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Abstract—Dynamic island models are population-based algo-
rithms for solving optimization problems, where the individuals
of the population are distributed on islands. The purpose of this
dynamic/adaptive management of the migrations is to send the
individuals to the most promising islands, with regards to their
current states. In this paper, we propose to investigate Q-Learning
as migration policy.

Index Terms—Island Models; Adaptive Operator Selection

I. INTRODUCTION

Island models (IM) [1], [2] have been introduced in evolu-
tionary computation in order to avoid premature convergence
in population-based algorithms when solving optimization
problems. The main idea of IM is to use a set of sub-
populations instead of a panmictic one, in order to improve
the performance of the evolutionary search process. IM are
thus closely related to parallel evolutionary computation [3].
Each sub-population evolves independently on each island
and interacts periodically with other islands by means of
migrations [4].

The impact of migration has been carefully studied [5].
Migrations may be actually used in order to reinforce the most
efficient islands [6]. Considering the same algorithm on all
islands, one may be interested in assessing the convergence
ability by evaluating two complementary aspects: (1) the
ability to converge on each island (e.g., the ability to obtain the
best individuals on all islands using for instance the notion of
takeover time [5]) and (2) the ability to ensure a good global
diversity to avoid sub-populations to get stuck in local optima
and finally reach a global optima/.

While, in classic islands models, the same algorithm is
executed on each island, other island models consider different
algorithms on the islands (see for instance [7]). In particular in
Dynamic Island Models (DIM) [8], the islands are restricted in
fact to a basic evolutionary algorithm with only one variation
operator and dynamic migration policies are introduced. These
policies are achieved by means of migration probabilities that
are modified during the evolutionary process according to
the impact of previous analogue migrations, using a learning
process. Therefore DIM have be related to adaptive operator
selection techniques for evolutionary algorithms [9], since only
one operator is used on each island. A DIM should be able to
identify a subset of islands that are currently the most suitable

for improving individuals, but also to quickly react to changes
when new operators become more efficient.

In this paper we propose to improve migration policies by
considering more possible configurations. In previous works
[8], [10], migrations are performed according to a migration
matrix M , where M(i, j) is the probability for an individual to
migrate from island i to j. This matrix is updated by a simple
reinforcement learning process that takes into account the
quality improvement obtained of island j by individuals from
island i in order to regulate beneficial migrations. Therefore,
in DIM, the key action is to migrate from an island to another
one according to an expected gain, which can also be handled
by Q-learning [11], [12], which is a method for finding optimal
action policies. Note that Qlearning has already been used for
controlling and tuning parameters in evolutionary algorithms
[13], [14].

In this context, given a migration matrix, an individual
may choose its destination according to several strategies:
greedy (higher value), proportional choice, random choice...
Therefore, the are many possible combination of basic com-
ponents that lead to different migration processes. While
in previous works, the same dynamic migration policy has
been investigated, we propose here to study several possible
configuration of the DIM, by considering more possible com-
ponents, including learning and migration processes. Instead
of selecting one setting of the DIM, we propose thus to attach
the policy to the individuals , in order to take advantage of our
multi-individuals algorithm. This cooperative model allows us
to use simultaneously several migration policies in order to
benefit from their respective properties. Our experiments show
that:

• using QLearning is interesting for managing migrations
in dynamic island models,

• using a population of individuals that cooperate by ex-
changing informations improves the QLearning perfor-
mance for scheduling the operators that must be used
along the search compared to a single learning process,

• considering simultaneously different type of individuals
that use different migration policies is also beneficial and
leads to good results compared to previously proposed
dynamic migration approaches in the context of our
search scenarios.



II. DYNAMIC ISLAND MODELS

A Dynamic Island Model (DIM) is defined by a set of
islands I = {i1, · · · , in} and a set of algorithms A =
{a1, · · · , an}. Each algorithm ak is assigned to island ik.
Each island ik is equipped with a population pk and P =
{p1, · · · , pn} is the global population. The size of P is fixed
but the size of each pk changes continuously according to the
migrations. ak(pk) is the population obtained after applying
algorithm ak on population pk. A topology is defined by an
undirected graph (I, V ) where V ⊆ I × I is a set of edges
between islands (here we consider a complete graph).

