
HAL Id: hal-02709491
https://univ-angers.hal.science/hal-02709491

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Set Constraint Models to SAT Instances
Frédéric Lardeux, Eric Monfroy

To cite this version:
Frédéric Lardeux, Eric Monfroy. From Set Constraint Models to SAT Instances. 28th IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI), 2016, San Jose, United States.
�hal-02709491�

https://univ-angers.hal.science/hal-02709491
https://hal.archives-ouvertes.fr

From Set Constraint Models to SAT Instances
Frédéric Lardeux

LERIA - Université d’Angers.
Angers, France.

Email: Frederic.Lardeux@univ-angers.fr

Eric Monfroy

LINA - UMR 6241. TASC - INRIA
Université de Nantes, France.

Email: Eric.Monfroy@univ-nantes.fr

Abstract—On the one hand, Constraint Satisfaction Problems
(CSP) are a declarative and expressive approach for modeling
problems. On the other hand, propositional satisfiability problem
(SAT) solvers can handle huge SAT instances up to millions of
variables and clauses. In this article, we present an approach for
taking advantage of both CSP modeling and SAT solving. Our
technique consists in expressively modeling set constraint prob-
lems as CSPs that are automatically treated by some reduction
rules to remove values that do not participate in any solution.
These reduced CSPs are then encoded into ”good” SAT instances
that can be solved by standard SAT solvers. We illustrate our
technique on the Sports Tournament Scheduling problem, and
we show that we obtain competitive results compared to an ad-
hoc solver. Our technique is simpler, more expressive, and less
error-prone than direct SAT modeling. The SAT instances that
we automatically generate are rather small and can efficiently
be solved up to huge instances. Moreover, the reduction phase
enables to push back the limits and treat even larger problems.

I. INTRODUCTION

A classical way to formulate combinatorial problems is to
use Constraint Satisfaction Problem (CSP) formulation [1].
A CSP is defined by some variables and constraints between
these variables. Solving a CSP consists in finding assignments
of the variables that satisfy the constraints. Expressiveness
is one of the main strength of CSP: variables can be of
various types (finite domains, floating point numbers, sets,
. . .) and constraints as well (linear arithmetic constraints, set
constraints, non linear constraints, Boolean constraints, . . .).
Moreover, the so-called global constraints not only improve
solving efficiency but also expressiveness: they propose new
constructs and relations such as alldifferent (to enforce that
all the variables of a list have different values), cardinality (to
link a set to its size), . . .

Another way to formulate combinatorial problems is to
use the propositional satisfiability problem (SAT) [2]. A SAT
problem is a Boolean formula written in conjunctive normal
form, i.e., a conjunction of clauses. Clauses are disjunctions
of literals. A literal is a variable or a negated variable. When
all the clauses can be satisfied, the problem is said to be
satisfiable. SAT is then restricted (in terms of expressiveness)
to Boolean variables and propositional formulae. Coding set
constraints directly into SAT is a tedious tasks (see for
example [3] or [4]). Moreover, when one wants to optimize its
model in terms of variables and clauses this quickly leads to
very complicated and unreadable models in which errors can

easily appear. However, SAT solvers can now handle huge
SAT instances (millions of variables).

It is thus attractive to 1) encode CSPs into SAT (e.g., [5],
[6], [7]) in order to benefit from the expressiveness of CSP
and the power of SAT, and 2) introduce more expressiveness
into SAT, e.g., with global constraints such as alldifferent [8],
or cardinality [9].

Various systems of set constraints (either specialized sys-
tems [10], libraries for constraint programming systems such
as [11], or the set constraint library of CHOCO [12] have been
designed and it has been shown that numerous problems can
easily be modeled with set constraints.

In this paper we are concerned with set constraint modeling,
set constraint filtering, and their transformations into SAT
instances: we often refer to this transformation as ”encoding”.
Our goal is not to compete with standard CSP set solvers, but
to introduce set constraints into SAT. However, we obtained
very good results, and for problems such as the Sports Tour-
nament Scheduling problem we are competitive with specialy
designed solvers (see Section V).

In [13], we presented encoding rules that are directly applied
on the CSP models. However, we have noticed that the set
variables are not always as small as they could be: some
elements could be removed without loosing any solution. Thus,
the generated SAT instances could also be reduced. In [14],
we introduced a constraint propagation phase to filter set
variables. This filtering was only applied on upper bounds
(elements eventually in the set) of set variables. The idea was
to simplify the modeling phase by allowing not to specify
precisely upper bounds of sets. Although interesting, this
filtering was not strong enough to crucially reduce generated
SAT instances. Furthermore, this representation was inefficient
for propagating eventual assignments such as they appear
when breaking symmetries.

