of the analyzed ILS configura-
tions, grouped by the MT parameter values. Lower O-RMSE values
are preferred, see Section 4.

Fig. 6 reveals that function f; consistently presented the worst
search performance for the different ILS parameter configurations
tested. It seems that function f; is negatively affected by higher
perturbation strength values, even when the maximum allowed
computational time MT is augmented. This can be the consequence
of the incapability of function f; to guide the search to better local
optima after a medium or high strength perturbation, produced by
its low relative compatibility with respect to the original objective
of the CBS problem (see Section 5.2). In contrast, the conventional
evaluation function Cbs has a much better performance than fj,
and is outperformed by f, when the maximum allowed computa-
tional time MT is limited to 300 seconds. Nevertheless, the results
provided by Cbs are slightly better than those furnished by f, when
MT is augmented. From Fig. 6 it can also be observed that f3 was
able to consistently outperform the search performance provided
by the other 3 analyzed functions in the 9 ILS parameter configu-
rations tested. Furthermore, by analyzing the behavior of this par-
ticular function one observes that the ILS algorithm equipped with
f3 is able to discover better new local optima when both the per-
turbation strength and the CPU time allowed are increased. This
remarkable performance can be related with the fact that function
f3 scored the best discrimination potential and CBS-compatibility
in the precedent experiments.

In order to provide a more detailed analysis, the parame-
ter configurations which allowed each of the studied evaluation

Table 1
Performance of the SD algorithm when using the four studied evaluation functions.
Cbs f fa f3
Graph V| |E| B Avg Dev 1 Avg Dev 1 Avg Dev 1 Avg Dev I
c20c10 200 400 2360* 4993.24 585.13 1561.46 8692.44 683.55 4766.96 6049.16 632.13 4739.20 4197.64 703.10 3803.36
c20k10 200 1100 5300 10976.28 1304.90 1873.26 13787.64 294938 4820.22 9525.32 923.80 3378.38 11067.44 1366.13 2607.32
k20k10 200 2800 62,300* 62436.00 755.59 2280.46 84772.16 862.00 3302.62 62304.92 250 3633.68 62300.00 0.00 3455.10
p20c10 200 390 2256 4809.28 600.77 1572.40 8342.26 738.01 4888.98 5585.40 802.18 4873.40 4062.96 551.73 3518.82
p20k10 200 1090 5200 10537.88 1227.61 1899.76 13101.64 3262.07 4727.20 9056.20 804.87 3393.70 10464.00 1104.77 2596.04
p20p10 200 370 2385 4082.90 619.52 1653.46 7315.62 926.58 4827.54 4657.02 730.89 5159.54 3354.56 489.50 3335.00
bip100-100 200 10,000 500,000 500000.00 0.00 115.02 500000.00 0.00 914.74 500000.00 0.00 870.84 500000.00 0.00 133.94
path200 200 199 199 1817.30 209.11 831.34 1799.12 260.51 6812.78 1366.92 21950 5961.18 1066.42 175.07 4975.28
cycle200 200 200 200 1888.56 207.06 850.68 1894.00 262.91 6639.96 1445.96 242.10 6201.88 1080.16 200.13 5226.80
cycleP200-10 200 2000 11,000* 2053436 443749 2851.96 18292.24 7242.48 7333.08 15249.36 6166.86 6184.46 15624.40 5275.83 5543.84
wheel200 200 398 10,200 11885.32 206.32 819.16 11854.64 261.79 6801.38 11455.80 254.86 6136.12 11082.36 173.86 5158.52
can_229 229 774 6301* 9281.88 1409.97 3260.88 1577250 2090.70 6498.38 10778.56 191059 6577.76 8577.52 1566.76 4946.46
dwt_209 209 767 7119+ 8964.78 817.21 2171.70 1377414 1721.82 6805.96 9382.72 1410.75 6062.88 8978.40 681.48 2815.02
steam1 240 1761 24,158* 30878.12 3037.17 342212 43278.28 5591.47 4852.92 31692.08 4180.80 4890.12 30305.04 3396.44 3753.00
ash219 219 431 6705* 8269.36 542.69 1953.90 12586.34 47212 4731.16 9480.28 652.37 5555.60 7848.82 64595 4256.12
will199 199 660 14,116* 15722.04 653.69 2239.12 21010.08 606.12 3786.00 17658.28 817.34 4135.80 15522.24 629.90 3361.78
ran200P1 200 1991 71,394+ 72802.78 705.67 242218 80034.24 938.28 3039.18 75927.04 65493 3567.24 72693.96 619.91 3269.74
ran200P3 200 5970 256,987* 259502.00 1061.70 2770.02 269017.16 1041.76 2812.12 263671.86 1043.50 3453.40 259250.16 923.42 3476.50
ran200P5 200 9955 452,486* 455109.68 1167.33 2955.38 465122.66 1223.02 2646.84 459212.96 1329.09 3380.70 454989.04 1178.27 3542.62
ran200P7 200 13,827 651,128* 653407.40 1134.01 2816.72 661903.78 1417.15 2274.00 656706.26 1221.45 3135.66 653187.90 837.67 3448.70
O-RMSE 122.86% 169.67% 105.44% 76.51%
Table 2
Statistical analysis for comparing the performance of the SD algorithm when using the four analyzed evaluation approaches.
Instance