The migration of individuals between islands are performed
according to a migration matrix M of size n × n with
M(i, j) ∈ [0..1]. M is assumed to be coherent with the
topology, i.e., if (i, j) 6∈ V then M(i, j) = 0. A migration
policy Π : I ×M → I selects a migration island given an
initial island and a migration matrix.

Given a DIM, its computational behaviour is described by
Algorithm 1.

input : a DIM, a fitness function, an intial migration
matrix M

output: a solution s∗

local : a reward matrix R of size n× n
s∗ ← best(P);
R← 0;
Initialize(M);
while not stop condition do

for k ← 1 to n do
Reward(R, pk);
pk ← ak(pk);
for s ∈ pk do

il ←Migrate(ik,M);
pl ← pl ∪ {s};
pk ← pk \ {s};

Learn(M,R);

b← best(P);
if b > s∗ then

s∗ ← b;

ALGORITHM 1. Dynamic Island Model

Description of the components of the algorithm:
• R is the reward matrix whose values R(i, j) evaluate

the benefit (by means of fitness improvement) of sending
individual from island i to island j. R is used to update
the migration matrix M , using reinforcement learning.
Note that R is initialized with 0 values. M can be ini-
tialized with uniform values for all M(i, j) corresponding
to equal probabilities of migration for any pair of islands.

• The function best returns the best individual of the
current global population, best(P) = best(∪i∈I(pi)).

• The stop condition is a limited number of iterations or
the fact that an optimal solution has been found in the
global population P .

Let us now focus on the most important components used
in the migration process. Since M and R will be changed at
each iteration of the algorithm, let us denote M (t) and R(t)

the value of these matrices at iteration t of the algorithm.

A. Reward Function

R
(t)
i (k) corresponds to the reward assigned to individuals

that were on island i at iteration t − 1 and that have been
processed on island k at iteration t. We consider two possible
reward functions for computing R(t)

i (k): either only the most
improved individuals are considered for assessing the benefit
of the migration or all individuals are taken into account
according to the relative improvement.

Elitist Reward: R(t)
i (k) =

{
1
|B| if k ∈ B,
0 otherwise,

with

B = argmax
k∈{1,...,n}

({v(s, t)− v(s, t− 1)|s(t) = k, s(t− 1) = i})

Note that B is the set of the index of the islands k where
individuals coming from i at iteration t− 1 have obtained the
best gain improvements at iteration t.

Proportional Reward: R(t)
i (k) = Σs∈Kv(s,t)

|K| ,

with K = {s ∈ p(t)
k |s(t− 1) = i}

Note that K is the set of the individuals of the island k at
iteration t that were on island i at iteration t− 1.

B. Learn Function

In DIM, we expect to learn from previous migrations in
order to adapt the migration process. This problem is clearly a
reinforcement problem, which consists in, given an individual,
selecting the most suitable migration (action) from an island
i to an island j. We recall a simple reinforcement learning
function used in [8] and we also propose to consider Qlearning
technique [15].

Basic Reinforcement Learning Function The basic learning

principle consists in sending more individuals to the islands
that have previously improved individuals coming from the
current island and less to the islands that are currently less
efficient. The learning process is achieved by an adaptive
update of the migration matrix at iteration t, M (t), performed
as:

M (t+1)(i, k) = (1− β)(α.M (t)(i, k)+

(1− α)R
(t)
i (k)) + β.N (t)(k)

where N (t) is a stochastic noise vector.

The parameter α represents the importance of the knowl-
edge accumulated (inertia or exploitation) and β is the amount
of noise, which is necessary to explore alternative actions. The
influence of these parameters has been studied in [8].



QLearning Based Function

Since one main challenge in DIM is to manage efficiently
the migration of individuals from island i to island j according
to collected feedback information, learning the most suitable
migration actions at each step of the search seemed fully
relevant to Qlearning techniques. We use a classic QLearning
(see [12] for more details) algorithm in order to update the
transition matrix. Compared to previous function, QLearning
takes into account an estimation of the future optimal value
that can be obtained after a migration has been performed.