In this article, we thus propose:
• a simple but complete and expressive set language for

easily modeling problems with constraints such as in-
tersection, union, cardinality, min, . . . Compared to [13],
[14], the language as been extended with finite domain
variables, and comparison constraints between these vari-
ables. Moreover, cardinality is now a constraint linking
a finite domain variable to a set variable. Similarly,
we introduced constraints for minimum (maximum) of

sets. These new constraints are very useful for breaking
symmetries.

• a set of reduction rules (⇒red) to reduce CSP models.
The fixed point application of these rules define a propa-
gation algorithm, each rule corresponding to a filtering
function ([15]) for sets and elements. The filtering is
based on both bounds of sets and their cardinalities as
defined in [16]. This filtering is much stronger than our
previous one [14], stronger than bound consistency for
sets [11], and weaker than [17].

• a set of encoding rules (⇔enc) that convert CSP con-
straints into SAT instances. Compared to [14], we have
more rules in order to cover the new constraints. More-
over our new rules can now be applied on reduced or not
reduced constraints without generating unuseful clauses.
Indeed, for each set appearing in a constraint, for each
element, 3 cases of membership are considered: in the
lower bound (the element is effectively in the set), in the
upper bound but not in the lower bound (the element is
eventually in the set), not in the upper bound (the element
is not in the set). Thus, for a ternary constraint (such as
A = B ∩ C) this means 27 cases. After reduction, some
of these cases vanish, and thus, no clause is generated.

We have successfully applied our technique on various prob-
lems (such as the Social Golfer Problem, the Sudoku puzzle,
the n-queen problem, car sequencing, WhoWithWhom puzzle,
. . .) and we illustrate this paper with the Sports Tournament
Scheduling problem (STS) [18]. The SAT instances which
are automatically generated have a complexity similar to the
complexity of improved directly-written SAT formulations.
They are much smaller than the instances we could generate
before and we can now tackle larger problems. Moreover, their
solving with a SAT solver (in our case Minisat [19]) is efficient
compared to other SAT approaches. For the STS problem,
our approach is competitive with the solver of [20]. To our
knowledge, this solver is the best one for the STS problem.
Indeed, it has been especially designed and over constraints
the STS to solve it. Thus, it may also be enable to find solution
for some instances.

In the following section (Section II) we present our CSP set
constraint language and the notions of upper/lower bounds,
domains, etc. In Section III we show the rules to reduce
models by eliminating elements that cannot participate in any
solution. Section IV presents our new rule-based system for
encoding set constraints into SAT. Section V illustrates our
approach on the Sports Tournament Scheduling problem. We
finally compare our work with existing ones in Section VI and
conclude in Section VII.

II. CONSTRAINT SATISFACTION PROBLEMS WITH SETS

A. Set CSP

Definition 1 (Set-CSP): A Set-CSP is defined by
• a universe U of integers.
• a set X = {x1, . . . , xn} of finite domain variables such

that a domain of possible values Dxi
⊆ U is associated

to each variable xi ∈ X . D denotes the Cartesian product
Dx1
× . . .×Dxn

• a set F of set variables, such that each set variable F ∈ F
is associated to:

– its greatest lower bound F ↓ ⊆ U
– its lowest upper bound F ↑ ⊆ U
– its minimum cardinality #F ↓ ∈ N
– its maximum cardinality #F ↑ ∈ N

We also have that F ↓ ⊆ F ⊆ F ↑, #F ↓ ≤ |F | ≤ #F ↑,
|F ↓| ≤ #F ↓, and #F ↑ ≤ |F ↑| where |S| denotes the
cardinality of the set S.

• a set of constraints C that are relations defined over
D|X| × U |F|.

Note that F ↓ (the greatest lower bound of a set F ∈ F)
represents integers that are required in F ; F ↑ the (lowest
upper bound of F) represents integers that are eventually in F .
Decomposing F ↑, we denote by F ? the set F ↑ \F ↓: elements
of F ? are eventually in F while elements of F ↑ \ F ? = F ↓

are required in F . Thus, F ↓ ⊆ F ⊆ F ↑ and possible values
of F are elements of the powerset 2F

↑
that includes F ↓ and

such that their cardinality is in the range [#F ↓..#F ↑].

B. Basic Set Constraints

Variables are declared and initialized with the following
constructs:

• the universe U is declared by U :: > where > is a set of
elements;

• an element variable x is declared by x :: Dx where its
domain Dx is given as a set of elements;

• a set variable F is declared by F :: (F ↓, F ↑,#F ↓,#F ↑)
where its lower bound F ↓ and its upper bound F ↑ are
sets of elements, and its minimum cardinality #F ↓, and
its maximum cardinality #F ↑ are given by integers.

By abuse of notation, the empty set variable is denoted by ∅
and defined by ∅ :: (∅, ∅, 0, 0).