Function ¢c20c10 c20k10 k20k10 p20c10 p20k10 p20p10 bip100-100 path200 cycle200 cycleP200-10 wheel200 can_229 dwt_209 steaml ash219 will199 ran200P1 ran200P3 ran200P5 ran200P7 Overall

Cbs/fi + + + + + + + + + + + + + + + 15+ 0-

Cbs/f> + - - + - + - - - - + + + + + + + 10+ 7-

Cbs/fs - - - - - - - - - 0+ 9-

filfa - - - - - - - - - - - - - - - - - - - 0+ 19-

filfs - - - - - - - - - - - - - - - - - - 0+ 18-

fHlfs - + - - + - - - - - - - - - - - 2+ 14-

[415

616-106 (6102) €22 Yopasay jpuoyniadQ Jo jpuinof uvadoing /|p 32 0jja-zangLpoy g

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 913

Cbs —e— fy —— f» f3 —a—
. E]/B/E
70 o)Z’/E
< 60 -
E o\’/.
(7]
=
T 50
(@)
40
A\‘\‘ —
30 \\ .
20 1 1 1 1 1 1 1 1 I\T\IA
PS 5 10 15 5 10 15 5 10 15
MT 300 600 900

Fig. 6. Overall relative root mean square error (O-RMSE) obtained by 9 different parameter configurations of the ILS algorithm equipped with each of the four analyzed

evaluation function.

Table 3
Selected parameter settings for
the ILS algorithm.

Function MT PS
Cbs 900 10
fi 900 5

£ 900 10
fi 900 15

functions to reach the lowest O-RMSE value have been selected
(see Table 3). The detailed results from this experimental com-
parison are depicted in Table 4 by using the same column head-
ings defined previously for Table 1. Column four reports the best-
known cyclic bandwidth sum value (B), which was obtained either
by MacH, when compiled and executed independently (50 times)
in our computational platform, or by our ILS algorithm when value
is marked with a . For each of the tested instances the lowest av-
erage cyclic bandwidth sum value (Avg) is shown in bold.

It is evident, from Table 4, that employing f; for assessing so-
lution quality within the ILS algorithm permits to obtain for 12
out of 20 instances better results (smaller average cyclic band-
width sum values, Avg) than those produced by the other three
compared evaluation approaches, resulting in the smallest O-RMSE
value (21.50%). In the particular case of instance bip100-100, func-
tion f; attains the same results than the best performing ap-
proaches. In fact, it seems that instance bip100-100 is not as hard
to solve as other graphs in the test suite, since all the evaluation
schemes found the same average cyclic bandwidth sum with a zero
standard deviation (Dev).

A statistical significance analysis was carried out on the exper-
imental results presented above by employing the methodology
described in Section 4. The details of this analysis are depicted
in Table 5 using the same format and conventions presented in
Section 5.3. From Table 5 one observes that even when Cbs sig-
nificantly outperformed functions f; and f, in 16 and 10 bench-
mark instances, it scored significantly worse results than f3 in 12
graphs. Function f3 significantly increased the performance of the
ILS algorithm in 16 and 14 of the test cases with respect to f; and

f>, respectively. However, f; was able to reach a statistically sig-
nificant performance improvement with regard to the three other
tested evaluation schemes for the instances c20k10 and p20k10.

5.5. Influence of the evaluation scheme over the ILS convergence
process

In order to further investigate the degree of influence that the
different evaluation schemes have over the convergence process of
the ILS algorithm, their evolution profiles of the average best cyclic
bandwidth sum (Cbs) along the search process (ILS iterations) were
computed using the data produced in the previous experiment and
individually analyzed. To reduce the space needed for reporting the
results of this analysis, they are presented using plots (see Fig. 7)
for only four instances (one representing each subset of graphs de-
scribed in Section 4): c20k10, path200, dwt_209 and ran200P1. In
these figures each line represents the average result of 50 execu-
tions, and points indicate improvements of the incumbent solution.

The plot in Fig. 7(a) permits to find out why function f; was
able to statistically outperform the rest of the evaluation ap-
proaches when solving the instance c20k10. It is possible to ob-
serve that starting from iteration 6, the convergence curve for f;
presents more frequent improvements (points) of the incumbent
solution compared with the other curves in the plot. It indicates
that this evaluation approach exhibits a greater capacity to de-
tect a promising search direction for this particular instance. It is
worth noting, that f; and f, avoid getting stuck in local optima,
because they allow deteriorating cost moves as a consequence of
their 83.49% and 92.11% of agreement with the conventional eval-
uation function. In contrast, function Cbs gets easily trapped in lo-
cal optima due to its inability to perform a proper discrimination
among potential embeddings.

A quite different scenario can be observed in Fig. 7(b). Function
Cbs reached the best average solution value for the graph path200
faster than the other evaluation approaches (similar results were
obtained for the graph cycle200). For this particular instance the
neutrality of the search landscape is high, since Cbs takes only
9801 possible values (199 < Cbs < 10, 000) to discriminate among a
total of 3.9416E+372 potential embeddings (see Section 2). How-

