Few-cycle optical solitons in linearly coupled waveguides
Said Terniche, Hervé Leblond, Dumitru Mihalache, Abdelhamid Kellou

To cite this version:
Said Terniche, Hervé Leblond, Dumitru Mihalache, Abdelhamid Kellou. Few-cycle optical solitons in linearly coupled waveguides. ICOPA 4, Dec 2016, Bordeaux, France. , 2016. hal-02572724

HAL Id: hal-02572724
https://univ-angers.hal.science/hal-02572724
Submitted on 13 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
I. INTRODUCTION: We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg–de Vries equations has been derived: three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.

II. LINEAR COUPLING: We solve the model in dimensionless form, assuming a purely linear and nondispersive coupling, namely:

\[
\begin{align*}
\partial_z u &= -\partial_t (u^3) - \partial_t^3 u - C \partial_t v \\
\partial_z v &= -\partial_t (v^3) - \partial_t^3 v - C \partial_t u
\end{align*}
\]

using a standard fourth-order Runge-Kutta scheme in the Fourier domain. The initial data are:

\[
\begin{align*}
u &= A_u \sin(\omega_u t + \phi_u) e^{-(t-t_0)^2/\tau_u^2} \\
v &= A_v \sin(\omega_v t + \phi_v) e^{-(t-t_0)^2/\tau_v^2}
\end{align*}
\]

II.1 Different Amplitudes
A soliton is launched in channel \(u\), and a smaller input with same duration in channel \(v\).

II.2 Mutual trapping
The mutual trapping of the two solitons can occur even if their centers do not coincide exactly at the beginning of the process. An example is shown in Fig. 2: the two input pulses are identical, but shifted along \(t\).

II.3 Solitons with different frequencies
Two solitons with different frequencies can lock together to form a vector soliton.

II.4 Energy Evolution
Some energy is transferred from one channel to the other. This energy exchange can occur periodically as in the case of monochromatic waves; It depends on the sign of the coupling.

III. CONCLUSION
We considered the coupling of two optical waveguides, in which few-cycle pulses are launched. Starting from a simplified model of two coupled modified Korteweg–de Vries equations which describe the nonlinear propagation in the coupled waveguides. We investigated numerically the evolution of two input few-cycle pulses in the presence of a linear nondispersive coupling. The formation of vector solitons is evidenced. Separate pulses can be mutually trapped, with initial mismatch in location, size, or phase, and even if their initial frequencies differ.