

#### PEG length of PLA-PEG nanoparticles modulates nanoparticle interactions with brain endothelial cells

Soudeh Tehrani, Guillaume Bastiat, Florian Bernard, Patrice Hildgen, Patrick

Saulnier, Valérie-Gaëlle Roullin

#### ▶ To cite this version:

Soudeh Tehrani, Guillaume Bastiat, Florian Bernard, Patrice Hildgen, Patrick Saulnier, et al.. PEG length of PLA-PEG nanoparticles modulates nanoparticle interactions with brain endothelial cells. 4th Annual Meeting SFNano2017, 2017, Bordeaux, France. , 2017. hal-02616002

#### HAL Id: hal-02616002 https://univ-angers.hal.science/hal-02616002

Submitted on 26 May 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# PEG length of PLA-PEG nanoparticles modulates nanoparticle interactions

# with brain endothelial cells

Soudeh F. Tehrani<sup>1\*</sup>, Guillaume Bastiat<sup>2</sup>, Florian Bernard<sup>1</sup>, Patrice Hildgen<sup>1</sup>, Patrick Saulnier<sup>2</sup>, V. Gaëlle Roullin<sup>\*1</sup> 1. Axe Analyse et Formulation du Médicament, Faculté de pharmacie, Université de Montréal, Canada 2.MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire; Angers – France \*corresponding authors: s.fakhari.tehrani@umontreal.ca, vg.roullin@umontreal.ca

# **Background and Objectives**

#### Problem

The blood-brain barrier (BBB) prevents or slows down the passage of therapeutic molecules from the blood into the central nervous system <sup>(1)</sup>.

The BBB

#### Strategy

- Vectorization of active substances via polymeric nanoparticles (NPs)
- Functionalization of NPs with polyethylene glycol (PEG) :
  - PEG chains are known to extend circulation times of NPs in blood<sup>(2)</sup>.

#### **Materials and Methods**

### **Synthesis and characterisation**

- Synthesis of **PEG-b-PLA** block
- H<sub>3</sub>C ,OH  $CH_2Cl_2, T_R$ 
  - Synthesis of fluorescent polymer



 $\rightarrow$  <sup>1</sup>H-NMR → GPC



PEG chains on NP surface promote penetration into the brain <sup>(3,4)</sup>





Hydrophobic PLA core with hydrophilic **PEG** corona

# Hypothesis

Increasing the PEG chain length will modulate NPs translocation through the BBB.

# **Objectives**

Synthesis and characterization of a library of PLA-PEG polymers

Endothelial cell

Pericyte

Astrocyte

- Synthesis and characterization of a library of PLA-PEG NPs
- Investigation of endocytosis of PLA-PEG NPs in bEnd.3 monolayers
- Investigation of the passage of the PLA-PEG NPs vs PEG chain length through bEnd.3 monolayers

## **Results: NP physicochemical characterization**

| Table 1: PLA-PEG NP characteristics (n=9) |             |                 |                  |                                                  |
|-------------------------------------------|-------------|-----------------|------------------|--------------------------------------------------|
| Samples                                   | HD (nm)     | PdI             | ζ-potential (mV) | PEG density (N <sub>PEG</sub> /nm <sup>2</sup> ) |
| NP-PLA                                    | 118 ± 1     | $0.12 \pm 0.01$ | -32 ± 1          | N/A                                              |
| NP-PLA-PEG <sub>1000</sub>                | 105 ± 1     | $0.14 \pm 0.02$ | -18 ± 1          | 0.165 ± 0.003                                    |
| NP-PLA-PEG <sub>2000</sub>                | $107 \pm 4$ | $0.12 \pm 0.03$ | -12 ± <1         | $0.170 \pm 0.002$                                |
| NP-PLA-PEG <sub>5000</sub>                | 99 ± 3      | $0.11 \pm 0.01$ | -11 ± <1         | $0.190 \pm 0.001$                                |
| NP-PLA-PEG <sub>10000</sub>               | 98 ± 1      | $0.10 \pm 0.02$ | -6 ± 1           | 0.175 ± 0.003                                    |

#### **Colloidal stability results:**



### **Results : Transcytosis**



Figure 1: Transcytosis through the bEnd.3 monolayers