Table 4
Performance of the ILS algorithm when using the four studied evaluation functions.
Cbs f fa f3
Graph % |E| B Avg Dev 1 Avg Dev I Avg Dev 1 Avg Dev 1
c20c10 200 400 2360* 2521.36 489.60 26.10 3492.92 1228.57 139.02 2395.96 25428 73.30 2422.44 309.24 24638
c20k10 200 1100 5300 10251.40 946.65 244 672540 1253.63 37.08 7596.00 94350 20.88 7943.28 1502.48 39.02
k20k10 200 2800 62,300* 63755.28 202245 1.02 83941.12 925.83 37.42 62300.24 0.66 23.86 62300.00 0.00 33.08
p20c10 200 390 2238* 2455.68 39946 2542 3251.12 897.94 14094 2263.92 1.66 71.70 2335.58 268.12 240.90
p20k10 200 1090 5200 9925.76 1040.17 2.96 6169.62 702.93 38.20 7016.00 831.61 21.72 7119.30 1228.09 43.64
p20p10 200 370 1991 2092.58 168.86 47.42 2684.10 363.98 141.56 2199.94 152.18 61.78 2015.12 3483 229.06
bip100-100 200 10,000 500,000* 500000.00 0.00 8.96 500000.00 0.00 428 500000.00 0.00 4.50 500000.00 0.00 8.06
path200 200 199 199 352.12 69.76 57.40 738.94 65.79 111.18 489.66 7428 36.88 363.26 51.51 97.92
cycle200 200 200 200 378.68 8120 58.76 760.92 71.55 107.72 531.28 8094 37.84 389.08 56.41 93.16
cycleP200-10 200 2000 11,000* 16951.28 544133 22.70 15153.60 5602.16 61.02 15230.60 6110.02 64.14 16238.20 5297.60 48.62
wheel200 200 398 10,200 10439.72 75.58 27.70 10837.24 74.86 56.22 10611.28 89.39 18.68 10421.64 53.25 49.98
can_229 229 774 6243* 6915.46 1169.85 12.80 9402.98 1988.30 61.26 6671.48 88543 31.30 6264.80 4.23 91.88
dwt_209 209 767 6355* 7369.46 508.75 9.48 9629.50 962.30 50.18 7587.88 525.68 26.92 6677.90 328.73 120.04
steam1 240 1761 24,158* 31853.64 3633.94 1.00 45230.10 4189.08 1.00 34145.88 3490.00 1.00 31261.18 2842.05 1.00
ash219 219 431 6229+ 6644.94 239.91 11.32 9766.48 49043 130.04 7357.54 352.16 40.40 6410.88 216.71 137.30
will199 199 660 13,699* 13976.68 218.81 18.58 17658.06 625.05 115.94 15132.26 256.08 48.82 13801.82 50.37 144.76
ran200P1 200 1991 69,993+ 71291.26 386.19 5.84 76954.72 564.40 52.44 73234.92 456.13 26.64 70444.86 230.92 44.64
ran200P3 200 5970 255,001* 258634.08 931.37 1.30 265569.88 941.25 21.90 260282.90 811.22 10.24 256094.34 467.71 13.34
ran200P5 200 9955 451,266* 455114.62 995.99 1.00 461683.78 1167.28 12.74 456302.98 826.20 6.42 452517.20 592.95 6.24
ran200P7 200 13,827 648,917+ 654312.52 1174.19 1.00 658789.40 1049.85 11.08 654406.30 885.77 434 651048.42 697.50 430
O-RMSE 29.57% 59.76% 31.05% 21.50%
Table 5
Statistical analysis for comparing the performance of the ILS algorithm when using the four analyzed evaluation approaches.
Instance
Function ¢20c10 c20k10 k20k10 p20c10 p20k10 p20p10 bip100-100 path200 cycle200 cycleP200-10 wheel200 can_229 dwt_209 steam1 ash219 will199 ran200P1 ran200P3 ran200P5 ran200P7 Overall
Cbs/fi + - + + - + + + + + + + + + + + + + 16+ 2-
Cbs/f, - - - - + + + + - + + + + + + 10+ 5-
Cbs/fs - - - - - - - - - - - - 0+ 12—
filfa - + - - + - - - - - - - - - - - - - 2+ 16 -
filfs - + - - + - - - - - - - - - - - - - 24+ 16 -
fHlfs - + - - - - - - - - - - - - - 1+ 14-

¥16

616-106 (6102) €22 Yopasay jpuoyviadQ Jo jpuinof uvadoing /|p 12 0]ja[-zangLpoy

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 915

Cbs —+— fy —8— f»

h —_—

16000

14000
12000

b M‘
8000 E

Cbs

6000 | | | |
0 5 10 15 20 25
Iterations
() c20k10
Cbs —— fy —8— f2 fa —a—
16000 T T T T T T
15000
14000
13000 \-
12000
& 11000 B\s\ﬂ
3 00!
10000 %
9000
- *_
7000 I L S S
6000 I I I I I I I I
0 10 20 30 40 50 60 70 80 90
Iterations
() dwt_209

Cbs —— f1 —8— fp

fs_—

2000

1500 E

i M

500

Cbs

0 I I I I I I I I
0 10 20 30 40 50 60 70 80 920

Iterations

(b) path200

Cbs —— fy —H— f

fg —a—

82000

80000

e M

76000 [~

Cbs

74000

72000

70000 . L L ‘
0 5 10 15 20 25 30 35 40

Iterations

(d) ran200P1

Fig. 7. Comparison of the convergence profiles of the ILS algorithm equipped with the studied evaluation functions on four representative instances.

ever, the results show that even when Cbs assigns the same cost
to many neighboring solutions, breaking ties randomly within the
embedded local search heuristic could be enough to guide the
search out of those plateaus. Function f3, makes a more fine-
grained discrimination among potential solutions than Cbs, thus
passing from one plateau (with respect to Cbs) to another one de-
mands the execution of a most important number of local search
steps to reach a similar final solution cost. This suggests that un-
der certain circumstances it is possible that a high degree of dis-
crimination among solutions, like that provided by f;, may also
hinder the ability of an algorithm to identify a promising search
direction.