Consider F , G, H , and Fi (i ranging from 1 to n) being set
variables, and x being a finite domain variable. We enumerate
here some usual (CSP) set constraints that we have considered:

finite domain (dis)equality x = y (x 6= y)
finite domain (strict) inequality x < y (x ≤ y)
(non)membership x ∈ F (x 6∈ F)
set (dis)equality F = G (F 6= G)
inclusion F ⊆ G (F 6⊆ G)
difference H = F \G
intersection F =

⋂n
i=1 Fi

union F =
⋃n

i=1 Fi

partition F =
⊔n

i=1 Fi

set cardinality x = |F |
set variable minimum x = min(F)
set variable maximum x = max(F)

The partition F =
⊔n

i=1 Fi means that F =
⋃n

i=1 Fi, and for
all i, j, Fi ∩ Fj = ∅.

III. REDUCTION RULES

The ⇒red reduction rules aim at reducing the search space.
A fixed point application of these rules implement a prop-
agation and filtering algorithm for sets and finite domains.
The ⇒red reduction rules may add elements to lower bounds
of sets, remove elements from upper bounds of sets, increase
minimum cardinality of sets, and decrease maximum cardinal-
ity of sets. For finite domain variable, they can only remove
elements from domains. Moreover, some rules may also lead
to a failure case, or remove some constraints that became
unnecessary.

Our filtering algorithm enforces bound consistency with
cardinality as defined in [10], [16].

In the following, we give some of our⇒red reduction rules
to illustrate their use. More rules for bound consistency with
cardinality are given in [10].

A. Elements

If a variable x has an empty domain, the CSP does not have
any solution:

Dx = ∅ ⇒red fail (1)

When a variable x has been twice declared, the 2 declara-
tions are grouped into one:

x :: Dx, x :: D′x ≡red x :: Dx ∩D′x (2)

Note that applying Rule 2 replaces x :: Dx and x :: D′x by
x :: Dx ∩D′x.

B. Sets

Rule 4 is very important: in some other rules, we can add
elements to F ↓ that may not be in F ↑; Rule 4 will lead to
a failure in these cases. Rules 4, 5 and 6 are useful when a
cardinality constraint modifies the upper or lower bound of
the cardinality of a set.

#F ↓ > #F ↑ ⇒red fail (3)
F ↓ 6⊆ F ↑ ⇒red fail (4)

|F ↓| > #F ↑ ⇒red fail (5)
|F ↑| < #F ↓ ⇒red fail (6)

If #F ↑ = 0 then F is the empty set (if F ↓ 6= ∅ this will
lead to a failure with Rule 4):

#F ↑ = 0, ⇒red F ↑ = ∅ (7)

Rules 8 and 9 make the set F to be a constant when the size
of the upper bound is equal to the minimum cardinality of
the set or when the size of the lower bound is equal to the
maximum cardinality of the set:

#F ↓ = |F ↑|, F ↓ ⊂ F ↑, #F ↓ ≤ #F ↑

⇒red (8)

F ↓ ← F ↑, #F ↑ ← #F ↓

#F ↑ = |F ↓|, F ↓ ⊂ F ↑, #F ↓ ≤ #F ↑

⇒red (9)

F ↑ ← F ↓, #F ↓ ← #F ↑

The following rules can trigger only once when there is a
mistake in set declaration:

|F ↓| > #F ↓ ⇒red #F ↓ ← |F ↓| (10)
|F ↑| < #F ↑ ⇒red #F ↑ ← |F ↑| (11)

C. Set Constraints

Rule 12 filters 3 set variables F , G, H linked by a
difference constraint. Note that multiple assignments in the
right-hand side of a rule are made simultaneously. Note also
that min{a1, . . . , an} returns the smallest integer ai.

H = F \G
⇒red (12)

H↑ ← (H↑ ∩ F ↑) \G↓
F ↑ ← F ↑ ∩ (H↑ ∪G↑)
G↑ ← G↑ \H↓
H↓ ← H↓ ∪ (F ↓ \G↑)
F ↓ ← H↓ ∪ F ↓

G↓ ← G↓

#H↓ ← max{#H↓, |H↓ ∪ (F ↓ \G↑)|}
#F ↓ ← max{#F ↓, |H↓ ∪ F ↓|}
#G↓ ← #G↓

#H↑ ← min{#H↑, |(F ↑ ∩H↑) \G↓|}
#F ↑ ← min{#F ↑, |F ↑ ∩ (H↑ ∪G↑)|}
#G↑ ← min{#G↑, |G↑ \H↓|}

Note that after applying Rule 12, if F ?∩G↑ = ∅ the constraint
H = F \ G is always true and thus, it can be removed. We
have such rules for each type of constraint to reduce the CSP
instance, and thus the generated SAT instance.