M (t+1)(i, k) = M (t)(i, k) + δ(R
(t)
i (k)+

γmaxjM
(t)(k, j)−M (t)(i, k))

where δ is the learning rate and γ is a discount factor that
allows to control the importance of the estimation of expected
future gains.

C. Migrate Function

Once matrix M has been updated, several migration func-
tions can be considered to select for individuals from island
i their next island j. We consider here three possible choice,
using different degree of greediness.

• Elitist migration: individuals from island i migrate to the
island j that has the highest value in line vector, i.e.
argmaxj M

(t)(i, j). Such migration promotes intensifi-
cation of the search process toward the most efficient
islands.

• Proportional migration: for each individual s on island
i the classic migration process consists in sending this
individual according to a probability on line vector M (t)

i .
Note that M is normalized in order to insure good
probability properties.

• Uniform migration: individuals from island i migrate to
the island j at random uniformly.

D. Configurations of the DIM: Setting the Policy

We propose to link migration policies to individuals, al-
lowing thus the DIM to use simultaneously different policies
within the same search process. This is motivated by the fact
that the DIM is particularly well suited to the management of
collaborative policies. Moreover, this generic approach allows
us to consider and compare various settings of the DIM.

We may first remarks that different migrate functions may
be used in the same DIM. But it is not possible to use different
Learn and Reward functions at the same time since they
manage the matrices R and M differently, involving incom-
patible update processes. Based on the previously described
components, we propose the following taxonomy in order to
define different configurations of the DIM. A policy for a DIM
will be described by a tuple (typeltypertypem) where

• typel corresponds to the type of learn functions (see
Section II-B), typel ∈ {C,Q}, (C)lassic or (Q)learning

• typer corresponds to the type of reward functions (see
Section II-A), typer ∈ {E,P}, (E)litist or (P)roportional

• typer corresponds to composition of the population con-
cerning the migration functions (see Section II-C) and is
a tuple Elit − Prop − Unif with Elit, Prop, Unif ∈
{0, 1}. For instance, 1−1−1) means that one individual
uses elitist migration, one uses proportional migration,
and one uses uniform migration.

Note that we may consider here pure policies, i.e., configura-
tions that use only one type of individuals as well as mixed
configurations were the migration policy is not the same for
all individuals. For instance, CE0− 1− 0 corresponds to the
basic DIM that has been previously studied in [8]. Note that
we use a * to denote generic configuration, e.g. CE * will
represent any configuration that uses C as learn function and
E as reward function.

III. EXPERIMENTS

A. Description of the Problem

The Nk-landscape problem [16] is a problem-independent
model for constructing multi-modal landscapes that can grad-
ually be tuned from smooth to rugged. The parameter of this
model are N , the number of (binary) genes, and k, the number
of genes that influence a particular gene. By increasing the
value of k from 0 to N −1, Nk-landscapes can be tuned from
smooth to rugged. The k variables that form the context of
the fitness contribution of gene si can be chosen according to
different models.

In our experiments, we use as set of 8 instances of Nk-
landscape of sizes 128, 256 and 512 and different values of K
from 2 to 8. Since this is a binary problem, we consider here 4
classical binary mutation operators: bit-flip that flip each bit of
an individual with a probability 1/N and p-flip operators with
p ∈ {1, 3, 5} that change randomly p bits in an individuals.
The goal is to find the best possible solution. Note that only
improving mutations are taken into account (i.e., the individual
is not replaced by a mutated individual of lower fitness).

B. Experimental Settings and Method

Each configuration has been run 20 times on the 8 problem
instances. The size of the population will be studied in Section
III-D. The parameters of the Learn functions have been set
using recommended default values α = 0.8, β = 0.01, δ =
0.8, γ = 0.1. Preliminary experiments have been performed to
assess the validity of these parameter setting. Our purpose is
to study experimentally the following properties of DIM:

• Impact of QLearning: since Qlearning is introduced in
this work as an alternative learning technique for manag-
ing the migration matrix, we want to study its efficiency
by comparing different possible Qlearning based config-
urations.

