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ABSTRACT

An equitable legal k-coloring of an undirected graph G = (V ,E)

is a partition of the vertex set V into k disjoint independent sets,

such that the cardinalities of any two independent sets differ by

at most one (this is called the equity constraint). As a variant of

the popular graph coloring problem (GCP), the equitable coloring

problem (ECP) involves finding a minimum k for which an equi-

table legal k-coloring exists. In this paper, we present a study of

searching both feasible and infeasible solutions with respect to

the equity constraint. �e resulting algorithm relies on a mixed

search strategy exploring both equitable and inequitable colorings

unlike existing algorithms where the search is limited to equitable

colorings only. We present experimental results on 73 DIMACS and

COLOR benchmark graphs and demonstrate the competitiveness

of this search strategy by showing 9 improved best-known results

(new upper bounds).
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1 INTRODUCTION

Given an undirected graph G = (V ,E) with the vertex set V and

the edge set E ⊂ V × V , an independent set of G is a subset of

V such that any pair of its vertices are not linked by an edge of

E. An equitable legal k-coloring of G is a partition of the vertex

set V into k disjoint independent sets {V1,V2, · · · ,Vk } such that

| |Vi | − |Vj | | ≤ 1, i , j, 1 ≤ i, j ≤ k . �is last constraint is called

∗Corresponding author, also affiliated with the Institut Universitaire de France.

the equity constraint of a coloring. �e equitable coloring problem

(ECP) in graphs involves finding an equitable legalk-coloringwithk

minimum for general graphs. �isminimumk is called the equitable

chromatic number of G and denoted by χe (G ).

As a variant of the conventional graph coloring problem (GCP),

the decision version of the ECP is NP-complete. �is can be proved

by a straightforward reduction from graph coloring to equitable

coloring by adding sufficiently many isolated vertices to a graph and

testing whether the graph has an equitable coloring with a given

number of colors [8]. �e ECP model has a number of practical

applications related to garbage collection [25], load balancing [3],

timetabling [16], scheduling [7, 15, 24] and so on.

Much effort has been devoted to theoretical studies of the ECP.

For example, Meyer conjectured that χe (G ) ≤ ∆(G ) for any con-

nected graph except the complete graphs and the odd circuits, where

∆(G ) is the maximum vertex degree of G [24]. �is conjecture has

been proved to be true for trees and graphs with ∆(G ) = 3 [6], con-

nected bipartite graphs [20], graphs with the average degree at most

∆/5 [18] and outerplanar graphs [17]. Bodlaender and Fomin [4]

identified that the ECP can be solved in polynomial time for graphs

with bounded treewidth. Furmańczyk and Kubale investigated the

computational complexity of the ECP for some special graphs [9].

Yan and Wang discussed the ECP for kronecker products of the

complete multipartite graphs and complete graphs [26].

From a perspective of solutionmethods for the ECP in the general

case, several exact algorithms have been proposed. Specifically,

Bahiense et al. presented a branch-and-cut algorithm based on

a formulation by representatives [1] and showed computational

results only on a set of small random instances (with 60 vertices).

Méndez-Dı́az et al. investigated a polyhedral approach [22] and a

Dsatur-based algorithm [23] and presented computational results

for a subset of benchmark instances from the DIMACS and COLOR

competitions.

Given the computational challenge of the ECP, exact algorithms

suffer inevitably from an exponential time complexity and thus

are only applicable to graphs of limited sizes (typically with less

than 150 vertices). To handle larger graphs, heuristic algorithms are

o�en used to find sub-optimal solutions in a reasonable time frame.

�e first heuristics are based on greedy constructive principles [8].

More recently, two powerful heuristics were proposed, which are

based on the tabu search method: TabuEqCol [21] and BITS [19].

TabuEqCol is a straightforward adaptation of the well-known Tabu-

Col algorithm designed for the classical graph coloring problem
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[10, 14]. BITS improves TabuEqCol by embedding a backtracking

scheme under the iterated local search framework.

We observe that unlike the popular graph coloring problem for

which many heuristic algorithms have been proposed, research on

heuristics for the ECP is quite limited and is still in its infancy. In

particular, one important feature of the problem identified by its eq-

uity constraint is not explicitly explored by the existing algorithms,

which visit equity-feasible solutions only. On the other hand, it is

well known that for constrained optimization problems (like the

ECP), allowing a controlled exploration of infeasible solutions may

facilitate transitions between structurally different solutions and

help discover high-quality solutions that are difficult to locate if

the search is confined to the feasible region [12].

In this work, we present a feasible and infeasible search algorithm

for the ECP which enlarges the search to include equity-infeasible

solutions. To prevent the search from going too far away from

the feasible boundary, we devise an extended penalty-based fitness

function which is used to guide the search for an effective examina-

tion of candidate solutions. We show computational results on a set

of 73 benchmark graphs from the DIMACS and COLOR competi-

tions to assess the interest of the proposed approach. �ese results

include especially 9 improved best solutions (new upper bounds)

which can be used to assess other algorithms for the ECP in the

future.

