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Galilean invariance of CGL

The CGL equation is

∂E

∂z
= δE +

(
β + i

D

2

)
∂2E

∂t2
+ (ε+ i)E |E |2 + (µ+ iν)E |E |4

If β = 0, and E0(z ,t) solution to CGL

E = E0 (z ,t − wz) exp i
[
Dwt −

(
Dw2/2

)
z
]

is a solution moving at inverse speed w .
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E : electric field amplitude;
δ: net linear gain;
β: spectral gain bandwidth;
D = ±1: dispersion;
ε: cubic nonlinear gain;
µ: quintic nonlinear gain;
ν: 4th-order nonlinear index;
z : number of round-trips;
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Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction

Transverse mobility in the presence of periodic potential

β∂2E/∂t2 breaks Galilean invariance
and prevents any motion of the solitons.

If β 6= 0: the moving soliton does not exist.
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At z = 0, E = E0 exp i∆ωt, β = 0.55 instead of 0

Strong breaking due to the limited gain bandwidth.
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Experiments in mode-locked fiber lasers:
=⇒ existence of “soliton gas”

A large number of solitons in motion.

Spectral bandwidth of gain is finite: β 6= 0

Is the motion it due to the cw component?

Try to inject cw.

∂E

∂z
= δE +

(
β + i

D

2

)
∂2E

∂t2
+ (ε+ i)E |E |2

+ (µ+ iν)E |E |4 + A exp (−i∆ω0t)

A: amplitude of injected cw; ∆ω0: frequency shift.
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Crystal, liquid and gas of solitons
Pulse motion due to gain dynamics
Injected continuous wave

Changing “states of matter”: soliton cristal
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Soliton crystal.

∆ν0 = 1.2.
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Changing “states of matter”: soliton liquid
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Soliton liquid.

∆ν0 = 0.9.
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Changing “states of matter”: soliton gas
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Soliton gas.

∆ν0 = 0.8.
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Changing “states of matter” of solitons
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Soliton crystal, Soliton liquid, Soliton gas.
∆ν0 = 1.2, ∆ν0 = 0.9, ∆ν0 = 0.8.
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Changing “states of matter” of solitons
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The different regimes vs detuning ∆ω0

and amplitude A = Acw of injected cw
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For a single soliton, input of the form E = E0 exp i∆ω1t,
varying A, ∆ω0 and ∆ω1 =⇒ Pulse motion.
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For a single soliton, input of the form E = E0 exp i∆ω1t,
varying A, ∆ω0 and ∆ω1 =⇒ Pulse motion.

The velocity depends on A and ∆ω0 (injected cw),
but not on ∆ω1 (initial speed).

i.e. Speed is entirely determined by injected cw.

Soliton velocity vs ∆ν0 = ∆ω0/2π for A = 0.004 (green dotted),

0.002 (red dashed), 0.001 (blue solid line).
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Crystal, liquid and gas of solitons
Pulse motion due to gain dynamics
Injected continuous wave

For a single soliton, input of the form E = E0 exp i∆ω1t,
varying A, ∆ω0 and ∆ω1 =⇒ Pulse motion.

The velocity depends on A and ∆ω0 (injected cw),
but not on ∆ω1 (initial speed).

i.e. Speed is entirely determined by injected cw.

Soliton velocity vs ∆ν0 = ∆ω0/2π for A = 0.004 (green dotted),

0.002 (red dashed), 0.001 (blue solid line).

Motion is restored but Galilean invariance is not.
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“Brownian motion” induced by injected cw

Soliton velocity is fixed by the cw.

At higher amplitudes of injected cw:
More complex nonlinear interaction between cw and solitons.

=⇒ The amplitude of cw (radiation) varies with t.

A tiny variation of the cw component in either amplitude or frequency

changes radically the soliton velocity

=⇒ apparently random variations of the the soliton speed.

=⇒ Erratic motion of solitons,
and soliton gas.
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An integral term accounting for the fast gain dynamics

∂E

∂z
= δE +

(
β + i

D

2

)
∂2E

∂t2
+ (ε+ i)E |E |2 + (µ+ iν)E |E |4

−ΓE

∫ t

−∞

(
|E |2− < |E |2 >

)
dt ′

Represents the decrease of the population inversion
(and hence of gain)

when stimulated emission occurs.
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A single pulse (or two-pulse) input is unstable:

New pulses form in front of the input (towards t < 0), and
quickly disappear.

Unstable pulse emission repeats all along the cavity,
=⇒ multi-pulse pattern

Solitons move slowly
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For larger Γ, the instability increases:
pulses form and vanish faster.

Then, the pulse train does not stabilize any more:
pulses are created and vanish permanently
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Γ = 0.03

Generation and vanishing process =⇒ effective soliton motion
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Generation and vanishing process =⇒ effective soliton motion

The inverse velocity w of this motion is very large
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Generation and vanishing process =⇒ effective soliton motion

The inverse velocity w of this motion is very large

t

z

100

50

0

-50

-100

0 200 400 600 800 1000

Γ = 0.1.

For high values of Γ, the moving soliton is unstable and
vanishes.