We also add some redundant rules: they do not modify
the reduction strenght. They are specialization of some more
general rules that can be applied more efficiently. For example,
lets consider the constraint H = F ∩G. The general rule is:

H = F ∩G

⇒red (13)

H↑ ← H↑ ∩ F ↑ ∩G↑

H↓ ← H↓ ∪ (F ↓ ∩G↓)
F ↓ ← F ↓ ∪H↓

G↓ ← G↓ ∪H↓

F ↑ ← F ↑ \ (G↓ \H↑)
G↑ ← G↑ \ (F ↓ \H↑)
#F ↓ ← max{#F ↓, |(F ↓ ∪H↓)|}
#G↓ ← max{#G↓, |(G↓ ∪H↓)|}
#H↓ ← max{#H↓, |(H↓ ∪ (F ↓ ∩G↓))|}
#F ↑ ← min{#F ↑, |(F ↑ \ (G↓ \H↑))|}
#G↑ ← min{#G↑, |(G↑ \ (F ↓ \H↑))|}
#H↑ ← min{#H↑,#F ↑,#G↑, |(H↑ ∩ F ↑ ∩G↑)|}

Although equivalent, when H = ∅ the rule is much simpler,
and in practice, it requires less computation and less tests to
be applied:

∅ = F ∩G

⇒red (14)
F ↑ ← F ↑ \G↓
G↑ ← G↑ \ F ↓
#F ↑ ← min{#F ↑, |F ↑ \G↓|}
#G↑ ← min{#G↑, |G↑ \ F ↓|}

IV. ENCODING RULES

The⇔enc encoding rules aim at transforming CSP set con-
straints into SAT clauses. Our rules work both on reduced or
not reduced CSP set constraints, without generating unuseful
clauses.

A. Elements

This encoding rule enforces each element variable to have
one and only one value from its domain:

Element(v,Dv)
⇔enc

∀x ∈ Dv, xv →
∧

y∈Dv,x6=y ¬yv and
∨

x∈Dv
xv

⇔
(
∧

x∈Dv

∧
y∈Dv,y>x(¬xv ∨ ¬yv)) ∧

∨
x∈Dv

xv

This encoding generates |Dv|.(|Dv|−1)/2 binary clauses and
1 |Dv| − ary clause.

B. Sets

For a declared set F :: (F ↓, F ↑,#F ↓,#F ↑), the encoding
consists in creating the variables and setting to true elements
of the set variable lower bound. Consider an element x from
the universe, we denote by ?xF the creation of the variable
xF representing the membership of x in the set F .

F :: (F ↓, F ↑,#F ↓,#F ↑)
⇔enc{

∀x ∈ F ↑, ?xF

∀x ∈ F ↓, xF

C. Set Intersection

In order to be complete, we consider all cases w.r.t.
H↑, H↓, F ↑, F ↓, G↑, G↓, even impossible or unuseful cases
(noted −). Table I lists all these cases.

After reduction, only the 4 cases where binary clauses
are generated are not obsolete, the others become unuseful.
However, these generic encoding rules permit to handle all
models whatever the kind of reduction rules that were applied
or not.

V. EXPERIMENTAL RESULTS

All experiments were realized on an Intel R© Xeon R© Pro-
cessor E5-2670 with 2.3GHz and 230 GB RAM. Practically,
⇔enc rules have been implemented with C++ and⇒red rules
as Constraint Handling Rules (CHR [21]). We use Minisat [19]
as the SAT solver for all our experiments.

A. Sports Tournament Scheduling Problems

This problem was proposed by Toby Walsh (problem num-
ber 26 of the CSPLib [18]) as: “The problem is to schedule
a tournament of n teams over n − 1 weeks, with each week
divided into n/2 periods, and each period divided into two
slots. The first team in each slot plays at home, whilst the
second plays the first team away. A tournament must satisfy
the following three constraints: every team plays once a week;
every team plays at most twice in the same period over
the tournament; every team plays every other team.”. The n
value permits to totally define a Sports Tournament Scheduling
instance. A set constraints model with w = n−1 and p = n/2
can be:
• Universe and set of teams: U :: {1, . . . , n} T ::
U ,U , n, n

• Matches of 2 teams for each week and each time period:
∀i ∈ [1..w],∀j ∈ [1..p], Gi,j :: ⊥,U , 2, 2

• Every team plays every week: ∀i ∈ [1..w], T =⋃p
j=1 Gi,j

• Each team plays at least twice in the same period: ∀q ∈
[1..p], ∀i ∈ [1..w − 2], ∀j ∈ [i + 1..w − 1], ∀k ∈ [j +
1..w], ∅ = Gi,p ∩Gj,p ∩Gk,p

• Every team plays every other team. Since each team
already plays each of the n − 1 week, it is sufficient
to enforce that each pair of matches are different (i.e.,
they can share at most one team): ∀i ∈ [1..w − 1], ∀j ∈
[i+ 1..w], ∀p1, p2 ∈ [1..p], Gi,p1

6= Gj,p2
.

