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Abstract 

Background:  The production and availability of annotated data sets are indispensable for training and evaluation of 
automatic phenotyping methods. The need for complete 3D models of real plants with organ-level labeling is even 
more pronounced due to the advances in 3D vision-based phenotyping techniques and the difficulty of full annota-
tion of the intricate 3D plant structure.

Results:  We introduce the ROSE-X data set of 11 annotated 3D models of real rosebush plants acquired through 
X-ray tomography and presented both in volumetric form and as point clouds. The annotation is performed manu-
ally to provide ground truth data in the form of organ labels for the voxels corresponding to the plant shoot. This data 
set is constructed to serve both as training data for supervised learning methods performing organ-level segmenta-
tion and as a benchmark to evaluate their performance. The rosebush models in the data set are of high quality and 
complex architecture with organs frequently touching each other posing a challenge for the current plant organ 
segmentation methods. We report leaf/stem segmentation results obtained using four baseline methods. The best 
performance is achieved by the volumetric approach where local features are trained with a random forest classifier, 
giving Intersection of Union (IoU) values of 97.93% and 86.23% for leaf and stem classes, respectively.

Conclusion:  We provided an annotated 3D data set of 11 rosebush plants for training and evaluation of organ 
segmentation methods. We also reported leaf/stem segmentation results of baseline methods, which are open to 
improvement. The data set, together with the baseline results, has the potential of becoming a significant resource for 
future studies on automatic plant phenotyping.
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Background
Recent agricultural and genetic technologies require high 
throughput phenotyping systems which can benefit sig-
nificantly from the automation of inspection and meas-
urement. Automatic plant phenotyping through 3D data 
has been a recent research topic in computer vision; how-
ever, the scarcity of labeled and complete models of real 
plants is a roadblock for applying recent machine learn-
ing techniques that rely on a vast amount of annotated 
data. Also, benchmarking data sets are indispensable 

for proper comparison of current and future phenotyp-
ing methods that operate on 3D data such as volumetric 
models or point clouds.

The production of annotated data sets has become 
even more important since the recent bloom of deep 
learning [1], performance of which was shown to be 
notably boosted by the availability of large annotated 
data sets [2]. The success of deep learning methods has 
triggered the interest in data collection and labeling in 
specific applications of computer vision such as plant 
imaging [3]. Most of the freely available annotated plant 
shoot data sets so far have been in the form of collec-
tions of 2D images acquired in the visible spectrum 
from top or side view. Among the available 2D data 
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sets reported in [3] some are provided with annotated 
ground truth [4, 5], which is very valuable for pheno-
typing through computer vision and machine learning. 
In this article, we are interested in providing 3D anno-
tated models of plants.

Among the most related data sets, some provide multi-
ple images of plants that would allow 3D reconstruction; 
however, they do not include complete 3D plant models 
[6–9]. Uchiyama et  al. [7] provided a data set contain-
ing multiple RGB and depth images of Komatsuna plant 
together with the manually annotated leaf labels. The 
data set contains calibration images to be used for esti-
mating 3D geometry from the plant images. Cruz et  al. 
[8] constructed a database named “MSU-PID” contain-
ing fluorescence, IR, RGB, and top view depth images 
of Arabidopsis and bean plants. 3D reconstructions of 
plants are not available in the database. Bernotas et  al. 
[9] provided an annotated Arabidopsis data set with 3D 
information acquired using the photometric stereo tech-
nique. The data set includes 221 manually annotated 
Arabidopsis rosettes, which are partially reconstructed 
using only top-down views of the plants, providing 2.5D 
information rather than full 3D models. Wen at al. [10] 
introduced a database of the 3D models of plants and 
organs from different species, cultivars, and multiple 
growth periods, however, at present, the majority of the 
models in the data set correspond to isolated organs, 
such as models of single leaves or fruits, rather than full 
plants.

Due to the improvement of the sensitivity of the sen-
sors and the democratization of the technology, X-ray 
Computer Tomography (CT) is now widely used for plant 
imaging [11]. While X-ray imaging is the most adopted 
tool to monitor roots in real soil conditions [12], it is 
also being employed for the characterization of the aer-
ial parts of plants [13–19]. The use of X-ray imaging has 
focused on the acquisition of very thin parts enhanced 
with dye [13, 17, 18] or the internal 3D analysis of the 
aerial part [14–16, 19].

Rosebushes have been studied with computer vision 
techniques applied on LiDAR and RGB image data [20, 
21] to produce global characterization of the shoot and 
from there estimate its ornamental value. In contrast to 
these optics-based methods, X-ray CT imaging, although 
more expensive, provides complete and occlusion-free 
volumetric information of the 3D geometric structure of 
the shoot. Such accurate imaging that is able to capture 
internal structures provides a means to construct full 
3D models of real plants. These models can later be used 
to guide computer vision and pattern recognition tech-
niques that can operate on data acquired with low-cost 
imaging devices to inspect a large number of plants used 
in typical phenotyping experiments.