�e remainder of the paper is organized as follows. Section 2

introduces some preliminary definitions. Section 3 is dedicated

to the description of the proposed algorithm. Section 4 presents

computational results and comparisons with state-of-the-art algo-

rithms. Section 5 analyzes the impact of some key components of

the proposed algorithm. Conclusions and future work are discussed

in the last section.

2 BASIC DEFINITIONS

We introduce the following basic definitions which are useful for

the description of the proposed approach, where G = (V ,E) is a

given graph.

Definition 2.1. A candidate coloring of G is any partition of the

vertex set V into k subsets V1,V2, . . . ,Vk , where each Vi is called a

color class.

Definition 2.2. A legal coloring is a conflict-free coloring com-

posed of independent sets, i.e., any pair of vertices of any color

class are not linked by an edge in E. Otherwise, it is an illegal or

conflicting coloring.

Definition 2.3. An equitable coloring or equity-feasible solution is

any candidate coloring satisfying the equity constraint, i.e., the car-

dinalities of any two color classes differ by at most one. Otherwise,

it is an equity-infeasible solution.

3 GENERAL APPROACH

�e equitable coloring problem (ECP) involves finding the smallest

number of colors k such that an equitable legal k-coloring exists for

a given graph G. Like for the conventional GCP [11], the ECP can

be approximated by finding a series of equitable legal k-colorings

for decreasing k values. To seek an equitable legal k-coloring for a

given k , one typically explores the space of equity-feasible colorings

while minimizing a fitness function f which counts the number of

conflicting edges [19, 21]. �e ECP problem with a given k is called

the k-ECP problem.

�is study follows this general approach of solving a series of

k-ECP problems. However for each fixed k , our algorithm explores

candidate solutions which include both equity-feasible and equity-

infeasible colorings. For this, our feasible and infeasible search

algorithm (FISA) introduces an extended fitness function F which

is employed to measure the quality of any candidate solution.

�e proposed FISA algorithm is composed of two search phases

(see Sections 3.1 and 3.2). �e first phase examines only the space

of equity-feasible colorings to seek a legal (i.e., conflict-free) k-

coloring. If a legal k-coloring is found, the k-ECP problem is solved

with the current k value and we continue with the new k-ECP

problem by se�ing k = k − 1. To be effective, the first phase is

based on the basic tabu search procedure of the BITS algorithm

[19]. If the first phase fails to find a legal k-coloring with the equity-

feasible space, the second phase is invoked to enlarge the search to

include equity-infeasible colorings. To explore the enlarged search

space, this second phase relies on the extended fitness function F

to guide the search process. �e infeasible search phase terminates

if an equitable coloring is found or if the best solution found so

far cannot be improved during 10000 consecutive iterations. �e

pseudo-code of the FISA algorithm is given in Algorithm 1. �e

algorithm starts with an initial equity-feasible solution which is

generated with a simple greedy heuristic presented in [19]. In the

next sections, we explain the search strategies of both phases of

the FISA algorithm.

Algorithm 1 Main Scheme of the FISA algorithm for the ECP

1: Input: Graph G ; k colors

2: Output: An equitable legal k -coloring if found

3: s0 ← дreedy init ial (G, k ) /∗ Generate an initial equity-feasible

k -coloring ∗/

4: s1 ← f easible search (s0) /∗ Section 3.1 ∗/

5: if f (s1) = 0 then

6: r eturn (s1) and stop

7: end if

8: while stopping condition is not met do

9: s2 ← inf easible search (s1) /∗ Section 3.2 ∗/

10: if F (s2) = 0 then

11: r eturn (s2) and stop

12: end if

13: s1 ← per turbation (s2)

14: end while

3.1 Searching equity-feasible solutions [19]

�e first phase of the proposed FISA algorithm searches the space

of candidate solutions which verifies the equity constraint and tries

to find a legal k-coloring. �is is achieved by minimization of the

number of conflicting edges of candidate equitable k-colorings, an

edge is conflicting if its endpoints belong to the same color class.

3.1.1 Equity-feasible space and fitness function. We define the

equity-feasible space Ωk to be the set of all candidate colorings

verifying the equity constraint. Formally, Ωk is given by
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Ωk = {{V1,V2, · · · ,Vk } : | |Vi | − |Vj | | ≤ 1,∪ki=1Vi = V ,Vi ∩Vj = ∅}

(1)

where i , j, 1 ≤ i, j ≤ k .

To assess the quality of a candidate solution s in Ωk , the evalua-

tion or fitness function counts the number of conflicting edges in

the color classes of s . Specifically, let s = {V1,V2, . . . ,Vk } ∈ Ωk be

a candidate solution, let C (Vi ) denote the set of conflicting edges

with both endpoints in Vi . �e fitness function f (which is to be

minimized) is given by

f (s ) =

k
∑

i=1

|C (Vi ) | (2)

�erefore, a solution s with f (s ) = 0 is an equitable legal k-

coloring satisfying both the equity and coloring constraints. When

such a solution is found, the associated k-ECP problem is solved.

�e feasible search phase of the FISA algorithm uses this fitness

function to guide its search process to visit solutions of Ωk in order

to obtain a solution s with f (s ) = 0.