Gain dynamics can induce soliton motion.
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Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction

Transverse mobility in the presence of periodic potential

Crystal, liquid and gas of solitons
Pulse motion due to gain dynamics
Injected continuous wave

Model including external injection, fast gain dynamics,
and gain saturation.

∂E

∂z
=

(
g0

1+ < |E |2 > /Is
− r

)
E +

(
β + i

D

2

)
∂2E

∂t2

+ (ε+ i)E |E |2 + (µ+ iν)E |E |4

−ΓE

∫ t

−∞

(
|E |2− < |E |2 >

)
dt ′ + A exp (−i∆ω0t)
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Crystal, liquid and gas of solitons
Pulse motion due to gain dynamics
Injected continuous wave

Gain saturation limits the number of solitons

=⇒ A liquid: condensed phase, which does not fill the box
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∆ν0 = 0.1, A = 0.115, with velocity compensation, w = −0.05877.

Not a crystal: no phase-locking
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We can still have a soliton gas:
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Harmonic mode-locking

Equidistant solitons filling all the box,
stable state. When 0.125 ≤ A ≤ 0.133.
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Consecutive pulses are phase-locked: a crystal, but
the crystal length exactly matches the box length.
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Pulse motion due to gain dynamics
Injected continuous wave

In a three bunch pattern,

elastic interaction according to the Newton’s cradle scenario
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Analytical expression of the viscous friction
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The CGL equation (u = E)

uz = δu +

(
β + i

D

2

)
utt + (ε+ i) u |u|2 + (µ+ iν) u |u|4 .

Moving solution: u = u0(t − T ,z)e i(ωt−kz)

with u0(t,z) solution to CGL with β = 0,

T = Vz , ω = V
D and k = V 2

2D .

Perturbative approach: Consider some small non zero β.
u a soliton solution,

M =

∫ +∞

−∞
|u|2dt : its mass,

T =

∫ +∞

−∞
t|u|2dt/M : position of its center of mass.
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Analytical expression of the viscous friction
Numerical validation of the approximation

The velocity of the pulse is then

dT

dz
=

1

M

∫
t (uzu

∗ + cc) dt

(cc: complex conjugate, uz = ∂u/∂z).

Using the CGL equation:

dT

dz
=

1

M

(
I1 +

iD

2
I2 + βI3

)
dt,

where

I1 = 2

∫
t
(
δ|u|2 + ε|u|4 + µ|u|6

)
dt,

I2 =

∫
t (uttu

∗ − cc) dt,

I3 =

∫
t (uttu

∗ + cc) dt.
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Motion induced by a continuous wave
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Analytical expression of the viscous friction
Numerical validation of the approximation

Assumption: u0 is a symmetrical pulse, centered at t = T ,
consequently the function u0(t′), with t′ = t − T , is even.

Then

I1 = 2

∫
t
(
δ|u|2 + ε|u|4 + µ|u|6

)
dt,

becomes

I1 = 2T

∫ (
δ|u0|2 + ε|u0|4 + µ|u0|6

)
dt ′.

and so on.

Then we can compute the acceleration d2T/dz2:

d2T

dz2
=

iD

2M

dI2
dz
.
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Then we can compute the acceleration d2T/dz2:

d2T

dz2
=

iD

2M

dI2
dz
.

Using integration by parts and parity we compute a set of
integrals

Finally; we obtain the expression of the force F = Md2T/dz2:

F = −4β

∫
|u0t′ |2 dt ′ V
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the equation of motion is

M
dV

dz
= F = −4β

∫
|u0t′ |2 dt ′ V ,

Hence, the velocity evolves as V (z) = V (0)e−λz

with the decay rate

λ =
4β

M

∫
|u0t′ |2 dt ′.
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Crystal, liquid and gas of solitons
Pulse motion due to gain dynamics
Injected continuous wave

2 The finite bandwidth of gain as a viscous friction
Analytical expression of the viscous friction
Numerical validation of the approximation

3 Transverse mobility in the presence of periodic potential
Fondamental soliton
Dipoles and vortices

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse Motion of solitons in CGL-type equations



Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction

Transverse mobility in the presence of periodic potential

Analytical expression of the viscous friction
Numerical validation of the approximation

An example of calculation

Initial velocity V0 = 0.7 and gain bandwidth coefficient β = 0.004.

White line: approximate analytical solution

Good agreement with the numerical solution.
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We plot the characteristics of the pulse motion vs z

Logarithmic scale.
V :velocity; γ: acceleration and M: mass; F : force from above theory;
∆F/F : relative difference between F and Mγ.

Parameters: ω = 1, β = 0.0124.
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Effect of finite bandwidth of gain on CGL soliton
with anomalous dispersion

is equivalent to a viscous friction force,
if it is not too large.

To construct simplified models
to describe CGL soliton interactions
as forces between effective particles :

The lack of Galilean invariance of CGL
was a major difficulty,
since the concept of force is based on it.