We provide the ROSE-X data set of 11 complete 3D 
models of real potted rosebush plants with complex 
architecture acquired through X-ray computed tomog-
raphy. The rosebushes we captured through X-ray CT 
imaging have complex architecture and show significantly 
high amounts of self-occlusion from all viewpoints, i.e., 
they possess major challenges for optics-based 3D plant 
reconstruction methods. These models are suitable to be 
transformed to other data structures, e.g., full or partial 
point clouds corresponding to the visible surface of the 
shoot, similar to what would be obtained with optical 
systems used for 3D reconstruction of plant shoot such 
as LiDAR or Time-of-Flight (ToF) cameras [22]. This 
conversion will make it possible to train and evaluate 
algorithms that operate on point clouds originating from 
the visible surface. In addition, with the data available for 
the occluded parts, these models will make it possible to 
design algorithms that predict complex plant architec-
tural structure from incomplete input.

The 3D voxel space of each rosebush in the data set is 
fully annotated through labeling each voxel with its cor-
responding botanical organ class; “organ” referring to the 
plant units such as leaves, branches, and flowers. Such 
ground truth data facilitate the detailed description of 
the architecture and morphology of the plant, and can 
be used to train automatic phenotyping algorithms aim-
ing to extract both architectural and organ-level traits. 
Architectural and organ-level trait analysis of 3D data 
requires an initial stage of classification of points into 
their respective categories. Current practice is to seg-
ment the acquired data of the plant shoot into branches 
and leaves. In this paper, we focus on leaf-stem segmen-
tation algorithms as one of the phenotyping applications 
where our data set can serve both as training data and 
as a benchmark. We chose four representative methods 
for stem-leaf segmentation: (1) unsupervised classifica-
tion using local features from point clouds, (2) support 
vector machine (SVM) classification using local features 
from point clouds, (3) random forest-based classification 
of local features from volumetric data, and (4) 3D U-Net 
applied on volumetric data. The later two were not previ-
ously applied to 3D plant organ segmentation problem. 
We trained and evaluated the methods on the new ROSE-
X data set, and provided baseline performance results.

Methods
The ROSE‑X data set
We introduce an open repository of complete 3D mod-
els of real rosebush plants with ground truth annotations 
at organ-level. The acquisition was performed through a 
3D Siemens X-ray imaging system with a voltage range 
of 10–450 kV, using a tungsten transmission target and a 
280-mA current. For this study, the system was operated 
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with an 80-kV voltage. The number of projections was 
900, and each radiograph was an average of three expo-
sures of 333 ms each to reduce the noise. The acquisition 
time per plant was 20 min. A total number of 11 rose-
bush plants with varying architectural complexity were 
imaged. The output data obtained from each acquisition 
session is a stack of X-ray images with a pixel spacing of 
0.9766 mm and slice spacing of 0.5 mm. The data is rep-
resented in a 3D voxel space, where the intensity of each 
voxel reflected the material properties of the plant shoot 
at that voxel.

From the raw volume data, the 3D voxels belonging 
to the rosebushes and their pots were extracted through 
masking and thresholding. The masks were manually 
constructed to separate unrelated material coming from 
the imaging platform, and thresholding was performed to 
separate the plant voxels from the air. Table  1 gives the 
number of thresholded voxels, the number of voxels cor-
responding to the plant shoot, and the number of vox-
els on the surface of the plant shoot. The pot contains a 
significant portion of the voxels of the models; the large 
difference in the number of the voxels between models is 
due to different sizes of the pots. The plant shoot corre-
sponds to the plant parts above the soil. Most of the vox-
els of the plant shoot are on the surface since leaves and 
petals and sepals of the flowers are very thin structures.

After the X-ray intensity values of the voxels corre-
sponding to air and background material are set to zero, 
the remaining voxels are assigned to one of the following 
classes: (1) stem, (2) leaf, (3) flower, (4) pot, (5) tag. The 
background voxels corresponding to air were assigned 
“zero” values. The stem class includes both the main 
branches and the petioles since they have similar geo-
metrical structures and are spatially connected. The plant 
shoot is composed of the stem, leaf, and flower classes. 

Figure  1 displays the thresholded X-ray volume (a), the 
organ-level labels obtained through annotation (b), the 
labels corresponding to the plant shoot (c), and the stem 
and petiole structure (d) of a sample rosebush model 
from the data set. Table 2 gives the percentages of voxels 
of organ classes on the plant shoot and the surface of the 
plant shoot.