3.1.2 Move operators to explore space Ωk . To explore the space

Ωk , the feasible search phase applies two move operators to gen-

erate neighboring solutions from the current solution. Let s =

{V1,V2, . . . ,Vk } be the current solution. Let C (s ) denote the set of

conflicting vertices involved in the conflicting edges of s .

(1) One-move operator: It transfers a conflicting vertexv from

its current color class Vi to a different color class Vj en-

suring that the equity constraint is always respected, i.e.,

|Vi | > ⌊
n
k
⌋, |Vj | < ⌈

n
k
⌉. Let < v,Vi ,Vj > denote such a

move. We use s⊕ < v,Vi ,Vj > to denote the neighboring

solution generated by applying the move to s . �en the

neighborhood N1 induced by this move operator contains

all possible solutions obtained by applying “one-move” to

s , i.e.,

N1 (s ) = {s ⊕ < v,Vi ,Vj > : v ∈ Vi ∩C (s )} (3)

where 1 ≤ i, j, ≤ k, i , j, |Vi | > ⌊
n
k
⌋, |Vj | < ⌈

n
k
⌉.

Note that the one-move operator is not applicable if

⌊ n
k
⌋ = ⌈n

k
⌉. In this case, the neighborhood N1 is empty.

(2) Swap operator: It exchanges a conflicting vertex v of color

class Vi with another vertex u of color class Vj (i , j).

Let swap (v,u) denote such a move. �e neighborhood N2

induced by the swap operator is composed of all possible

solutions obtained by applying “swap” to s (recall thatC (s )

is the set of conflicting vertices of s).

N2 (s ) = {s ⊕ swap (v,u) : v ∈ Vi ,u ∈ Vj , i , j, {v,u} ∩C (s ) , ∅}

(4)

Since this operator does not change the cardinality of

any color class, a neighboring solution generated by this

operator is always equity-feasible (given that the current

solution is an equitable k-coloring).

3.1.3 Exploration of the space Ωk . Starting from an equitable

(conflicting) k-coloring of Ωk , the first phase of FISA iteratively

improves the solution according to the tabu search method [13].

Specifically, the basic tabu search procedure (TS0) described in [19]

is applied to find a conflict-free k-coloring. At each iteration, a best

admissible candidate solution is taken among the neighboring solu-

tions of N1 and N2 to replace the current solution. �e underlying

move (< v,Vi ,Vj > for one-move or swap (v,u)) is recorded in the

so-called tabu list in order to forbid the reverse move for a fixed

number of next iterations. �is tabu search process continues until

either a solution s with f (s ) = 0 is found in which case, the current

k-ECP problem is solved, or the current solution is not improved

during a fixed number of consecutive iterations in which case the

FISA algorithm moves to the second search phase.

3.2 Searching equity-infeasible solutions

When the first phase fails to identify an equitable legal k-coloring

within the equity-feasible space Ωk , the FISA algorithm invokes

the second phase to explore an enlarged space Ω+
k
including both

equity-feasible and equity-infeasible solutions.

3.2.1 Equity-infeasible space and extended fitness function. �e

enlarged search space Ω+
k
explored by the second phase contains

all possible partitions of the vertex set V into k disjoint subsets as

follows.

Ω+
k
= {{V1,V2 : · · · ,Vk },∪

k
i=1Vi = V ,Vi ∩Vj = ∅} (5)

where i , j, 1 ≤ i, j ≤ k .

We note that this enlarged search subsumes the equity-feasible

space Ωk and additionally includes the equity-infeasible solutions.

To evaluate the quality of the solutions of Ω+
k
, we devise an

extended penalty-based fitness function F . For this purpose, we

first introduce some notations.

LetW + = ⌈n/k⌉ andW − = ⌊n/k⌋, which represent respectively

the theoretical cardinality of the largest and smallest color classes

in an equitable k-coloring. �en for an equitable k-coloring s =

{V1,V2, · · · ,Vk },W
− ≤ |Vi | ≤ W + (i = 1, · · · ,k ) holds. Let s =

{V1,V2, · · · ,Vk } be a candidate solution inΩ
+

k
, we define the penalty

ρi (i = 1, · · · ,k ) for each color class Vi of the solution s to be the

gap between |Vi | and the theoretical cardinalities as follows.

ρi =

{

|Vi | −W
+, i f |Vi | ≥W

+

W − − |Vi |, i f |Vi | ≤W
− (6)

�en we define our extended fitness function F (to be minimized)

as a linear combination of the basic fitness function f (Equation

(2)) and a penalty function as follows.

F (s ) =

k
∑

i=1

|C (Vi ) | + φ

k
∑

i=1

ρi (7)

whereC (Vi ) is the set of conflicting edges in color classVi and φ (a

parameter with φ ≥ 1) is the penalty coefficient which is used to

control the importance given to the penalty function (see Section

5.1 for an analysis of φ). According to this definition, a candidate

solution violating strongly (weakly) the equity constraint will be
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penalized more harshly (slightly). Since in general the number of

conflicting edges (the first term) of F decreases quickly when the

search progresses, the penalty term has the desirable property of

helping the search process to avoid infeasible solutions which are

too far from the feasibility boundaries. Note that the penalty term

of an equitable coloring equals 0.