• Symmetry breaking 1. The first week is filled simply:
team 1 plays team 2 in the first period, team 3 plays
team 4 in the second period, . . . : ∀i ∈ [1..n], i ∈
G1,((i−1)div2)+1

• Symmetry breaking 2. The first team is placed for p
weeks (in diagonal, starting from the second week):
∀i ∈ [1..p], 1 ∈ Gi+1,i

B. Efficiency of SAT pre-processes

To minimize the size of the CNF instances, the use of
pre-process is highly recommended. It is also known that
minimized instances may not be easier to solve than unrefined
instances. Indeed, it is possible that easy to reach solutions are
removed by the pre-process and only hard to reach solutions
are conserved. We use SatElite [22] as CNF minimizer. We can
use it either as complete minimizers (CMSat) using subsump-
tion, self-subsuming resolution, and variable elimination by
substitution... or as an initial unit propagation process (UPSat).
Comparisons are realized on the encoded problems and results
are presented in Table II. Unrefined model is the model obtain
after ⇔enc process. For each instance a reduced instance is
associated (obtained by ⇒red). For a reduced instance, the
suffix “ R” is added to its name.

Table II shows that for unrefined instances, the use of
unit propagation or CNF minimizer drastically reduces the
number of clauses and variables. Regarding the impact of
the reduction rules (reduced instances R), we can notice that
unit propagation cannot produce really smaller instances that

TABLE I
ENCODING RULES FOR SET INTERSECTION.

H = F ∩G
⇔enc

∀x ∈ U



x ∈ H↓



x ∈ F ↓

 x ∈ G↓ true
x ∈ G? xG |H↓ ∩ F ↓ ∩G?| unit clauses
x 6∈ G↑ false

x ∈ F ?

 x ∈ G↓ xF |H↓ ∩ F ? ∩G↓) unit clauses
x ∈ G? xF ∧ xG |H↓ ∩ (F ↑ \ F ↓) ∩G?| ×2 unit clauses
x 6∈ G↑ false

x 6∈ F ↑

 x ∈ G↓ false
x ∈ G? false
x 6∈ G↑ false

x ∈ H?



x ∈ F ↓

 x ∈ G↓ xH |H? ∩ F ↓ ∩G↓) unit clauses
x ∈ G? xH ↔ xG |H? ∩ F ↓ ∩G?| ×2 binary clauses
x 6∈ G↑ ¬xH |H? ∩ (F ↓ \G↑)| unit clauses

x ∈ F ?

 x ∈ G↓ xH ↔ xG |H? ∩ F ? ∩G↓) ×2 binary clauses
x ∈ G? xH ↔ xF ∧ xG |H? ∩ F ? ∩G?| ×(2 binary clauses and 1 unit clause)
x 6∈ G↑ ¬xH |H? ∩ (F ? \G↑)| unit clauses

x 6∈ F ↑

 x ∈ G↓ ¬xH |H? ∩G↓ \ F ↑| unit clauses
x ∈ G? ¬xH |H? ∩G? \ F ↑| unit clauses
x 6∈ G↑ ¬xH |H? \ F ↑ \G↑| unit clauses

x 6∈ H↑



x ∈ F ↓

 x ∈ G↓ false
x ∈ G? ¬xG |F ↓ ∩ (G? \H↑)| unit clauses
x 6∈ G↑ −

x ∈ F ?

 x ∈ G↓ ¬xF |F ? ∩G↓ \H↑) unit clauses
x ∈ G? ¬xF ∨ ¬xG |F ? ∩G? \H↑| binary clauses
x 6∈ G↑ −