The manual annotation was carried out with the 
help of ilastik (Interactive Learning and Segmentation 
Toolkit) [23]: Using pixel classification tool of ilastik, on 
a rosebush model, we manually marked several voxels 
in regions belonging to each class to train the classifier. 
Then, we obtained full-volume predictions on all mod-
els generated by the trained classifier of ilastik. Through 
detailed inspection, we manually corrected the labels of 
all voxels incorrectly labeled by ilastik.

The data set is available online at [24]. We provide the 
3D data in the following forms: (1) the raw X-ray image 
stack, (2) the binary volume mask indicating the voxels 
of only the shoot of the plant, the tag, and the pot, and 
the corresponding organ-level labels, (3) the binary vol-
ume mask indicating the voxels only on the surface of the 
plant shoot, and the corresponding organ-level labels, 
(4) the point cloud composed of the points of the shoot 
of the plant, the tag, and the pot with colors indicating 
organ-level labels, (5) the point cloud composed of the 
points on the surface of the plant shoot with colors indi-
cating organ-level labels. The details of the file formats 
and label information are explained in the Additional 
file 1. Through these forms, it is possible to convert the 
3D volumetric models to a labeled polygon mesh model 
and obtain 3D point clouds as viewed from any position 
around the plant through ray casting.

Baseline methods for leaf‑stem segmentation
Vision-based plant phenotyping has been traditionally 
performed through analysis of 2D color images from 
which 3D characteristics of the plants (stem length, 
volume, leaf area, etc.) have been estimated. With the 
advance of 3D imaging technologies, phenotyping 
through the 3D capture and reconstruction of plants have 
gained considerable attention. In Table 3, characteristics 
of some of the 3D vision-based phenotyping methods 
that involve a segmentation stage to separate leaves from 
branches are summarized. 3D data was captured from 
various species of plants by structured light depth sen-
sors [25, 26], laser scanners [27–31], ToF cameras [32], or 
from a set of color images through structure from motion 
[33, 34].

One of the disadvantages of these optics-based acqui-
sition techniques is that they suffer from a high degree 
of self-occlusion of plants. As the architecture becomes 
more complex, more parts of the plants become heavily 

Table 1  Number of voxels in the models (also the number 
of points in the corresponding point cloud)

Model ID # Thresholded 
voxels

# Plant shoot 
voxels

# Plant shoot 
surface voxels

S268650 794,618 312,212 275,954

S268660 588,101 157,029 127,158

S270230 657,195 205,686 175,800

S270240 642,192 169,276 142,474

S270250 818,568 347,013 301,786

S271780 2,091,739 305,534 264,634

S271790 2,072,313 200,346 171,963

S271800 2,011,882 164,108 138,065

S273080 1,153,337 176,155 145,284

S273090 1,909,986 192,755 166,246

S273110 1,254,316 294,528 257,992
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Fig. 1  A sample rosebush model from the data set. The raw X-ray volume is thresholded and masked to obtain the solid part shown in a. Each 
voxel in the volume is annotated as leaf, stem, flower, pot, or tag to obtain the ground-truth segmentation as shown in b. In c only the parts 
corresponding to the plant shoot are shown, excluding the pot and the tag. The voxels corresponding only to stem class are shown in d 

Table 2  Percentages of voxels (points) for organ classes in the plant shoot

Model ID Leaf Stem Flower Leaf on surface Stem on surface Flower 
on surface

S268650 79.06 13.08 7.86 83.99 9.43 6.58

S268660 70.53 17.06 12.41 77.37 12.66 9.97

S270230 77.07 14.36 8.57 83.44 10.40 6.17

S270240 71.30 16.60 12.10 79.92 11.70 8.38

S270250 75.22 12.33 12.45 80.64 8.93 10.43

S271780 80.97 13.46 5.57 86.35 9.79 3.86

S271790 75.76 13.96 10.28 81.26 10.12 8.62

S271800 73.84 17.09 9.07 81.70 12.57 5.73

S273080 69.20 21.72 9.08 77.50 15.99 6.51

S273090 75.08 19.20 5.72 82.64 13.97 3.39

S273110 79.91 17.07 6.02 83.78 12.27 3.95
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occluded, making it impossible to capture some regions 
from any viewpoint. That disadvantage forced most auto-
matic part segmentation and phenotyping research to be 
conducted on plants with relatively simple architectural 
and geometrical structure, such as plants with a single 
stem and well-separated leaves. With X-ray imaging, 3D 
information of the entire plant material can be captured. 
However, many phenotyping activities, such as growth 
monitoring, require the plants not to be moved, which 
makes X-ray imaging impractical. The bulk of the auto-
matic phenotyping activities is bound to rely on optics-
based acquisition devices. Although X-ray imaging will 
remain as an appropriate tool for applications such as 
root growth analysis, we envision that the ROSE-X data 
set will be mainly a resource for algorithms that operate 
on point clouds acquired with optics-based methods. The 
availability of complete models of real plants with high 
architectural complexity and full annotation will serve as 
a guiding resource for processing occluded point clouds 
of highly complicated plants acquired by RGB or depth 
cameras, or laser scanners.