�erefore, a partition s ∈ Ω+
k
with F (s ) = 0 corresponds to a

equitable and legal k-coloring, i.e., satisfying both the equity and

coloring constraints and is thus a solution to the k-ECP problem.

3.2.2 Move operators to explore the space Ω+
k
. To explore the

search space Ω+
k
, the infeasible search phase also applies two move

operators to generate neighboring solutions. Let s = {V1,V2, . . . ,Vk }

be the current solution. Let C (s ) denote the set of conflicting ver-

tices of s , i.e., the vertices involved in a conflicting edge.

(1) One-move operator: Like for the first search phase, this

operator displaces a conflicting vertex v from its current

color class Vi to another color class Vj . However, the eq-

uity constraint is no more considered. �is leads to the

following enlarged neighborhood.

N+1 (s ) = {s ⊕ < v,Vi ,Vj > : v ∈ Vi ∩C (s ), 1 ≤ i, j ≤ k, i , j} (8)

Clearly N+1 is bounded by O ( |C (s ) | × k ) in size. To

effectively calculate the move gain which identifies the

change in the fitness function F (Equation (7), we adapt the

fast incremental evaluation technique of [19]. �e main

idea is to maintain a matrix A of size n × k with elements

A[v][q] recording the number of vertices adjacent to v

in color class Vq (1 ≤ q ≤ k ). Another n × k matrix B is

maintained with elements B[v][q] representing the penalty

value of vertex v assigned to color class q in the current

solution. �en, the move gain of each one-move in terms of

extended fitness variation can be conveniently computed

by

∆F = A[v][j] −A[v][i] + φ (B[v][j] − B[v][i]) (9)

where φ is the penalty coefficient used in the extended

fitness function F .

Each time a one-move operation involving vertex v

is performed, we just need to update a subset of values

affected by this move as follows. For each vertexu adjacent

to vertexv ,A[u][i]← A[u][i]−1, andA[u][j]← A[u][j]+1.

For any vertexw , B[w][j]←
∑k
i=1 ρi , 1 ≤ j ≤ k . B[w][j] =

B[u][j], ifw and u belong to the same color class.

(2) Swap operator: �e same swap operator as for the first

phase is applied to exchange a pair of vertices (u,v ) from

different color classes where at least one of them is a con-

flicting vertex. However, there is an important difference.

Since the second search phase operates in the enlarged

spaceΩ+
k
instead ofΩk , the equity-feasibility of a neighbor-

ing solution fully depends on the current solution. �at is,

if the current solution is equity-infeasible (equity-feasible),

application of swap leads to an equity-infeasible (equity-

feasible) solution. �e resulting swap-based neighborhood

is thus given as follows.

N+2 (s ) = {s ⊕ swap (v,u) : v ∈ Vi ,u ∈ Vj , i , j, {v,u} ∩C (s ) , ∅}

(10)

whereC (s ) is the set of conflicting vertices of s . Notice that

the swap operation has no impact on the penalty value of

the neighboring solution and can only change the num-

ber of conflicting edges. �en the fitness gain of a swap

operation can be computed by

DeltaF = A[u][i] −A[u][j] +A[v][j] −A[v][i] − 2ev,u (11)

where ev,u = 1 if v and u are adjacent vertices, otherwise

ev,u = 0.

3.2.3 Exploration of the enlarged space Ω+
k
. To explore the en-

larged space Ω+
k
, we apply again the tabu search method. Specifi-

cally, each iteration of tabu search selects the best admissible solu-

tions among the neighboring solution ofN+1 andN+2 . �e procedure

makes transitions between various k-coloring while minimizing

the extended fitness function F with the purpose of a�aining a

solution s with F (s ) = 0.

3.2.4 Perturbation of infeasible search. �e tabu list used by

the equity-infeasible exploration phase helps the search process

to go beyond some local optima. Yet, this mechanism may not

be sufficient to escape deep traps. To overcome this problem, we

apply a perturbation procedure inspired by the procedure of [19].

�is operator follows the perturbation scheme of breakout local

search [2] and combines directed and random applications of the

one-move and swap operators. To avoid a too strong deterioration

of the perturbed solution, a directed perturbation move takes into

consideration the fitness variation and performs the most favor-

able move (i.e., deteriorating the solution the least). In contrary,

a random perturbation performs a one-move or swap operation

without considering the fitness deterioration. To combine these

two types of perturbations, the number of performed moves dy-

namically varies in an adaptive way while the application of each

type of perturbation is determined probabilistically. �e resulting

solution from the perturbation procedure is then used as the new

starting solution of the next round of the infeasible search phase.

4 EXPERIMENTAL RESULTS AND

COMPARISONS

In this section, we assess the performance of the proposed FISA al-

gorithm on the set of 73 benchmark instances which are commonly

used in the literature and were initially proposed for the DIMCAS

and COLOR competitions for graph coloring problems1, 2.

4.1 Experiment settings

�e proposed algorithm was coded in C++ and compiled by GNU

g++ 4.1.2 with -O3 flag (option). �e experiments were conducted

on a computer with an Intel Xeon E5-2670 processor (2.5 GHz and

2 GB RAM) running Ubuntu 12.04. When solving the DIMACS

1h�p://www.dimacs.rutgers.edu/
2h�p://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
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Table 1: Comparative results of FISA with state-of-the-art algorithms on the 73 benchmark instances.