x 6∈ F ↑

 x ∈ G↓ −
x ∈ G? −
x 6∈ G↑ −

TABLE II
EFFICIENCY OF SAT PRE-PROCESSES

Model characteristics Encoding time Resolving time

Instances ⇒red Unrefined UPSat CMSat ⇔enc UPSat CMSat Unrefined UPSat CMSat

sec. #cl #var #cl #var #cl #var sec. sec. sec. sec. sum sec. sum sec. sum

ST
S

8 - 23 812 5 528 13 794 3 867 6 422 1 040 0.04 0.04 0.28 0.01 0.05 0.01 0.09 0.01 0.33
8 R 0.08 16 606 4 549 13 345 3 902 2 649 426 0.03 0.02 0.26 0.00 0.11 0.00 0.13 0.00 0.37
10 - 77 135 17 170 46 917 12 530 29 233 5 194 0.14 0.12 0.91 3.37 3.51 1.18 1.44 5.32 6.37
10 R 0.11 58 235 14 788 45 918 12 650 13 729 2 352 0.11 0.07 0.74 0.01 0.23 0.01 0.30 - 0.97
12 - 198 198 42 612 124 980 32 297 85 581 15 576 0.35 0.40 3.08 143.96 144.31 509.24 509.99 266.26 269.70
12 R 0.22 148 364 35 188 112 467 29 541 40 188 6 624 0.39 0.22 2.22 0.04 0.65 0.03 0.86 0.01 2.84
14 - 436 541 91 154 280 964 70 707 205 706 38 492 0.75 0.76 8.05 - - - - - -
14 R 0.41 342 805 78 104 257 290 65 772 93 320 15 339 0.60 0.42 5.42 0.08 1.09 0.06 1.49 0.04 6.47

those based on unrefined instances. We could therefore deduce
that reduction rules only eliminate the creation of unit clauses
during the encoding. Nevertheless, we can observe that the use
of the CNF minimizer provide very small instances (less than
the half of the size of the unrefined instances reduced by the
CNF minimizer). We can conclude that reduction rules permit
to encode a lot of redundant or subsumed clauses.

In terms of encoding time, the use of the CNF minimizer
costs a lot and cannot be run for medium and large instances.
Unit propagation is not very time consuming but unit propa-
gation is a classical operation done by SAT solvers It is then
redundant in terms of running time to do it before and during
the solving process.

In order to quickly solve instances, it seems to be more
efficient to use only our ⇒red reduction rules.

C. Results for large instances

Table III shows the great impact of our ⇒red reduction
rules on our SAT encoding. Indeed, without reduction the STS
instances are solved up to size 12 while with application of
reduction rules solutions are found until size 66.As said in
Section V-B, minimizing process can complicate the resolution
because solutions are deleted. Here, we can observe that this
is not the case. Our reduction rules makes the search easier:
indeed they keep the structure of the problem without remov-
ing solutions, but reducing the search space. Size of instances

TABLE III
RESULTS FOR LARGE STS INSTANCES

Inst.
Initial reduced

Unrefined ⇔enc Resolution ⇒red Unrefined ⇔enc Resolution
#cl ×103 #var×103 sec. sec. sum sec. #cl×103 #var×103 sec. sec. sum

8 24 6 0.02 0.04 0.06 0.08 15 4 0.02 0.02 0.12
10 77 17 0.01 9.30 9.31 0.11 54 13 0.01 0.04 0.16
12 198 43 0.03 387.85 387.88 0.22 148 35 0.02 0.14 0.38
14 437 91 0.04 - - 0.41 343 78 0.03 0.22 0.66
16 861 175 0.09 - - 0.66 700 154 0.05 0.45 1.16
18 1 569 314 0.17 - - 0.98 1 307 281 0.14 0.89 2.01
20 2 676 528 0.32 - - 1.34 2 275 479 0.24 1.69 3.28
22 4 331 842 0.49 - - 1.92 3 742 773 0.41 3.43 5.76
24 6 713 1 289 0.75 - - 2.65 5 879 1 194 0.66 4.82 8.13
26 10 041 1 905 1.15 - - 3.71 8 890 1 779 0.98 9.24 13.93
28 14 567 2 735 1.62 - - 5.34 13 020 2 569 1.37 12.37 19.08
30 20 591 3 827 2.26 - - 6.13 18 551 3 616 2.03 20.20 28.36
32 28 453 5 241 3.18 - - 8.11 25 813 4 974 2.92 31.93 42.96
34 38 581 7 059 4.00 - - 10.62 35 203 6 719 3.89 36.17 50.68
36 51 396 9 343 5.54 - - 12.67 47 151 8 925 5.04 83.38 101.09
38 67 397 12 178 7.26 - - 14.96 62 129 11 668 6.64 124.25 145.85
40 87 144 15 655 9.29 - - 12.78 80 678 15 041 8.44 114.74 135.96
50 266 070 46 637 27.93 - - 36.93 250 325 45 254 27.38 880.50 944.81
52 323 676 56 497 33.62 - - 46.99 305 266 54 901 31.79 1240.79 1319.57
54 390 835 67 948 40.61 - - 69.64 369 437 66 116 39.13 1492.06 1600.83
56 468 687 81 175 48.36 - - 60.58 443 952 79 083 46.24 1803.75 1910.57
58 558 459 96 375 67.49 - - 60.19 530 012 93 996 55.61 2362.21 2478.01
60 661 467 113 760 70.66 - - 78.28 628 906 111 067 64.76 2952.74 3095.78
62 779 123 133 556 79.58 - - 87.63 742 017 130 519 77.08 3367.36 3532.07
64 912 933 156 005 95.06 - - 100.48 870 823 152 592 92.14 4903.03 5095.65
66 1 064 779 181 500 109.51 - - 115.36 1 017 067 177 625 105.45 5247.73 5468.54
68 1 236 149 210 203 126.70 - - 135.61 1 182 405 205 875 122.12 - -
70 1 428 864 242 406 145.71 - - 154.44 1 368 535 237 589 139.81 - -
72 1 644 854 278 418 172.92 - - 182.35 1 577 355 273 071 167.62 - -