Whether the data is in 3D volumetric form or is in 
the form of a 3D point cloud, semantic segmentation is 
required for particular phenotyping objectives, such as 
organ-level phenotyping, extraction of the architecture 
and event detection such as leaf growth and decay. Leaf-
stem segmentation is the most commonly addressed 
problem in organ-level phenotyping. We can categorize 
leaf/stem segmentation methods for 3D phenotyping 
into the following groups: (1) segmentation using local 
surface features on point clouds [25, 26, 28, 30, 33, 35], 
(2) segmentation using local features on volumetric data 
[37, 38], (3) segmentation through spectral clustering [39, 
40, 42], (4) segmentation by fitting geometric primitives 
[31, 32, 34, 41, 43]. Table  3 is organized using this cat-
egorization. In this work, instead of an exhaustive evalu-
ation of all the available methods on our labeled data set, 
we selected four representative approaches as baseline 
methods for segmenting the shoot of the rosebush data 
into its branches and leaves. Two of these methods are 
based on local features extracted from the point cloud. 
The other two methods assume volumetric data as input, 
and have not been previously applied to the plant organ 
segmentation problem. For all methods, it is assumed 
that the plant shoot is already separated from the pot. 
In the following subsections, the baseline methods are 
described in detail.

Segmentation using local surface features on point clouds
One of the most common approaches to segment point 
clouds of plants is to use local features. Point neighbor-
hoods on leaves and branches exhibit distinguishing 
distributions, which can be attributed to their sheet-like 

or line-like structures, respectively. One of the sim-
plest approaches is to represent such characteristics by 
the eigenvalues of the covariance matrix of the neigh-
borhood. Researchers have devised the use of more 
sophisticated point features such as Fast Point Feature 
Histograms (FPFH) ([28, 35]) that provide a rich descrip-
tion of the local structure around a point. In this work, we 
opted to use the simplest point neighborhood descriptors 
for the baseline methods. For more information on 3D 
local features, we refer to the book [44] of Laga et al.

For a point x in the point cloud, the neighborhood can 
be defined as the set N§ = {xi : �x − xi� < d} , where d is 
the radius of the neighborhood. The covariance matrix of 
the neighborhood is calculated as 
C = 1

|N§|−1

∑
xi∈N§

(xi − x̄)(xi − x̄)T , where x̄ = 1
|Nx|

∑
xi∈N§

xi 
is the mean of the points.

The relative magnitudes of the eigenvalues {�1, �2, �3} 
of the covariance matrix with �1 ≤ �2 ≤ �3 can serve as 
local descriptors to discriminate leaf and stem points. 
For a thin flat structure, we expect �1 to be much smaller 
than both �2 and �3 . We also expect �2 and �3 to be close 
to each other. For a line-like structure we have a pre-
dominantly large value of �3 , with �1 and �2 being much 
smaller.

We used the eigenvalues of the local covariance matrix 
in two baseline stem/leaf segmentation methods. The 
first is an unsupervised method based on the Markov 
Random Fields (MRF) formulation given in [25]. The sec-
ond is a supervised method where a classifier is trained 
with local features derived from the eigenvalues. This 
second approach aligns with the methods proposed in 
[26, 33].

Local features on point clouds—unsupervised (LFPC-
u) : For this baseline method, we followed a simplified 
version of the stem/leaf classification method given in 
[25]. The eigenvalues are used to define local surface fea-
tures on the point clouds and to search for a mapping fB 
from a point x to one of the two labels for leaf (L) and 
stem (S) categories. The point cloud can be organized in 
a graph where the points x ∈ X  correspond to the nodes 
and pairs of locally connected points (xi, xj) ∈ E con-
stitute the edges. In our implementation, a pair (xi, xj) 
was considered to be an edge if the Euclidean distance 
between them is less than 1.4mm. The energy associated 
with a particular label mapping is defined as

The weight factors wD and wV  determine a compromise 
between the class likelihoods of individual nodes and the 
coherence across the edges. Dx(fB(x)) corresponds to the 
data term (the unary potential) which gives the cost of 

(1)

E(fB) = wD

∑

x∈X

Dx(fB(x))+ wV

∑

(xi ,xj)∈E

V (fB(xi), fB(xj)) .
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classifying a point x into a leaf or stem category. The term 
V (fB(xi), fB(xj)) gives the smoothness term (the pair-
wise potential) and is used to encourage labeling coher-
ence between neighboring points. The energy function is 
minimized through min-cut algorithm [45] to obtain the 
optimum labels for the point cloud.