• Impact of the population size: since we introduce dif-
ferent types of individuals, each one defining its own
migration policy and collaborating through the learning



Q (1− ε)× 20 Q 10-0-10 Q 10-10-0 Q (1− ε)
Instance avg (rk) std avg (rk) std avg (rk) std avg (rk) std
128 2.0 95.491 (1) 0.168 95.554 (1) 0.310 95.504 (1) 0.266 95.063 (4) 0.752
128 4.0 96.075 (1) 0.532 96.233 (1) 0.741 96.372 (1) 1.122 94.782 (4) 1.832
128 8.0 95.150 (3) 0.964 95.600 (1) 0.926 95.667 (1) 0.696 94.363 (4) 2.007
256 2.0 186.416 (4) 0.805 186.822 (1) 0.924 186.701 (1) 0.910 186.858 (1) 1.119
256 4.0 189.000 (3) 1.023 189.597 (1) 1.716 189.115 (1) 1.144 186.892 (3) 2.575
256 8.0 188.412 (1) 2.881 189.120 (1) 1.443 188.364 (3) 1.286 185.953 (4) 2.585
512 2.0 371.875 (2) 1.641 372.522 (1) 1.097 371.321 (3) 1.555 370.852 (4) 2.020
512 4.0 377.828 (1) 3.477 378.218 (1) 1.522 377.115 (3) 1.518 373.699 (4) 4.002

Avg Rank 2 1 1.75 3.5

TABLE I
DIFFERENT CONFIGURATIONS WITH QLEARNING ON NK-LANDSCAPE INSTANCES WITH RANKING PERFORMED ACCORDING TO A T-TEST (1%).

mechanism, we propose to evaluate the influence of the
number of individuals on the quality of the learning
process.

• Impact of using several types of individuals against a
single migration policy: we propose to highlight the
improvement in terms of operator management due to
the use of mixed policies.

C. Impact of Qlearning

Our first investigations consist in assessing the performance
of Qlearning in DIM. Qlearning techniques often choose the
next action by means of a ε-greedy strategy (i.e., choose the
best next move according to the transition matrix learned from
formula presented in Section II-B with probability (1− ε) and
choose a random action with probability ε). We thus consider
a (1 − ε) migration function. In table I, Q (1 − ε) × 20 is
a DIM with (1 − ε) migration function using 20 individuals
while Q (1− ε) uses only one individuals but benefit from 20
times more runs, in order to ensure computational fairness. ε
is set to 0.05 (using 0.01 provides similar results, while higher
values provide poor results).

In order to simulate similar policies, we consider here two
configurations of the DIM with 20 individuals: Q 10-10-0,
Q 0-10-10. These two configurations involve individuals that
use elitist migrations with individuals that may diversify the
exploration of islands (proportional or uniform). We restrict
our choice to these two configurations, other Qlearning con-
figurations will be considered and compared in Section III-E.
Note that, for Qlearning, we have performed tests showing that
the reward function has no influence on the results. Therefore,
we omit this function in the configurations, which are just
called Q*.

Table I presents the results obtained on the different Nk-
landscape instances. Results in bold are the best results for
each instance. For each configuration, a ranking is performed
according to a T-test: two methods that obtain results that
are not statistically different according to a T-test at 1% are
assigned to the same rank.

We observe that using several individuals (i.e., Q (1− ε)×
20) instead of a single one (here, Q (1 − ε) may be seen
as an adaptive local search with different operators) improves
the results. Moreover using combinations of different types of

individual in order to have a policy similar to (1− ε) is also
interesting. Note that in Q 10-0-10, contrary to Q (1−ε) policy,
the uniform migration is separated from greedy migration,
since linked to different individuals.

Therefore, exploration performed by uniform migration
does not impact the greedy choice performed by elitist migra-
tion, but rather attempts to improve the global learning process.
Note also that using a number of individuals that use random
migration close to the proportion ε (i.e., Q 19-0-1) provides
similar results, which shows the reliability of our DIM with
several types of individuals.