With our result, we can approach soliton interaction
in a conservative frame.
Then, the finite bandwidth of gain could be treated
as a phenomenological friction force.
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(2+1)-D spatial Ginzburg-Landau equation:

∂u

∂Z
=

[
−δ + iV (X ,Y ) +

i

2
∇2
⊥ + (i + ε)|u|2 − (iν + µ)|u|4

]
u,

∇2
⊥ = ∂2/∂X 2 + ∂2/∂Y 2 : the paraxial diffraction

A periodic potential: V (X ,Y ) = −V0 [cos(2X ) + cos(2Y )]

breaks Galilean invariance

δ = 0.4,ε = 1.85,µ = 1,ν = 0.1,V0 = 1,
for which the quiescent fundamental soliton is stable.
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|u (X ,Y ) |; |u(X )| at Y = 0.
The stable fundamental soliton
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Input u = u0 exp (ik0R),
with R = (X ,Y ), and k0 = (k0 cos θ,k0 sin θ) (0 ≤ θ ≤ π/4)

In an amplifier, the factor (ik0R)
represents a deviation of the wave vector k from the Z -axis.

Indeed, CGL is derived within the SVEA:

Either E = U(X ,Y ,Z − vT )e i(kxX+kYY+kZZ−ωT ) + c.c.,

or E = u(X ,Y ,Z − vT )e i(kZZ−ωT ) + c.c.,

with u(X ,Y ,Z − vT ) = U(X ,Y ,Z − vT )e i(kXX+kYY ).

Equivalent if kX , kY are small enough.
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Fundamental soliton with initial kick

If k0 is small, the pulse oscillates in the potential site
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|u(X ,Z)| in the cross section Y = 0, for k0 = 1.61, θ = 0.
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For larger k0, the pulse starts to move
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For larger k0, the pulse starts to move
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For larger k0, the pulse starts to move
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For larger k0, the pulse starts to move
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For larger k0, the pulse starts to move
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|u(X ,Z)| at Y = 0, for k0 = 1.6878, θ = 0.

The pulse leaves a copy of it behind it
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Another example, increasing k0:
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Another example, increasing k0:
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Another example, increasing k0:
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Another example, increasing k0:
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Another example, increasing k0:
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Another example, increasing k0:
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Another example, increasing k0:
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An arrayed set of 5 fix + 1 moving solitons.
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The total number of emitted solitons
first grows fast with k0.

It reaches a maximum of 5 (6 with the initial one)

Then slowly goes down to 0 (the initial one only)
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For the highest k0, the soliton moves freely
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|u (X ,Z)| at Y = 0, transverse speed, k0 = 2.1, θ = 0.

The soliton velocity increases,
approaching a certain limit value

H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse Motion of solitons in CGL-type equations



Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction

Transverse mobility in the presence of periodic potential

Fondamental soliton
Dipoles and vortices

Periodic elastic collisions

A moving soliton with one fix soliton
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k0 = 1.867, θ = 0.

An example of the Newton’s-cradle scenario
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1 moving and 5 fix solitons

5 soliton-pattern

moving soliton

elastic collisions

change of direction

absorption

6 soliton-pattern

|u (X ,Z)| at Y = 0; k0 = 1.693, θ = 0.

An quite complex interaction
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Moving the dipole
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|u(X ,Y )|, at Z = 22.410, for k0 = 1.665, θ = 0.

5 fix and 1 moving dipoles
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Interaction of 1 moving dipole with 1 fix dipole
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.865.

Repeated elastic collisions

An example of the Newton’s cradle scenario
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.865.

Repeated elastic collisions

An example of the Newton’s cradle scenario
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The Newton’s cradle with absorption scenario
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.816.

After several quasi-elastic elastic collisions,
the moving dipole is evntually absorbed by the quiescent

Interaction of 1 moving dipole with 2 fix dipoles
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The Newton’s cradle with absorption scenario
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.816.

After several quasi-elastic elastic collisions,
the moving dipole is evntually absorbed by the quiescent

Interaction of 1 moving dipole with 2 fix dipoles
H. Leblond, F. Amrani, A. Niang, B. Malomed, V. Besse Motion of solitons in CGL-type equations



Motion induced by a continuous wave
The finite bandwidth of gain as a viscous friction

Transverse mobility in the presence of periodic potential

Fondamental soliton
Dipoles and vortices

Transient Newton’s cradle with clearing the obstacle
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.884.

After several quasi-elastic elastic collisions,
the moving dipole absorbs the stationary chain
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Transient Newton’s cradle with clearing the obstacle
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|u (X ,Y ,Z)| at Y = 0, for k0 = 1.884.

After several quasi-elastic elastic collisions,
the moving dipole absorbs the stationary chain
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Square-shaped (offsite-centered) vortex.
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Amplitude phase.

It is unstable
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Moving the vortex

Y

X

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

Amplitude at Z ' 300, for k0 = 1.5, and θ = π/8, 5π/8, 9π/8, 13π/8.

A set of fundamental solitons is formed

For a clockwise rotating vortex, solitons form on the other line
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A set of fundamental solitons is formed

For a clockwise rotating vortex, solitons form on the other line

The position of the soliton set depends of the direction of the
kick with respect to vortex orientation
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