To determine the data and smoothness terms, an esti-
mate of the curvature at point x is computed using the 
eigenvalues of the covariance matrix as C(x) = �1

�1+�2+�3
 . 

The range of the curvature values is [0,  1/3], and leaf 
points are expected to have lower curvature val-
ues than stem points. A flatness feature is defined as 
R(x) = log(max(C(x)), cǫ) , where cǫ is set to 0.015. R(x) is 
in the range [RL,RS] with RL = log(cǫ) and RS = log(1/3) . 
Then, the data term is calculated as

The smoothness term also depends on the curvature 
C(x), which is used as a measure of the discontinuity of 
the surface. The pairwise potential is set to be inversely 
proportional to the curvature since a high curvature 
value indicates a discontinuity which can be considered 
as the boundary of a plant part. The smoothness term is 
defined as

Notice that this method is an unsupervised method in 
the sense that it does not require labeled training data to 
transform or organize features to boost their discriminat-
ing power. However, the weight factors wD and wV  in Eq. 
(1) need to be fixed. Through experimentation on one 
rosebush reserved to train the methods, we found that 
wD = 0.9 and wN = 0.1 yielded the best results.

Local features on point clouds—supervised (LFPC-s): 
For the second baseline method, we selected to derive 
local features from the eigenvalues of the local covariance 
matrix, and used SVM as the classifier as in the work of 
Dey et al. ([33]). We defined the local features as follows:

The size of the neighborhood from which the eigenval-
ues are computed determines the scale at which the local 
structures will be analyzed. The stem and the petioles of 
the plant shoot have varying widths, likewise the leaves 
exhibit a large size variability. Instead of fixing the radius, 
we extracted the features {F1, F2, F3, F4} at various scales 
and concatenate them into a single feature vector. In our 

(2)Dx(fB(x)) =

{
R(x)− RL, if fB(x) = L.
RS − R(x), if fB(x) = S.

(3)

V (fB(xi), fB(xj)) =

{
max

(
1

C(xi)
, 1
C(xj)

)
, if fB(xi) �= fB(xj).

0, if fB(xi) = fB(xj).

(4)

F1 =
�1

√
�2�3

F2 =
�2

�3
F3 =

�1
√
�1�2�3

F4 =
�1

�2

tests, we used six scales, corresponding to neighbor-
hoods of radii 2, 3, 4, 5, 6, and 7 mm. Using one of the 
rosebush models with ground truth labels, we trained a 
two-class linear SVM classifier.

Segmentation using local features on volumetric data (LFVD)
The point cloud data acquired from optic-based sensors 
such as RGB cameras or laser scanners can be converted 
to binary volumetric data using a 3D occupancy grid. The 
regular structure of 3D volume allows to apply standard 
filtering and feature extraction tools such as smoothing 
and estimation of first and second order derivatives. The 
software ilastik [23] can extract various types of features 
from 3D volume data: the color features correspond to 
the raw intensity values smoothed by a Gaussian filter. 
The edge features are the eigenvalues of the structure ten-
sor, eigenvalues of the Hessian matrix, the gradient mag-
nitude of the difference of Gaussians and Laplacian of 
Gaussian. The texture features correspond to eigenvalues 
of the structure tensor, eigenvalues of the Hessian matrix, 
and orientation features are the raw structure tensor and 
Hessian matrix entries. In our tests, the mentioned fea-
tures are extracted from data smoothed by Gaussian fil-
ters with scales 0.7, 1.0, 1.6, 3.5, 5.0, and 10.0 mm.

The voxels of the original X-ray data possess inten-
sity values which are determined by the intensity of the 
X-rays passing through the voxels and the material prop-
erties. X-ray intensity values in our models depend on the 
material properties of plant parts; e.g., leaves have very 
low intensity values compared to branches. In order to 
have comparable results between the volume-based and 
surface-based baseline methods, we used the binary vol-
ume mask, indicating the voxels of only the shoot of the 
plant. We further set the values of the voxels which are 
not on the surface of the plant-shoot, i.e., interior voxels, 
to zero, so that only the voxels on the surface of the plant-
shoot will remain.

We employed ilastik [23] to extract intensity, edge, and 
texture features from one binary plant model and to train 
a random forest classifier [46] using the ground-truth 
labels. Once the classifier is trained on one model; it is 
tested on all the other models on the data set.