TabuEqCol [21] BITS [19] FISA
Instance |V | LB [22, 23] UB [22, 23] k1 k1 (pre ) kbest (pre ) k1 kbest kavд SR tavд ∆(k1 ) ∆(kbest )

DSJC125.1.col 125 5 5 5∗ 5∗ 5∗ 5∗ 5∗ 5 20/20 0.617 0 0
DSJC125.5.col 125 9 18 18 17 17 17 17 17 20/20 428.281 0 0
DSJC125.9.col 125 43 45 45 44 44 44 44 44 20/20 0.094 0 0
DSJC250.1.col 250 5 8 8 8 8 8 8 8 20/20 3.619 0 0
DSJC250.5.col 250 12 32 32 32 29 29 29 29.35 13/20 5235.95 -3 0
DSJC250.9.col 250 63 83 83 72 72 72 72 72 20/20 892.236 0 0
DSJC500.1.col 500 5 13 13 13 13 13 13 13 20/20 3.569 0 0
DSJC500.5.col 500 13 62 63 57 56 53 52 53.25 1/20 8197.02 -4 -4
DSJC500.9.col 500 101 148 182 130 129 131 130 131 3/20 6269.63 1 1
DSJR500.1.col 500 12 12 12∗ 12∗ 12∗ 12∗ 12∗ 12 20 /20 0.38 0 0
DSJR500.5.col 500 120 131 133 126 126 126 126 126.5 10/20 4459.5 0 0
DSJC1000.1.col 1000 5 22 22 22 21 21 21 21 20/20 1866.63 -1 0
DSJC1000.5.col 1000 15 112 112 112 101 98 95 96.1 2/20 15698.6 -14 -6
DSJC1000.9.col 1000 126 268 329 254 252 253 252 252.2 16/20 2240.02 -1 0

R125.1.col 125 - - - 5 5 5 5 5 20/20 0.0025 0 0
R125.5.col 125 - - - 36 36 36 36 36 20/20 0.6745 0 0
R250.1.col 250 - - - 8 8 8 8 8 20/20 0.0045 0 0
R250.5.col 250 - - - 67 66 67 66 66.9 2/20 3041.22 0 0
R1000.1.col 1000 - - - 20 20 20 20 20 20/20 2.244 0 0
R1000.5.col 1000 - - - 269 250 251 250 250.45 11/20 11564.2 -18 0
le450 5a.col 450 5 5 - 5∗ 5∗ 5∗ 5∗ 5 20/20 30.1971 0 0
le450 5b.col 450 5 5 7 5∗ 5∗ 5∗ 5∗ 5 20/20 44.2914 0 0
le450 5c.col 450 - - - 5 5 5 5 5 20/20 16.391 0 0
le450 5d.col 450 5 8 8 5∗ 5∗ 5∗ 5∗ 5 20/20 14.0655 0 0
le450 15a.col 450 15 15 - 15∗ 15∗ 15∗ 15∗ 15 20/20 2.993 0 0
le450 15b.col 450 15 15 15∗ 15∗ 15∗ 15∗ 15∗ 15 20/20 2.4125 0 0
le450 15c.col 450 - - - 15 15 15 15 15.2 16/20 553.786 0 0
le450 15d.col 450 15 16 16 15∗ 15∗ 15∗ 15∗ 15.85 3/20 638.127 0 0
le450 25a.col 450 25 25 - 25∗ 25∗ 25∗ 25∗ 25 20/20 0.41 0 0
le450 25b.col 450 25 25 25∗ 25∗ 25∗ 25∗ 25∗ 25 20/20 0.46 0 0
le450 25c.col 450 - - - 26 26 26 26 26 20/20 86.9035 0 0
le450 25d.col 450 25 27 27 26 26 26 26 26 20/20 95.845 0 0
wap01a.col 2368 41 46 46 43 42 42 42 42.95 1/20 4544.77 -1 0
wap02a.col 2464 40 44 44 42 41 42 41 41 2/20 2538.33 0 0
wap03a.col 4730 40 50 50 46 45 46 45 45.7 6/20 20201.8 0 0
wap04a.col 5231 - - - 46 44 46 44 44.45 11/20 15614.2 0 0
wap05a.col 905 - - - 50 50 50 50 50 20/20 99.2625 0 0
wap06a.col 947 - - - 42 41 42 41 41.9 2/20 9340.42 0 0
wap07a.col 1809 - - - 43 43 43 43 43.05 19/20 4077.71 0 0
wap08a.col 1870 - - - 43 43 43 43 43.1 10/20 4872.74 0 0

flat300 28 0.col 300 11 36 36 35 34 33 32 33.6 1/20 4910.48 -2 -2
flat1000 50 0.col 1000 - - - 112 101 96 94 94.7 6/20 17321.4 -16 -7
flat1000 60 0.col 1000 - - - 112 101 97 94 94.8 5/20 10488.8 -15 -7
flat1000 76 0.col 1000 14 112 112 112 102 98 94 95.15 2/20 15246.4 -14 -8
latin square 10.col 900 90 130 130 129 113 105 104 104.55 10/20 12666.2 -24 -9