Fig. 7(c) and (d) depict the convergence results for the instances
dwt_209 and ran200P1. The former arises from a practical struc-
tural engineering problem, while the latter corresponds to a graph
randomly generated. Both instances have non-structured topolo-
gies. These figures illustrate that using the same number of ILS it-
erations, f3 reaches always a better average cyclic bandwidth sum
than the other compared evaluation approaches through the search
process. It is noteworthy that the performance of Cbs and f; is al-
most the same at the begin of the search. However, f3 enables the
ILS algorithm to explore the search space more efficiently, leading
in general to better quality final embeddings. This is because the

second term in Eq. (6) (a non-integer value) permits to better dis-
tinguish embeddings having the same cyclic bandwidth sum. Fi-
nally, the strategy used by f; for assigning big weight values to
those cyclic distances d, having small k values in an embedding
seems to yield better final results than that used by both f; and f;.

5.6. Investigating the existence of search cycles in the proposed ILS

The existence of frequent cycles during the search process can
have a negative influence in the global performance of a local
search algorithm. To investigate this important issue in the pro-
posed ILS algorithm, equipped with the four studied evaluation
functions, the following experiment was carried out on the four
representative instances employed in the previous section: c20k10,
path200, dwt_209 and ran200P1. For each evaluation scheme and
instance combination a total of 10,000 local search steps of the
ILS algorithm (visited potential solutions) were recorded in a file.
Then, the interchange distance (Cicirello & Cernera, 2013) between
each pair of them was calculated to produce square distance ma-
trices like those depicted in Fig. 8 for the instance dwt_209. Since
very similar results were obtained for the other three tested in-
stances, for the sake of space, only this figure is presented. In this
kind of matrices a red point is depicted in coordinates (a, b) if the

916 E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

0.8

R 0.4

0.2

1
! 0.8

0.6

(a) Cbs

0.4

0.2

b

© f2

0.4

0.2

(b) fi

0.4

0.2

@ f3

Fig. 8. Interchange distances matrices for instance dwt_209 using ILS and the four compared evaluation functions.

visited potential solutions at iterations a and b have an interchange
distance equal to zero between them, otherwise a white point is
printed at those coordinates. In this way red points in consecutive
rows and columns (local search iterations) can reveal the existence
of potential cycles in the search. For allowing an easy visualization
of data, only the first 250 local search steps are depicted in these
plots.

From Fig. 8(a) it can be observed that the conventional eval-
uation function Cbs produces a large number of cycles along the
search. It may be explained by the fact that Cbs is unable to
differentiate among distinct potential embeddings resulting in the
same cost. On the contrary, Fig. 8(b)-(d) reveal that the more re-
fined evaluation schemes proposed in this work, have the ability to
strongly reduce the possibility of visiting twice the same configura-
tion in consecutive local search iterations, thanks to their improved
guiding capacities.

6. Comparing ILS with the state-of-the-art algorithms

Given the promising results obtained in the experiments re-
ported before, we have decided to asses the performance of our

ILS algorithm, equipped with the evaluation function f3, with re-
spect to two state-of-the-art heuristics: GVNS (Satsangi et al.,
2012) and MAcH (Hamon et al., 2016). The source codes of
these algorithms were kindly provided by their respective authors.
These codes were compiled and run independently (50 times) in
our computational platform by using the input parameters sug-
gested by their authors and setting a maximum allowed com-
puting time of 900 seconds for each execution. The experimental
results from this comparison are shown in Table 6. The bench-
mark instance, its order (|V]), size (|E|) and known optimal solution
values (Chen & Yan, 2007; Jianxiu, 2001) are listed in the first four
columns. Column 5 depicts known upper bounds. Lines 1-6 (Carte-
sian products of graphs) were computed as indicated by Jianxiu
(2001), while for the rest of the graphs (arising from practical
problems and random instances) it was done by using the expres-
sion (m|n/2][n/2])/(n—1). Next, the best (Best), average (Avg)
and standard deviation (Dev) of the cyclic bandwidth sum reached
by each compared algorithm are depicted. In this table, the lowest
average cyclic bandwidth sum value (Avg) for each of the tested
instances is written in bold, and the O-RMSE value computed for
each compared algorithm is presented at the bottom of the table.

Table 6

Performance comparison of the ILS algorithm, equipped with the evaluation function f3, with respect to two state-of-the-art methods.