CNN on volume data (3D U‑Net)
As a representative of deep learning methods, we 
selected 3D U-Net [47], which is originally proposed to 
provide dense volumetric segmentation maps for bio-
medical images. It is an extension of the 2D U-net archi-
tecture developed by Ronneberger et al. [48]; all the 2D 
operations in the 2D u-net are replaced with their 3D 
counterparts. The input volume is first passed through 
an analysis path with four resolution layers, each of 
which is composed of two 3× 3× 3 convolutions with 
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Rectified Linear Units (reLU) and one 3× 3× 3 max 
pooling operation. Max pooling corresponds to down-
sampling by using the maximum value from each of 
a cluster of neurons at the prior layer. Then a synthesis 
path is applied with four resolution layers each consisting 
of one 2× 2× 2 upconvolution operator followed by two 
2× 2× 2 convolutions with reLU. The high-resolution 
features obtained at the analysis path are also provided to 
the synthesis path through shortcut connections between 
layers of equal resolution. The size of the input voxel grid 
to the network is 144 × 144 × 144 , and the output is a 
volumetric data of the same size giving the label of each 
voxel. The architecture graph can be found in [47]. For 
more information on deep learning and the definitions of 
the classical layers that constitute the basis of deep neural 
networks, we refer to the book [49] of Goodfellow et al.

As we did with the baseline method based on local vol-
umetric features, we only used the thresholded voxels on 
the surface of the shoot, so the input is binary devoid of 
the intensity information. We used one rosebush model 
to train the network. We extracted 25 subvolumes of size 
144 × 144 × 144 from various locations of the full vol-
ume of the model such that each subvolume contained 
leaf and stem instances. 20 of the subvolumes were used 
for training and 5 of them were used for validation. For 
a test model, we regularly partitioned the volume to 
non-overlapping subvolumes and provided the subvol-
umes to the network as inputs to get the corresponding 
segmentation.

Results
In this paper, we concentrated on the problem of parti-
tioning the plant models into its leaf and stem (branch) 
parts; so the training and evaluation of the baseline meth-
ods are performed using the ground truth labels corre-
sponding to the leaves and stems only. In our evaluation, 
we ignored the predictions generated on the flower parts.

There are many metrics for segmentation evaluation, 
such as Matthews Correlation Coefficient [50], Cohen’s 
κ coefficient [51], Dice Similarity Coefficient [52], all 
with their advantages and all applicable in the frame-
work of our benchmark. In this paper, we used preci-
sion (also known as Positive Predictive Value), recall 
(also known as sensitivity), and Intersection over Union 

(IoU) to evaluate the baseline methods. Recall for the 
leaf class ( Rleaf  ) is the ratio of the number of correctly 
labeled leaves (true positives) to the total number of leaf 
points in the ground truth (true positives + false nega-
tives). Precision for the leaf class ( Pleaf  ) is the ratio of 
the number of correctly labeled leaves (true positives) to 
the total number of points classified as leaf points by the 
algorithm (true positives + false positives). Recall ( Rstem ) 
and precision ( Pstem ) for the stem class are defined in the 
same way. Intersection over Union (IoU) metric for each 
class (IoUleaf  and IoUstem ) is defined as the ratio of all the 
true positives to the sum of true positives, false negatives 
and false positives.

For a single fold of the experimental evaluation, we 
selected one rosebush model for training and tested the 
algorithms on the remaining 10 models. For the unsu-
pervised method based on local features on point clouds, 
we used the training model to optimize the weights of 
the data and smoothness terms. The results were aver-
aged over the test models and over 5-fold experiments. A 
different rosebush model is reserved as training data for 
each fold. Table 4 gives the performances of the baseline 
leaf/stem segmentation methods. The visual results for 
a sample test rosebush are given in Fig. 2. The predicted 
labels of the rosebush model are displayed as a volume 
or as a point cloud depending on the type of the data 
the corresponding method processes. Figure 3 gives the 
stem points predicted by each baseline method. Correct 
predictions of the stem points with their connectivity 
maintained are especially important for establishing the 
architectural structure of the plant.