is thus not the only criterion: structure and search size also
matter. For example, some reduced larger instances can be
larger than some not reduced smaller instances; however, the
reduced instances maybe solved while the not reduced one
may not. For example, not reduce instance 14 of STS is smaller
than reduced instance 20 of STS; however, reduced instance
20 is solved while not reduced instance 14 is not. Note that
for instances 68 to 72, Minisat solver stop immediately the
search due to the too large number of clauses and variables.
Specific solvers [20] were proposed to solved this problem
over constraining the problem (by adding extra constraints
that are not present in the initial problem). This way, the
larger solved instance is 70 but some instances may not have
anymore a solution (due to over constraints).

VI. COMPARISONS WITH PREVIOUS WORKS

Compared to [13], the benefits are:

• the modeling language is richer and proposes finite
domain variables. Set cardinality, set min and set max
constraints now link a finite domain variable to a set
variable. The language is more expressive and more
practical;

• the⇒red reduction rules now use upper and lower bounds
of sets as well as min and max cardinality. The filtering is
much stronger and thus, search spaces are more reduced;

• the ⇔enc encoding rules are more generic and can be
applied to reduced or not reduced CSP set constraints.
They thus generate much smaller SAT instances.

To summarize, we are now able to model more problems, to
solve them more efficiently, and to tackle larger instances.

We can compare our work with works about SAT encoding
techniques such as [5] and [6]. These works make a relation
between CSP solving and SAT solving in terms of prop-
erties such as consistencies for finite domain variables and
constraints. In this article, we are concerned with a different
type of constraints (i.e., set constraints) and we try to obtain
small SAT instances that are also well-suited for standard SAT
solvers. Moreover, [5] and [6] do not consider a reduction
phase as our ⇒red rules.

Our approach is similar to [8] in which alldifferent global
constraints and overlapping alldifferent constraints are handled
expressively before being encoded automatically into SAT
using rewrite rules. Note also that we use the work of [9]
about the cardinality global constraint in order to perform the
encoding of set cardinality.

Since we exploit cardinality as defined in [10], our filtering
phase is stronger than the constraint propagation phase of [11].
Stronger filtering can be designed (e.g., [17]) using richer set
representations and the length-lex order. Although theoretical
results about such constraint propagation algorithms are nega-
tive, in practice they may behave better than bound consistency

with cardinality for some benchmarks (such as the Social
golfer problem as shown in [17]). However, for our purpose,
we prefered a good balance between filtering and genericity.
Moreover, the length-lex order is efficient for enumeration, but
in our case we do not need enumeration but only filtering.

Some works, such as [23] ”compile” set constraints into a
Reduced Ordered Binary Decision Diagrams which is directly
used for solving the problem. This technique seems efficient
and it is claimed that it can be extended to integers and
multi-sets. However, we want to stay as close as possible
of constraint structures to be able to use various tools and
constraint structures to treat these constraints. Moreover, we
are also interested in integrating some other global constraints.
Finally, our aim is not to solve the model nor to design a solver,
but to prepare models in order to obtain a better encoding that
will be solved by a SAT solver.

In terms of efficiency, we have shown for the STS prob-
lem that our technique is competitive with the best (to our
knowledge) ad-hoc-solver [20], i.e., especially designed for
the STS problem. Moreover, this approach over constraints
the problem, and thus, may lose solutions.

We made some similar tests with the Social Golfer Prob-
lem. Using our model, Conjunto [11] can only solve small
instances. With the same model, Minizinc is stucked very
quickly. We tried some other models with Minizinc (not
based on sets) but the results were not better. Thus, we were
competitive with generic CSP solvers for the SGP.

VII. CONCLUSION

We have presented a technique for encoding set constraints
into SAT: the modeling process is achieved using some very
expressive set constraints; they are then reduced by our ⇒red

rules before being automatically converted (⇔enc) into SAT
variables and clauses. We have illustrated our approach on
the Sports Tournament Scheduling problem and we have
shown some good results with the application of reduction
and encoding rules. We nearly reach the results of the best
(to our knowledge) ad-hoc solver [20] which over constraints
the problem, and thus, may sometimes not be able to find a
solution.

The advantages of our technique are the following:
• the modeling process is simple, expressive, and readable.