ILS

MACH

GVNS

Avg Dev

Dev Best

Avg Dev Best Avg

Best

|E| opt UB

v

Graph

309.24
1502.48

2422.44
7943.28

2360
5300
62,300

1097.34

3754.24
5300.00
76973.88

2446
5300
76,614

6467.80 24.66

6432
15,578
78,610

1560
50,380
103,300

400
1100
2800

200
200
200
200
200
200
200

c20c10

0.00
139.44

49.57
316.92

15733.00

c20k10

0.00

268.12
1228.09

62300.00

78911.00

k20k10

2335.58
7119.30
2015.12
500000.00

2238
5200
2004

500,000

0.00
0.00

703.74

2256.00
5200.00
6271.36
500000.00

2256
5200
4482
500,000

8.30
76.67

5663.48

15298.88

5657
15,092

3790
100,190

390
1090

p20c10

p20k10

3483

535
0.00
4.16
7.30
77.25

5441.40

500014.00

5434
500,014

370 2080

10,000

p20p10

0.00
51.51
56.41

5297.60

0.00
0.00
0.00
72.84
0.00
2358.96
1124.26
2373.94

500,000

bip100-100
path200

363.26

234

199.00

199
200
11,070
10,200

2355.20

2350

199
200
11,000
10,200

199
200
2000

200

389.08
16238.20

220
11,000
10,280

200.00
11217.00
10200.00

2042.88
39430.16

2036
39,210
12,476
13,842
13,576
51,938
10,364

200

cycle200

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 917

200
200

cycleP200-10

wheel200
can_229

53.25

10421.64

0.00
37.31

12476.00

398

423
328.73
2842.05

6264.80

6255

11899.82

7764
8264
36,713

13933.84

44,505
40,268
106,102

774
767
1761
431

229

dwt_209

6677.90
31261.18

6371
25913

10169.66

3227
158.50

13639.50

209
240
219
199
200
200
200

steam1
ash219

40831.46

52210.00

216.71

6410.88
13801.82

6245
13,738
70,037

255,192

339.76

8955.44
21205.34

8335
19,218
88,900
294,397

18.94

10397.42

23,705
33,000
100,050
300,000

50.37
230.92
467.71

788.45
1410.98

8.64
27.12

17657.68

17,613
76,487
269,521

660
1991
5970
9955

13,827

will199

70444.86
256094.34
452517.20

91052.80
294397.00

76533.32
269526.92

ran200P1
ran200P3
ran200P5
ran200P7

0.00
1334.77

29.30
22.22

592.95

451,417
649,478

504694.76

502,332
703,730

472466.08

472,432
668,810

500,251

697.50

651048.42

947.28

704559.46

6.22

668853.12

694,824

200

21.01%

34.96%

182.90%

0O-RMSE

Employing the procedure detailed in Section 4 the statistical sig-
nificance of the results of this experiment was also investigated.
Table 7 summarizes whether the performance differences between
the studied algorithms were statistically significant or not.

Analyzing the data presented in Table 6 allowed us to make
the following observations. First, our ILS algorithm is able to sur-
pass the best solutions attained by GVNS and MAcH in 14 out
of 20 graphs (70.00%) and to equal the best results furnished by
MacH for other 3 benchmark instances. The analysis presented
in Table 7 shows that ILS achieved statistically significant better
results than GVNS and MAcH on 20 and 12 graphs, respectively.
This highlights the suitability of the studied ILS approach which
obtains the lower O-RMSE value in this experiment.

Second, Table 6 lists 15 graphs with known upper bounds
(lines 1-6 and 12-20), for 14 of them our ILS algorithm equipped
with evaluation function f; was able to improve these bounds.
Our ILS algorithm is even able to furnish optimal solutions for
the instances bip100-100 and cycleP200-10 and to supply embed-
dings with a small RMSE for the instances path200, cycle200 and
wheel200.

Third, one can notice that for 15 of the 20 graphs analyzed
MAcH found embeddings having lower cost than those provided
by GVNS. We found out that graphs with a non-structured topol-
ogy (i.e., random graphs and instances arising from practical prob-
lems) are difficult to solve for the MAcH algorithm, given its work-
ing principle which is based on decomposing the graph in different
paths. Indeed, a statistically significant performance improvement
was reached by GVNS with respect to MACH on 6 benchmark in-
stances, as can be observed in Table 7.

7. Conclusions and future work

The conventional evaluation function for the CBS problem pro-
vides a very poor discrimination among potential embeddings that
could produce large plateaus in the fitness landscape, on which de-
tecting a promising search direction could be hard for certain local
search strategies. Three new evaluation functions for this combi-
natorial optimization problem have been carefully devised and in-
troduced in this paper. All of them have the ability to create more
equivalence classes with a lower cardinality, by attributing a differ-
ent weight value to each cyclic distance magnitude in the graph.

Extensive comparative experiments were performed, using 20
well-known test instances, for assessing these three new evalua-
tion approaches with respect to the conventional evaluation func-
tion for the CBS problem. The first experiments were aimed at ana-
lyzing the degree of discrimination that each considered evaluation
function is able to provide. By means of the results produced by
this analysis, it was possible to confirm the weak capacity for dis-
crimination supplied by the conventional CBS evaluation function,
which has been the main motivation for exploring alternative eval-
uation formulations. It was found that all the alternative functions
are able to provide a higher capacity for discrimination among po-
tential solutions. The functions offering the most fine-grained dis-
crimination are f3 and fi, followed by f, and Cbs, in this order.

The CBS-compatibility property was defined and investigated
for each of the alternative evaluation functions. This essential char-
acteristic assesses the capacity of an alternative evaluation function
to preserve the rank ordering offered by the conventional evalua-
tion scheme among potential embeddings of the CBS problem. The
obtained results suggest that function f3 possesses this property.
Very competitive results were also obtained by function f,. In con-
trast, f; scored the worst CBS-compatibility in this experiment.

The effectiveness of the four analyzed evaluation approaches
to guide the search process was assessed experimentally using a
Steepest Descent (SD) algorithm. The poorest performance of the
algorithm was observed when using the alternative function f;, fol-

918

Table 7

Statistical analysis for comparing the performance of the ILS algorithm using evaluation function f; against that of the state-of-the-art methods.