C2000.5.col 2000 - - - 202 201 198 183 183.4 13/20 19702.3 -4 -18
C2000.9.col 2000 - - - 504 502 503 493 495.21 2/20 21163.9 -1 -9
mulsol.i.1.col 197 49 49 50 49∗ 49∗ 49∗ 49∗ 49 20/20 44.3365 0 0
mulsol.i.2.col 188 34 39 48 36 36 36 36 36.95 2/20 1914.22 0 0
fpsol2.i.1.col 496 65 65 78 65∗ 65∗ 65∗ 65∗ 65 20/20 1723.52 0 0
fpsol2.i.2.col 451 47 47 60 47∗ 47∗ 47∗ 47∗ 47.2 17/20 2357.15 0 0
fpsol2.i.3.col 425 55 55 79 55∗ 55∗ 55∗ 55∗ 55 20/20 1310.01 0 0
inithx.i.1.col 864 54 54 66 54∗ 54∗ 54∗ 54∗ 56.9 7/20 3356.31 0 0
inithx.i.2.col 645 30 93 93 36 36 36 36 38.8 5/20 3275.5 0 0
inithx.i.3.col 621 - - - 38 37 38 37 39.85 4/20 2891.78 0 0
zeroin.i.1.col 211 49 49 51 49∗ 49∗ 49∗ 49∗ 49.6 8/20 1088.94 0 0
zeroin.i.2.col 211 36 36 51 36∗ 36∗ 36∗ 36∗ 36 20/20 123.876 0 0
zeroin.i.3.col 206 36 36 49 36∗ 36∗ 36∗ 36∗ 36 20 /20 129.445 0 0
myciel6.col 95 7 7 7∗ 7∗ 7∗ 7∗ 7∗ 7 20/20 0.0035 0 0
myciel7.col 191 8 8 8∗ 8∗ 8∗ 8∗ 8∗ 8 20/20 0.0185 0 0

4 FullIns 3.col 114 7 7 - 7∗ 7∗ 7∗ 7∗ 7 20/20 0.0005 0 0
4 FullIns 4.col 690 6 8 8 8 8 8 8 8 20/20 0.12 0 0
4 FullIns 5.col 4146 6 9 9 9 9 9 9 9 20/20 0.12 0 0

1 Insertions 6.col 607 3 7 7 7 7 7 7 7 20/20 0.1655 0 0
2 Insertions 5.col 597 3 6 6 6 6 6 6 6 20/20 0.056 0 0
3 Insertions 5.col 1406 3 6 6 6 6 6 6 6 20/20 0.3525 0 0

school1.col 385 15 15 15∗ 15∗ 15∗ 15∗ 15∗ 15 20/20 0.932 0 0
school1 nsh.col 352 14 14 14∗ 14∗ 14∗ 14∗ 14∗ 14 20/20 1.774 0 0
qg.order40.col 1600 40 40 40∗ 40∗ 40∗ 40∗ 40∗ 40 20/20 3.437 0 0
qg.order60.col 3600 60 60 60∗ 60∗ 60∗ 60∗ 60∗ 60 20/20 14.534 0 0
ash331GPIA.col 662 4 4 4∗ 4∗ 4∗ 4∗ 4∗ 4 20/20 0.7755 0 0
ash608GPIA.col 1216 3 4 4 4 4 4 4 4 20/20 0.249 0 0
ash958GPIA.col 1916 3 4 4 4 4 4 4 4 20/20 10.887 0 0
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machine benchmark procedure ‘dfmax.c’3 without compiler opti-

mization flag, the run time on our computer is 0.46, 2.68 and 10.70

seconds for graphs r300.5, r400.5 and r500.5, respectively.

For our comparative study, we use the most recent heuristic

algorithms [19, 21] as our references. �e TabuEqCol algorithm

(2014) [21] was run on an Intel i5 CPU with 750 2.67 GHz and tested

under a time limit of 1 hour. �e BITS algorithm (2015) [19] was

run on an Intel Xeon E5440 CPU with 2.83 GHz and 2 GB RAM and

tested under a time limit of 1 hour and a relaxed limit (104 seconds

for the instances with up to 500 vertices and 2 × 104 seconds for

larger instances with more than 500 vertices). As shown in [19], the

computational results of the more recent BITS algorithm dominate

those of TabuEqCol. We also include the lower and upper bounds

reported in [22, 23] which were obtained by exact methods under

various test conditions. �ese bounds provide useful information

when they are contrasted with the results (upper bounds) obtained

by the compared heuristic algorithms (TabuEqCol, BITS and FISA).

�e FISA algorithm requires the tuning of some parameters

related to tabu search and the extended fitness function F . Since

our tabu search procedures are adaptations of the basic tabu search

procedure of [19], we adopted the parameter se�ings used in the

original paper. As to the penalty coefficientφ of the extended fitness

function F , we provide an analysis in Section 5.