We can observe from Table 4 and Fig. 2 that the voxel 
classification method through local features (LFVD) 
gives the best overall performance for leaf/stem classifi-
cation. It is a supervised method combining multi-scale 
volumetric local features with the random forest clas-
sifier. For this particular data set, it can model well the 
scale variations of leaf and stem points as well as their 
geometrical variations due to their locations on the organ 
(in the middle or at the border). The recall rate for the 
stem class is around 90%, meaning that 10% of the points 
on the branches are missed. Most missed stem points 
are on the petioles, which are in between close leaflets 
and possess an almost planar structure (Fig.  4c). The 

Table 4  Performances of the baseline leaf/stem segmentation methods (%)

Method Rleaf Rstem Pleaf Pstem IoUleaf IoUstem

LFPC-u 95.74± 1.74 88.03± 1.82 98.23± 0.33 75.01± 9.76 94.10± 1.54 67.96± 8.18

LFPC-s 97.79± 0.46 80.50± 1.29 97.19± 0.48 83.67± 4.88 95.10± 0.46 69.57± 3.87

LFVD 99.38 ± 0.13 90.01± 1.17 98.53± 0.43 95.38 ± 1.02 97.93 ± 0.47 86.23 ± 0.31

3D U-Net 81.06± 1.68 97.41 ± 1.43 99.63 ± 0.29 54.0± 5.77 81.72± 1.71 53.58± 5.54
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discontinuities in the stem-branch structure predicted by 
LFVD (Fig.  3c) generally correspond to the petiole por-
tions just in between opposite leaflets. 

The classification results obtained by LFPC-u are 
smooth (Fig.  2a) and the stem structure is mostly con-
nected (Fig. 3a) due to the regularization imposed by the 
MRF formulation. However, smoothing labels of adja-
cent points in regions of low curvature leads to an entire 
leaf or a portion of it to be classified as stem if there is 
a smooth transition of normals at the boundary as seen 
in Fig.  4a. This propagation of labels through bounda-
ries with low curvature causes a relatively low stem pre-
cision rate (Table  4). Likewise, smooth petiole and leaf 
boundaries lead to the classification of petiole points as 

leaves affecting the stem recall rate negatively. Although 
this method is unsupervised in the sense that it does not 
involve a classifier that learns feature transformations 
through labeled training data, the weights of the data and 
smoothness terms in Eq. 1 should be optimized for differ-
ent plant species.

The performance of LFPC-s is slightly higher than that 
of LFPC-u in terms of the IoU metric (Table  4). Notice 
that we did not incorporate the MRF formulation for the 
baseline method LFPC-s, although it is completely appli-
cable through setting the data term using SVM scores. 
Since no smoothness constraint is imposed on the labels, 
we can observe isolated noisy predictions along the stem 
and on the leaves (Fig. 2b). The predicted stem structure 

Fig. 2  Leaf and stem labels predicted by the baseline methods for a sample test rosebush. The rendering is in volumetric form for LFVD and 3D 
U-Net and in point cloud for LFPC-u and LFPC-s. The methods LFPC-u (a) and LFVD (c) produced smooth results, while the labels predicted by 
LFPC-s (b) are slightly noisy. 3D U-Net (d) wrongly classifies leaf borders as stems
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has unconnected small regions due to some leaf points 
classified as stems (Fig.  4b). Most of these errors occur 
at the midribs which are usually the thickest parts of the 
leaves.

3D U-net gives the lowest performance as compared 
to the other methods. Boundaries and thick portions of 
leaves are classified as stems as can be observed from 
Fig. 4d. We give in Fig. 5 the evolution of the training and 

validation loss. The dice coefficient function is used as the 
loss function in 3D U-Net algorithm, which shows a value 
in a range of 0 to 1. In this case, a negative is multiplied 
to values for optimization purposes. The curves in this 
figure show that the model can converge fast after about 
50 epochs with the minimum overfitting between train-
ing and validation. However, the CNN network did not 
model the variations of leaves since we used sub-volumes 

Fig. 3  Stem labels predicted by the baseline methods for a sample test rosebush. The rendering is in volumetric form for LFVD and 3D U-Net and 
in point cloud for LFPC-u and LFPC-s. With the methods LFPC-u (a) and LFVD (c) the predicted stem structure is mostly connected, while LFVD (c) 
misses some petiole portions. The noisy predictions produced by the method LFPC-s (b) are more visible here. 3D U-Net (d) classifies large portions 
of leaves as stems



Page 11 of 14Dutagaci et al. Plant Methods           (2020) 16:28 	

from a single rosebush model for training to have a fair 
comparison with other baseline supervised methods. The 
3D U-net has far more parameters to learn than the other 

methods; therefore, more training data is required for it 
to be properly trained. Besides, we directly applied the 
original 3D U-net architecture [47], which was designed 
for bio-medical data, without modification. In order to 
improve the results with deep learning, one can either 
increase the training data by using more than one rose-
bush model, employ data augmentation strategies, alter 
the 3D U-Net architecture or propose a new architecture 
suitable for 3D segmentation of plants. However, detailed 
analysis of the modifications on these lines is beyond the 
main objective of this work. We leave the design of 3D 
CNN architectures specific to plant organ segmentation 
as an open research problem, to the solution of which our 
entire labeled data set can contribute.