Instance

c20c10 c20k10 k20k10 p20c10 p20k10 p20p10 bip100-100 path200 cycle200 cycleP200-10 wheel200 can_229 dwt_209 steam1 ash219 will199 ran200P1 ran200P3 ran200P5 ran200P7 Overall

Function

6+ 14 —

GVNS / MACH
GVNS / ILS

Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919

0+ 20 -

6+ 12—

MacH / ILS

lowed by that attained by the conventional evaluation approach
Cbs. Function f, had a slightly better performance than f; and Cbs.
In contrast, the alternative function f3 presented a very promising
behavior in most of the tested graphs.

To further explore the suitability of the studied evaluation func-
tions, a more sophisticated metaheuristic was implemented: Iter-
ated Local Search (ILS). The results of this experimental compari-
son disclosed that among the analyzed evaluation functions, f, ex-
posed a promising behavior, while function f; presented the worst
overall performance in this experiment. The results produced by
the conventional evaluation scheme Cbs indicate that the neutral-
ity of the search landscape (Pitzer & Affenzeller, 2012), induced by
the low discrimination of this function, could be exploited by im-
plementing an appropriate perturbation procedure. Finally, it was
found that function f3 helped the ILS algorithm to make a more ef-
fective search than Cbs. Considering that function f3 was designed
to work independently of other algorithmic components, it can be
deployed within other advanced metaheuristics for the CBS prob-
lem to ameliorate their search capacity.

All the experimental evidence presented confirms the practi-
cal benefits of employing more refined evaluations schemes as
a means of improving the search capacities of the implemented
metaheuristic algorithms for the CBS problem. In particular our ILS
algorithm, employing f; as evaluation function, was able to outper-
form the best solutions provided by the state-of-the-art algorithms
GVNS and MAcH in 14 out of 20 benchmark instances. Indeed,
this algorithm was able to contribute to the state-of-the-art of the
CBS problem by reaching optimal solutions for 2 instances in the
benchmark set and the establishment of 14 new upper bounds for
other graphs.

Although very promising average results were obtained by us-
ing f3 as evaluation function within our ILS implementation, we
observed that for some graph topologies certain alternative evalu-
ation schemes provided better final embeddings (see Section 5.5).
For this reason, our future work will concentrate on: (1) identifying
essential properties (besides the degree of discrimination and the
CBS-compatibility) of the studied evaluation functions that permit
to better explain why one function works better than others on
certain graph types, and (2) designing an adaptive mechanism for
combining the best guiding properties of different evaluation func-
tions through the search process for producing even better quality
solutions at a reasonable computational effort.

Acknowledgments

The first author thankfully acknowledge a sabbatical leave
granted by CINVESTAV (01/09/2016-31/08/2017), the financial aid
from CONACYT Mexico through the grant Estancias Sabdticas en el
Extranjero 2016 — No. 454954, as well as the courtesies and facilities
of the LERIA at the University of Angers, France. The research of the
third author has been partially supported by the Spanish Ministry
of “Economia y Competitividad”, grant ref. TIN2015-65460-C2-2-P.

References

Avci, M., & Topaloglu, S. (2017). A multi-start iterated local search algorithm for
the generalized quadratic multiple knapsack problem. Computers & Operations
Research, 83, 54-65. doi:10.1016/j.cor.2017.02.004.

Benlic, U., Epitropakis, M. G., & Burke, E. K. (2017). A hybrid breakout local search
and reinforcement learning approach to the vertex separator problem. European
Journal of Operational Research, 261(3), 803-818. doi:10.1016/j.ejor.2017.01.023.

Bhatt, S. N., & Leighton, F. T. (1984). A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2), 300-343. doi:10.1016/
0022-0000(84)90071-0.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3), 268-308. doi:10.
1145/937503.937505.

Chen, Y., & Yan,]. (2007). A study on cyclic bandwidth sum. Journal of Combinatorial
Optimization, 4(2-3), 295-308.

https://doi.org/10.1016/j.cor.2017.02.004
https://doi.org/10.1016/j.ejor.2017.01.023
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1145/937503.937505
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0005

E. Rodriguez-Tello et al./European Journal of Operational Research 273 (2019) 904-919 919

Cicirello, V. A., & Cernera, R. (2013). Profiling the distance characteristics of muta-
tion operators for permutation-based genetic algorithms. In Proceedings of the
twenty-sixth international Florida Artificial Intelligence Research Society conference
(pp. 46-51.). St. Pete Beach, FL, USA: AAAL

Coelho, V., Grasas, A., Ramalhinho, H., Coelho, I, Souza, M., & Cruz, R. (2016). An ILS-
based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-
trips and docking constraints. European Journal of Operational Research, 250(2),
367-376. doi:10.1016/j.ejor.2015.09.047.

Corne, D. W,, & Knowles, J. D. (2007). Techniques for Highly Multiobjective Optimi-
sation: Some Nondominated Points are Better than Others. In Proceedings of the
ninth genetic and evolutionary computation conference: 1 (pp. 773-780). London,
UK: ACM Press. doi:10.1145/1276958.1277115.

Cruz, F, Subramanian, A., Bruck, B. P, & lori, M. (2017). A heuristic algorithm for a
single vehicle static bike sharing rebalancing problem. Computers & Operations
Research, 79, 19-33. doi:10.1016/j.cor.2016.09.025.