Moreover, it is solver independent and independent from
CSP or SAT solvers;

• the technique is less error-prone than direct SAT encod-
ings;

• the SAT instances which are automatically generated are
smaller in terms of number of variables and clauses;

• finally, with respect to solving time, adding reduction
process permits to reduce the cumulative running time
(reduction+encoding+resolution);

• the generated SAT instances also appeared to be well-
suited for Minisat.

In the future, we plan to extend our constraints encoding
rules for formalizing finite domain variables arithmetic con-
straints. To this end, we will need to add some new constraints

and to complete our⇔enc and⇒red rules. Up to now we have
our proper model format (XML-like) but we plan to use the
XCSP3 [24] standard. We also plan to extend our technique
to multisets [25], [26] and sequences.

REFERENCES

[1] F. Rossi, T. P. van Beek, and Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness. San Francisco: W.H. Freeman &
Company, 1979.

[3] M. Triska and N. Musliu, “An improved sat formulation for the social
golfer problem,” Annals of Operations Research, vol. 194, no. 1, pp.
427–438, 2012.

[4] I. Gent and I. Lynce, “A sat encoding for the social golfer problem,” in
IJCAI’05 workshop on modelling and solving problems with constraints,
2005.

[5] F. Bacchus, “Gac via unit propagation,” in Proc. of CP 2007, ser. LNCS,
vol. 4741. Springer, 2007, pp. 133–147.

[6] C. Bessière, E. Hebrard, and T. Walsh, “Local consistencies in sat,” in
Selected Revised Papers of SAT 2003., ser. LNCS, vol. 2919. Springer,
2004, pp. 299–314.

[7] J. Petke and P. Jeavons, The Order Encoding: From Tractable CSP to
Tractable SAT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 371–372.

[8] F. Lardeux, E. Monfroy, F. Saubion, B. Crawford, and C. Castro, “Sat
encoding and csp reduction for interconnected alldiff constraints,” in
Proc. of MICAI 2009, 2009, pp. 360–371.

[9] O. Bailleux and Y. Boufkhad, “Efficient cnf encoding of boolean
cardinality constraints,” in Proc. of CP 2003, vol. 2833. Springer,
2003, pp. 108–122.

[10] F. de Moura e Castro Ascensão de Azevedo, “Constraint solving over
multi-valued logics - application to digital circuits,” Ph.D. dissertation,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
2002.

[11] C. Gervet, “Conjunto: Constraint propagation over set constraints with
finite set domain variables,” in Proc. of ICLP’94. MIT Press, 1994, p.
733.

[12] “CHOCO,” http://www.emn.fr/z-info/choco-solver/.
[13] F. Lardeux, E. Monfroy, B. Crawford, and R. Soto, “Set constraint

model and automated encoding into SAT: application to the social golfer
problem,” Annals OR, vol. 235, no. 1, pp. 423–452, 2015.

[14] F. Lardeux and E. Monfroy, “From declarative set constraint models to
”good” SAT instances,” in Artificial Intelligence and Symbolic Compu-
tation - 12th International Conference, AISC 2014, Seville, Spain, Dec.
11-13, 2014, pp. 76–87.

[15] K. Apt, Principles of Constraint Programming. Cambridge University
Press, 2003.

[16] F. Azevedo, “Cardinal: A finite sets constraint solver,” Constraints,
vol. 12, no. 1, pp. 93–129, 2007.

[17] J. Yip and P. V. Hentenryck, “Checking and filtering global set con-
straints,” in Principles and Practice of Constraint Programming - CP
2011, Perugia, Italy, September 12-16, 2011, pp. 819–833.

[18] T. Walsh, “CSPLib problem 026: Sports tournament scheduling,”
http://www.csplib.org/Problems/prob026.

[19] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT 2003, vol.
2919, 2003, pp. 502–518.

[20] J. Hamiez and J. Hao, “A note on a sports league scheduling
problem,” CoRR, vol. abs/1410.2721, 2014. [Online]. Available:
http://arxiv.org/abs/1410.2721

[21] T. Früwirth, Constraint Handling Rules. Cambridge University Press,
2009.

[22] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” in SAT 2005, vol. 3569, 2005, pp. 61–75.

[23] P. Hawkins, V. Lagoon, and P. J. Stuckey, “Solving set constraint
satisfaction problems using robdds,” J. Artif. Intell. Res. (JAIR), vol. 24,
pp. 109–156, 2005.

[24] F. Boussemart, C. Lecoutre, C. Piette, and V. Perradin, “XCSP3 an in-
tegrated format for benchmarking combinatorial constrained problems,”
http://www.xcsp.org/.

[25] T. Walsh, Consistency and Propagation with Multiset Constraints: A
Formal Viewpoint. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 724–738.

[26] Y. C. Law, J. H. M. Lee, T. Walsh, and M. H. C. Woo, “Multiset variable
representations and constraint propagation,” Constraints, vol. 18, no. 3,
pp. 307–343, 2013.

