
HAL Id: hal-02715065
https://univ-angers.hal.science/hal-02715065

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis of incremental propagation graphs with
process algebra

Théo Le Calvar, Fabien Chhel, Frédéric Jouault, Frédéric Saubion

To cite this version:
Théo Le Calvar, Fabien Chhel, Frédéric Jouault, Frédéric Saubion. Static analysis of incremental
propagation graphs with process algebra. ACM/IEEE 21st International Conference on Model Driven
Engineering Languages and Systems (MODELS) 2018, Oct 2018, Copenhague, Denmark. 2018. �hal-
02715065�

https://univ-angers.hal.science/hal-02715065
https://hal.archives-ouvertes.fr

Static analysis of incremental propagation graphs with process algebra
Théo Le Calvar1,2, Fabien Chhel2, Frédéric Jouault2, Frédéric Saubion1

1 LERIA, Université d’Angers, Angers, France 2 ERIS Team, ESEO Group, Angers, France

Static analysis of incremental propagation graphs with process algebra
Théo Le Calvar1,2, Fabien Chhel2, Frédéric Jouault2, Frédéric Saubion1

1 LERIA, Université d’Angers, Angers, France 2 ERIS Team, ESEO Group, Angers, France

Abstract

Active Operations are a set of operations that can be composed to build incremental bidirectional OCL-like expressions on collections. The current implemen-
tation of active operations (AOF) relies on the Observer design pattern to propagate changes from each operation to its successors. These relations form an
implicit directed acyclic propagation graph. In this work we present a new relational notation to describe propagation graphs. Along with this notation, we also
present a new static analysis method of the propagation graph based on process algebra. This new method enables optimizations of the propagation graph
not achievable with previous approaches, such as detection of parallelizable sections of the propagation graph or cache optimizations in specific situations.

Process Algebra

Process Algebra [2, 4] is a formalism used to formally describe process behaviors.
It consists of a small sets of concepts and operators such as:
• Actions: a, b are simple actions, δ is a special action that corresponds to a

failure.
• Sequential: a.b, a then b.
• Alternative: a + b, a or b.
• Parallel: a∥b, a and b in parallel.
• Communication: parallel processes a and b can communicate if a|b is defined.
• Encapsulation: ∂H(X) replaces every action of X present in H by a δ. It can

be used to force two actions to communicate.

Translation method

Translating an AOF expression into a corresponding process algebra formula is done
in several steps:

1. Represent the expression as a propagation graph.
2. Extract sub-propagation graphs for each entry-point of the graph.
3. Add synchronization operations when there are several paths between an oper-

ation and the entry-point.
4. Break merges by splitting synchronization operations.
5. Generate a corresponding formula by applying the following function to each

entry-point:

R2ACP (o) =


Next(o) = ∅, o

Next(o) = o ′, o . R2ACP (o ′)

Next(o) = {o1, ..., on}, o.
(
R2ACP (o1)∥...∥R2ACP (on)

)
6. Merge all generated formulas:∑

o∈Start
∂{s∈Syncs(o)}

(
R2ACP (o)

)

Possible analysis

Using process algebra to describe AOF expressions offers several interesting analysis:
• The formula can be used to check if an operation evaluation ordering is correct.
• The formula can be used to generate correct orderings (operation evaluation).
• One specialized ordering per input of the expression.
• Parallelizable sections can be inferred from the formula.
• Possible detection of useless operation caches.
• Recursive formulas could be used to model expressions with cycles.
• Process algebra has tools that could be used to optimize propagation graphs.

Example of transformation

def : F (a) =
l e t v1 = a−>A () i n
l e t v2 = v1−>B () i n
l e t v3 = v1−>D () i n
l e t b = v2−>C (v3) i n
b

OCL-like expression with alignments issues

a A B C b

D

Steps 1 & 2 - Corresponding propagation graph for the only
entry-point

a A B SynC C b

D

Step 3 - Adding synchronization nodes

a A B SynCB C b

D SynCD

Step 4 - Splitting the synchronization nodes

F = a.∂H

(
A.
((
B.SynCB.C.b

)
∥
(
D.SynCD

)))
H = {SynCB, SynCD}
SynCB|SynCD = S

Steps 5 & 6 - Corresponding ACP formula

References

[1] Olivier Beaudoux et al. “Active Operations on Collections”. In: MODELS.
Vol. 6394. Lecture Notes in Computer Science. Springer, 2010, pp. 91–105.

[2] J.A. Bergstra and J.W. Klop. “Process algebra for synchronous communi-
cation”. In: Information and Control 60.1 (1984), pp. 109 –137.

[3] Frédéric Jouault et al. “ Improving Incremental and Bidirectional Evaluation
with an Explicit Propagation Graph”. In: Software Technologies: Applications
and Foundations. Ed. by Martina Seidl and Steffen Zschaler. Springer Inter-
national Publishing, 2018, pp. 302–316.

[4] Robin Milner. A Calculus of Communicating Systems. Vol. 92. Lecture
Notes in Computer Science. Springer, 1980.