Derbel, B., Humeau,], Liefooghe, A., & Verel, S. (2014). Distributed localized bi-
objective search. European Journal of Operational Research, 239(3), 731-743.
doi:10.1016/j.ejor.2014.05.040.

Garza-Fabre, M., Rodriguez-Tello, E., & Toscano-Pulido, G. (2013). Comparative anal-
ysis of different evaluation functions for protein structure prediction under
the hp model. Journal of Computer Science and Technology, 28(5), 868-889.
doi:10.1007/s11390-013-1384-7.

Garza-Fabre, M., Toscano-Pulido, G., & Rodriguez-Tello, E. (2015). Multi-
objectivization, fitness landscape transformation and search performance:
A case of study on the hp model for protein structure prediction. European
Journal of Operational Research, 243(2), 405-422. doi:10.1016/j.ejor.2014.06.009.

Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of metaheuristics volume 146 of
International Series in Operations Research & Management Science. Berlin, Heidel-
berg: Springer. doi:10.1007/978-1-4419-1665-5.

Godim da Fonseca, G. H., Gambini Santos, H., Machado Toffolo, T.,, Souza Brito, S.,
& Freitas Souza, M.]. (2016). GOAL solver: a hybrid local search based solver
for high school timetabling. Annals of Operations Research, 239(1), 77-97. doi:10.
1007/s10479-014-1685-4.

Hagberg, A., Schult, D., & Swart, P. (2016). Networkx - high-productivity software
for complex networks. https://networkx.github.io/.

Hagberg, A. A., Schult, D. A, & Swart, P.]J. (2008). Exploring network structure,
dynamics, and function using networkx. In G. Varoquaux, T. Vaught, & J. Mill-
man (Eds.), Proceedings of the seventh python in science conference (pp. 11-15).
Pasadena, CA USA.

Hamon, R., Borgnat, P, Flandrin, P, & Robardet, C. (2016). Relabelling vertices ac-
cording to the network structure by minimizing the cyclic bandwidth sum. Jour-
nal of Complex Networks, 4(4), 534-560. doi:10.1093/comnet/cnw006.

Harper, L. (1964). Optimal assignment of numbers to vertices. Journal of SIAM, 12(1),
131-135.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist,
11(2), 37-50. doi:10.1111/j.1469-8137.1912.tb05611.x.

Jianxiu, H. (2001). Cyclic bandwidth sum of graphs. Applied Mathematics - A Journal
of Chinese Universities, 16(2), 115-121. doi:10.1007/s11766-001-0016-0.

Karapetyan, D., Mitrovic Minic, S., Malladi, K. T., & Punnen, A. P. (2015). Satellite
downlink scheduling problem: a case study. Omega, 53, 115-123. doi:10.1016/j.
omega.2015.01.001.

Liberatore, V. (2002). Multicast scheduling for list requests. In Proceedings of the
twenty-first annual joint conference of the IEEE computer and communications so-
cieties: 2 (pp. 1129-1137). IEEE. doi:10.1109/INFCOM.2002.1019361.

Lochtefeld, D. F, & Ciarallo, F. W. (2015). Multi-objectivization via decomposition:
An analysis of helper-objectives and complete decomposition. European Journal
of Operational Research, 243(2), 395-404. doi:10.1016/j.ejor.2014.11.041.

Lourengo, H. R.,, Martin, O., & Stiitzle, T. (2003). Iterated local search. In F. Glover,
& G. A. Kochenberger (Eds.) (pp. 320-353)). Boston, MA, USA: Springer. doi:10.
1007/b101874.

Lourengo, H. R., Martin, O. C., & Stiitzle, T. (2010). Iterated local search: framework
and applications. In M. Gendreau, & J. Potvin (Eds.) (pp. 363-397)). Boston, MA,
USA: Springer. doi:10.1007/978-1-4419-1665-5_12.

Marmion, M., Dhaenens, C., Jourdan, L., Liefooghe, A., & Verel, S. (2011). On the neu-
trality of flowshop scheduling fitness landscapes. In C. A. Coello Coello (Ed.),
Learning and Intelligent Optimization: 5th International Conference, LION 5,
Rome, Italy, January 17-21, 2011. Selected Papers (pp. 238-252). Berlin, Heidel-
berg: Springer Berlin Heidelberg volume 6683 of Lecture Notes in Computer
Science. doi:10.1007/978-3-642-25566-3_18.

Martin, O., Otto, S., & Felten, E. (1991). Large-step Markov chains for the traveling
salesman problem. Complex Systems, 5(3), 299-326. doi:10.1016/0167-6377(92)
90028-2.

Michiels, W., Aarts, E., & Korst, J. (2007). Theoretical aspects of local search. Springer.
doi:10.1007/978-3-540-35854-1.

Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Op-
erations Research, 24, 1097-1100. doi:10.1016/S0305-0548(97)00031-2.

Monien, B., & Sudborough, 1. H. (1990). Embedding one interconnection network in
another. Computational Graph Theory, Computing Supplementum, 7, 257-282.
Murovec, B. (2015). Job-shop local-search move evaluation without direct consider-
ation of the criterion’s value. European Journal of Operational Research, 241(2),

320-329. doi:10.1016/j.ejor.2014.08.044.