Following [19, 21], we present a first experiment where we ran

our FISA algorithm only once per instance with a cutoff time of

3,600 seconds (1 hour). Like [19], we carried out a second experi-

ment where we ran FISA 20 times to solve each instance under the

extended stopping condition – 104 seconds for the instances with

up to 500 vertices and 2 × 104 seconds for larger instances with

more than 500 vertices. We note that our Intel Xeon E5-2670 2.5

GHz processor is slightly slower than those used by the reference

algorithms. As a result, our adopted stopping conditions can be

considered as reasonable with respect to those used by the refer-

ence algorithms. Finally, as shown in [19], the main reference BITS

algorithm fully dominates the TabuEqCol algorithm. So the results

of BITS have the most significant reference value.

4.2 Comparison with state-of-the-art

algorithms

From Table 1, we can see that FISA shows a remarkable perfor-

mance compared to the TabuEqCol and BITS algorithms under

both stopping conditions. Under the 1 hour condition, FISA domi-

nates TabuEqCol (Columns 5 and 8) on the 50 instances tested by

both algorithms, by obtaining be�er results for 30 instances and

the same results for the remaining 20 instances. Compared to the

most recent BITS algorithm, FISA obtains be�er solutions for 14

instances (see negative entries in Column ∆(k1)), the same best

results for other 58 instances and one worse result.

When comparing FISA with BITS under the long time condition

(the results of TabuEqCol under this condition are unavailable),

one observes that FISA also performs very well (Columns 7 and 9).

Specifically, FISA improves the best results of BITS for 9 instances

(see negative entries in Column ∆(kbest ) while matching the best

results of BITS for other 63 instances. Only in one case, FISA obtains

a slightly worse result.

3dfmax: �p://dimacs.rutgers.edu/pub/dsj/clique/

Finally, when comparing to the upper bounds obtained by exact

algorithms (Column 4), it is clear that the bounds of FISA (Column

9) are much be�er. If we contrast the current best lower bounds

(Column 3) obtained by exact approaches of [22, 23] and the best

upper bounds from FISA (Column 9), we observe important gaps

for a number of instances. �is indicates that both the current best

lower and upper bounds can be further improved.

5 ANALYSIS

�is section performs additional experiments to analyze the pro-

posed FISA algorithm: the penalty coefficient φ and the perturba-

tion strategy. �ese experiments were performed on a selection of

26 instances which are relatively difficult according to the results

reported in Table 1, i.e., the best-known results of these instances

cannot be a�ained by all algorithms.

5.1 Analysis of the penalty coefficient φ

Table 2: Comparative results of the FISA algorithm with 3

different values of φ on the 26 instances. �e best results are

in bold.

Instance k∗1 k1,φ=1 (Avд) k1,φ=2 (Avд) k1,φ=3 (Avд)

DSJC125.5.col 17 17(17) 17(17) 17(17)
DSJC250.1.col 8 8(8) 8(8) 8(8)
DSJC250.5.col 29 29(29.8) 29(29.65) 29(29.75)
DSJC250.9.col 72 72(72.1) 72(72.05) 72(72.05)
DSJC500.5.col 53 53(53.35) 53(53.95) 53(54)
DSJC500.9.col 130 131(131.6) 131(131.4) 130(130.75)
DSJR500.5.col 126 126(126.85) 126(126.65) 126(126.9)
DSJC1000.1.col 21 21(21) 21(21.15) 21(21.15)
DSJC1000.5.col 98 98(99.45) 100(101.6) 101(104.75)
DSJC1000.9.col 253 253(254.35) 254(254.6) 254(254)
R250.5.col 66 67(67) 66(66.9) 67(67)
R1000.5.col 250 251(253.9) 251(255.05) 250(252.85)
flat300 28 0.col 32 33(33.85) 32(33.95) 32(33.85)
flat1000 50 0.col 96 96(97.4) 98(99.9) 99(102.25)
flat1000 60 0.col 97 97(97.9) 98(100.35) 99(102.2)
flat1000 76 0.col 98 98(98.65) 99(100.7) 101(102.95)
latin square 10.col 105 105(106.1) 114(115.15) 115(116.6)
C2000.5.col 198 198(199.55) 200(201.25) 199(200.85)
mulsol.i.2.col 36 36(36.95) 36(36.95) 36(36.95)
fpsol2.i.1.col 65 65(65) 65(65.05) 65(65)
fpsol2.i.2.col 47 47(47.2) 47(47.25) 47(47.3)
inithx.i.2.col 36 36(38.8) 37(38.65) 36(39.95)
inithx.i.3.col 37 38(39.85) 37(40.1) 37(39.55)
zeroin.i.1.col 49 49(49.75) 49(49.4) 49(49.6)
zeroin.i.2.col 36 36(36) 36(36) 36(36)
zeroin.i.3.col 36 36(36) 36(36) 36(36)

#Equal 21 16 18
#Worse 5 10 8

�is section investigates the influence of the penalty coefficientφ on

the performance of the proposed algorithm (Section 3.2, Equation

7). For this purpose, we tested FISA with 3 different values of

φ = 1, 2, 3. We ran 20 times the algorithm with each φ value to

solve each selected instance with a cutoff time of 1 hour.