D. Impact of the population size

DIM takes advantage of the successive generation of in-
dividuals that contribute to the migration matrix and, of
course, the number of individuals is an important parameter.
The main question is: “Given a computational budget, is it
more beneficial to use more individual with fewer runs of
the algorithm or more runs with fewer individuals ?” Figure
1 presents the results on the 128 8.0 nk-landscape instance
and Q, where individuals are equally dispatched between the
different migration functions. Similar results were observed
for other configurations and instances.

FM fitness (resp. FM time) represents the evolution of
the fitness (resp. time) with regards to the population size
(on X axis), when the same number of migrations (set ot
10, 000) is used for each population size. SP fitness (resp.
SP time) represents the evolution of the fitness (resp. time)
when the same computation time is used (SP time curve is
thus constant).

Let us remark that, even if the number of allowed migration
is fixed, increasing the size of the population improve the
results up to a given limit (SP fitness curve). Of course
with more individuals (FM fitness) and the same number of
migration results may be improved but with a drastic increase
of computation time. Therefore, it seems that a population size
around 20− 25 individuals constitutes a good compromise.

E. Evaluating Different Configurations

Table II is a compilation of tests realized on the 8 Nk-
landscape instances for all learning and reward functions with
a number of migrations fixed to 10000. These experiments



Population Learn and reward functions
Elit, Prop, Unif CE CP Q Rand

25,0,0 128 (3) 104 (2) 71 (1) 158 (4)
0,25,0 54 (2) 125 (3) 50 (1) 158 (4)

12,13,0 57 (1) 63 (2) 103 (3) 158 (4)
12,0,13 35 (1) 51 (2) 63 (3) 158 (4)
0,12,13 69 (3) 56 (2) 47 (1) 158 (4)

8,8,9 67 (3) 50 (1) 59 (2) 158 (4)
average 68.33 (2.17) 74.83 (2) 65.5 (1.83) 158 (4)

average sum 68.33 (2) 74.83 (3) 65.5 (1) 158 (4)
average rank 2.17 2 1.83 4

TABLE II
COMPARISONS OF DIFFERENT CONFIGURATIONS
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Fig. 1. Impact of population size on fitness and computation time

use a population of 25 individuals with different repartitions
of migration types (uniform repartition on 1, 2 and 3 migration
types).

We consider also pure random migration policies (i.e., *
0-0-n) that are simply named as Rand since, in this case
the learning process is not used. For each population and
each instance, results are sorted and a rank is assigned to
the configuration. This rank uses a statistical student T-Test
as in Section III-C. Each cell corresponds to the sum of the
8 ranks obtained on the 8 instances. Values in bracket are
the rank for each line (i.e., each repartition of individuals
types). Last line provides the average rank. These results
highlight that combining several types of individuals within the
same DIM generally improves the migration process (results
in column for each learn/reward combinations. Concerning
Qleaning, it seems, as expected useful to introduce a compro-
mise between exploitation (elitist) and exploration. Note that
using proportional migration seems very efficient. We may also
remark that no combination of learn/reward function obtains
the best results for all combinations of types of individuals.
Nevertheless, using Qlearning seems to be a reasonable choice.

IV. CONCLUSION

In this work, we propose to study the management of
migrations in islands models. We consider a QLearning ap-
proach in order to learn what are the best migration choices
for individuals at a given state of the search. We evaluate
these possible configurations of the DIM on a set of NK-

Landscape benchmarks. Our results highlights that Qlearning
is an efficient learning process for managing migration in
island models. Moreover, considering a population of in-
dividuals that use different type of migration is efficient
compared to previous global dynamic migration policies. In
particular, Qlearning with a population of individuals that use
different type of migration is interesting compared to a classic
Qlearning approach with an ε-greedy strategy.
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[13] A. E. Eiben, M. Horváth, W. Kowalczyk, M. C. Schut, Reinforcement
learning for online control of evolutionary algorithms, in: Engineering
Self-Organising Systems, 4th International Workshop, ESOA, Vol. 4335
of LNCS, Springer, 2006, pp. 151–160.
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