Pitzer, E., & Affenzeller, M. (2012). A comprehensive survey on fitness landscape
analysis. In J. Fodor, R. Klempous, & C. P. Suarez-Araujo (Eds.), Recent advances
in intelligent engineering systems. In Studies in Computational Intelligence: 378
(pp. 161-191). Springer.

Porumbel, D., Goncalves, G., Allaoui, H., & Hsu, T. (2017). Iterated local search and
column generation to solve arc-routing as a permutation set-covering prob-
lem. European Journal of Operational Research, 256(2), 349-367. doi:10.1016/j.
ejor.2016.06.055.

Rodriguez-Tello, E., Hao,]. K., & Romero-Monsivais, H. (2015). Boosting the per-
formance of metaheuristics for the minla problem using a more discrimi-
nating evaluation function. Tehnicki Vjesnik — Technical Gazette, 22(1), 11-24.
doi:10.17559/TV-20130905130612.

Rodriguez-Tello, E., Hao, J. K., & Torres-Jimenez,]J. (2008a). An effective two-stage
simulated annealing algorithm for the minimum linear arrangement problem.
Computers & Operations Research, 35(10), 3331-3346. doi:10.1016/j.cor.2007.03.
001.

Rodriguez-Tello, E., Hao,]. K., & Torres-Jimenez, J. (2008b). An improved simulated
annealing algorithm for bandwidth minimization. European Journal of Opera-
tional Research, 185(3), 1319-1335. doi:10.1016/j.ejor.2005.12.052.

Satsangi, D., Srivastava, K. & Gursaran (2012). General variable neighbourhood
search for cyclic bandwidth sum minimization problem. In Proceedings of the
students conference on engineering and systems (pp. 1-6). IEEE Press. doi:10.1109/
SCES.2012.6199079.

Silva, M. M., Subramanian, A., & Ochi, L. S. (2015). An iterated local search heuristic
for the split delivery vehicle routing problem. Computers & Operations Research,
53, 234-249. doi:10.1016/j.cor.2014.08.005.

Silva Paiva, G., & Carvalho, M. (2017). Improved heuristic algorithms for the job
sequencing and tool switching problem. Computers & Operations Research, 88,
208-219. doi:10.1016/j.cor.2017.07.013.

Smet, P, Bilgin, B., De Causmaecker, P., & Vanden Berghe, G. (2014). Modelling and
evaluation issues in nurse rostering. Annals of Operations Research, 218(1), 303-
326. doi:10.1007/s10479-012-1116-3.

Stadler, P. F. (1992). Correlation in landscapes of combinatorial optimization prob-
lems. Europhysics Letters, 20, 479-482.

Talbi, E. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.

Ullman, J. D. (1984). Computational Aspects of VLSI. Computer Science Press.

Umetani, S. (2017). Exploiting variable associations to configure efficient local search
algorithms in large-scale binary integer programs. European Journal of Opera-
tional Research, 263(1), 72-81. doi:10.1016/j.ejor.2017.05.025.

Yuan, J. (1995). Cyclic arrangement of graphs. Graph Theory Notes of New York, New
York Academy of Sciences, 6-10.

http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0006
https://doi.org/10.1016/j.ejor.2015.09.047
https://doi.org/10.1145/1276958.1277115
https://doi.org/10.1016/j.cor.2016.09.025
https://doi.org/10.1016/j.ejor.2014.05.040
https://doi.org/10.1007/s11390-013-1384-7
https://doi.org/10.1016/j.ejor.2014.06.009
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1007/s10479-014-1685-4
https://networkx.github.io/
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0015
https://doi.org/10.1093/comnet/cnw006
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0017
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1007/s11766-001-0016-0
https://doi.org/10.1016/j.omega.2015.01.001
https://doi.org/10.1109/INFCOM.2002.1019361
https://doi.org/10.1016/j.ejor.2014.11.041
https://doi.org/10.1007/b101874
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-3-642-25566-3_18
https://doi.org/10.1016/0167-6377(92)90028-2
https://doi.org/10.1007/978-3-540-35854-1
https://doi.org/10.1016/S0305-0548(97)00031-2
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0029
https://doi.org/10.1016/j.ejor.2014.08.044
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0031
https://doi.org/10.1016/j.ejor.2016.06.055
https://doi.org/10.17559/TV-20130905130612
https://doi.org/10.1016/j.cor.2007.03.001
https://doi.org/10.1016/j.ejor.2005.12.052
https://doi.org/10.1109/SCES.2012.6199079
https://doi.org/10.1016/j.cor.2014.08.005
https://doi.org/10.1016/j.cor.2017.07.013
https://doi.org/10.1007/s10479-012-1116-3
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0040
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0040
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0041
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0041
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0042
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0042
https://doi.org/10.1016/j.ejor.2017.05.025
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0044
http://refhub.elsevier.com/S0377-2217(18)30807-5/sbref0044

	Alternative evaluation functions for the cyclic bandwidth sum problem
	1 Introduction
	2 Evaluation functions for the CBS problem
	3 Algorithmic approach
	4 Experimental setup
	5 Discussion and analysis of the alternative evaluation functions
	5.1 Potential of discrimination
	5.2 CBS-compatibility
	5.3 Search performance using a basic local search algorithm
	5.4 Search performance using an Iterated Local Search algorithm
	5.5 Influence of the evaluation scheme over the ILS convergence process
	5.6 Investigating the existence of search cycles in the proposed ILS

	6 Comparing ILS with the state-of-the-art algorithms
	7 Conclusions and future work
	 Acknowledgments
	 References