�e experimental results are presented in Table 2. �e first

column shows the names of instances, and the second column

indicates the best results (k∗1 ) obtained in this experiment. �e

results of FISA with different φ values are respectively listed in

columns 3 to 5 including the best values with the averaged values

between parentheses. �e rows #Equal and #Worse respectively

indicate the number of instances for which each φ values a�ains

an equal and worse result compared to k∗1 . We note that the best

results were obtained with φ = 1. �is justifies the se�ing of this

parameter used in our previous experiments.
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Table 3: Analysis of the influence of the perturbation on the 

performance of the FISA algorithm.

FISA REST

Instance k∗
best

kbest kavд kbest kavд

DSJC125.5.col 17 17 17 17 17

DSJC250.1.col 8 8 8 8 8

DSJC250.5.col 29 29 29.8 29 29.95

DSJC250.9.col 72 72 72.1 72 72.1

DSJC500.5.col 53 53 53.35 54 55.15

DSJC500.9.col 131 131 131.6 131 131.7

DSJR500.5.col 126 126 126.85 126 127.05

DSJC1000.1.col 21 21 21 21 21

DSJC1000.5.col 98 98 99.45 102 102.15

DSJC1000.9.col 253 253 254.35 253 254.3

R250.5.col 67 67 67 67 67.05

R1000.5.col 251 251 253.9 252 255.35

flat1000 50 0.col 96 96 97.4 101 101.5

flat1000 60 0.col 97 97 97.9 101 101.75

flat1000 76 0.col 98 98 98.65 101 101.95

flat300 28 0.col 33 33 33.85 33 34.3

latin square 10.col 105 105 106.1 105 106.5

C2000.5.col 198 198 199.55 201 201

mulsol.i.2.col 36 36 36.95 37 37.75

fpsol2.i.1.col 65 65 65 77 79.4

fpsol2.i.2.col 47 47 47.25 56 73.05

inithx.i.2.col 36 36 38.8 60 63.85

inithx.i.3.col 38 38 39.05 57 64.85

zeroin.i.1.col 49 49 49.75 55 55.9

zeroin.i.2.col 36 36 36 39 42

zeroin.i.3.col 36 36 36 38 43.05

#Equal 26 14

#Worse 0 12

5.2 Impact of the perturbation operation

As shown in Section 3.2.4, the proposed algorithm uses a perturba-

tion strategy to ensure a global diversification within the enlarged

search space Ω+
k
. In order to assess this strategy, we compare it with

a traditional restart strategy (denoted as REST), where each restart

begins its search with a new equitable k-coloring generated by the

greedy procedure mentioned in Section 3. �e two algorithms were

run 20 times on the 26 selected instances with a time limit of 1 hour

per run.

�e results of this experiment are shown in Table 3. Column 1

lists the names of instances. Column 2 indicates the best results

(k∗
best

) obtained in this experiment. �e best results (kbest ) and the

average results (kavд ) of FISA and REST are respectively listed in

columns 3 to 6. �e rows #Equal and #Worse respectively indicate

the number of instances for which FISA and REST a�ain an equal

and worse result compared to k∗
best

. It is clear that FISA dominates

the REST variant by obtaining 12 be�er results out of the 26 tested

instances and no worse result. �is experiment confirms thus the

interest of the adopted perturbation strategy.

6 CONCLUSIONS

�e equitable coloring problem (ECP) is an NP-hard problem with

a number of practical applications. In addition to the conventional

coloring constraint (i.e., adjacent vertices must receive different

colors), a solution of the ECP must satisfy the equity constraint

(the cardinalities of the color classes must differ by at most one). In

this work, we investigated the benefit of examining both feasible

and infeasible solutions with respect to the equity constraint. �e

resulting algorithm (called FISA) combines an equity-feasible search

phase where only equitable colorings are considered and an equity-

infeasible search phase where the search is enlarged to include non-

equitable solutions. To guide the search procedure (which is based

on tabu search), we devised an extended fitness function which

uses a penalty to discourage candidate solutions which violates

the equity constraint. A perturbation procedure was also used as

a means of diversification to help the algorithm to explore new

search regions.

We assessed the performance of the FISA algorithm on the set of

73 benchmark instances from DIMACS and COLOR competitions

and presented comparative results with respect to state-of-the-art

algorithms. �e comparisons showed that FISA performs very

well by discovering 9 improved best results (new upper bounds)

and matching the best-known results for the remaining instances

except one case. �e new bounds can be used for assessment of

other ECP algorithms. �is study demonstrates the benefit of the

mixed search strategy examining both equity-feasible and equity-

infeasible solutions for solving the ECP.

For future work, several directions could be followed. First, the

penalty term of the extended fitness function could be improved by

introducing adaptive techniques like [5, 12] to enable a strategic

oscillation for dynamically transitioning between feasible and infea-

sible space. Second, other search operators (rather than those used

in this work) can be sought to further improve the performance

of the search algorithm. �ird, the proposed algorithm could be

advantageously integrated into a hybrid population-based method

(e.g., memetic search, path-linking) as a key intensification com-

ponent. Finally, the instances tested in this work are based on the

conventional DIMACS coloring benchmark graphs. �ese graphs

can be considered as being limited in size with respect to mas-

sive graphs obtained from a number of modern applications like

complex networks and biological networks. Contrary to DIMACS

graphs, these massive graphs are typically very sparse with very

low edge density. It would be interesting to investigate the ideas of

this work in the context of coloring massive graphs.
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