The methods LFPC-u, LFPC-s, and LFVD were run on 
a computer with an Intel processor of 3.5 GHz and 128 
GB RAM. LFPC-u and LFPC-s were coded with MAT-
LAB, while LFVD was implemented with Python. The 
average processing time for segmentation of a single 
model with LFPC-u is 4.2 min. The training time of the 
SVM classifier for LFPC-s is 5.1 min on average. The seg-
mentation time for a test model with LFPC-s is 1.6 min. 

Fig. 4  Examples to erroneous predictions of the baseline methods highlighted with red ellipses. The LFPC-u method (a) can classify an entire leaf 
or a portion of a leaf, especially at leaf borders with low curvature. With the LFPC-s method (b) we can observe isolated noisy predictions along 
the stem and on the leaves. Most of the errors occur at the midribs. The LFVD method (c) misclassifies the stem points on the petioles, which are in 
between close leaflets. The 3D U-Net (d) classifies boundaries and thick portions of leaves as stems

Fig. 5  Evolution of loss for training and validation data with training 
epochs for 3D U-Net
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The training time of the Random Forest classifier for 
LFVD is 13.4 min, and the testing time is 3.3 min. The 
3D U-Net was trained using Python on a computer with 
an Intel processor of 2.2GHz and 8 GPUs of 64 GB. The 
training time is 3 h, while segmentation time for a new 
test model is 4.3 min on average.

Discussion
The ROSE-X data set includes high resolution 3D mod-
els of real rosebush plants, each of which was annotated 
at the voxel level with the corresponding botanical organ 
class. In this article, we focused on the step of segmen-
tation of leaves and stems of automatic phenotyping 
pipelines. We provided a benchmark for proper com-
parison of current and future approaches for leaf/stem 
segmentation.

In this article, the focus has been on leaf segmentation 
from the stem. This is the first essential step in analyzing 
the shape and the architecture of the plant. Other ques-
tions can be addressed with the ROSE-X data set includ-
ing issues raised by breeders, producers or consumers 
such as the study of interactions between genotype and 
environment on the one hand and phenotype and visual 
perception on the other. Such issues require the analysis 
of the growth and morphogenesis of the plant through 
effective phenotyping. With this objective in mind, it is 
possible to consider petiole segmentation, the distinc-
tion between leaflet and leaves, the detection of meristem 
along the stem, the analysis of the different part of the 
flower and the stage of development.

Also, the extraction and encoding of the architectural 
structure of the plant in the form of an organized collec-
tion of the main stem, second and higher order branches, 
and the branching locations is an important phenotyping 
task. Another task would be to extract geometrical char-
acteristics of the individual architectural components 
and their spatial relationships, such as the length and 
width of the branch segments, petioles and their branch-
ing angles, leaf length, width, and area, together with the 
leaf inclination angles. These advanced botanical traits 
would be accessible with the spatial resolution of the 3D 
images of the proposed data set ROSE-X.

In order to evaluate the accuracy of phenotyping meth-
ods that aim to extract such more advanced botanical 
traits, we will release a forthcoming extension of the data 
set, with extended ground truth data in the form of geo-
metrical properties of individual organs such as leaves, 
leaflets, petioles, stem segments, branching locations, 
and the spatial relationship between them.

We present the rosebush models in volumetric form, 
however, our main concern is to provide labeled data of 
plants with complex architecture for phenotyping meth-
ods that use the visible surface points of the plants as 

input. The conversion of the volumetric form to a point 
cloud via sampling or via ray casting from an arbitrary 
viewpoint is straightforward. As part of the future work, 
we will generate partial point clouds from the models 
as seen from around the plant, and apply phenotyping 
methods that rely on partial data.

Another important issue is the applicability of leaf/
stem classification methods trained with the rosebush 
data set to other plant species. Future work will involve 
the expansion of the data set with 3D models of different 
species, and the adaptation of the classifiers learned from 
one species to others.

Conclusion
This paper introduces a data set composed of 11 com-
plete 3D models acquired through X-ray scanning of real 
rosebush plants. The models are stored in a voxel grid 
structure. We also provide the ground truth data, where 
each voxel stores the corresponding organ class label. 
The plant models are free from self-occlusion, however 
they posses complex architectural structure. As a sam-
ple application where the data set can be of use, we chose 
leaf-stem segmentation and compared the classification 
performances of four baseline methods. We observed 
that the volumetric approach (LFVD), where a random 
forest classifier is trained with local features, yielded 
the best performance. However, other baseline methods 
tested in this work are also open to further improvement, 
and there are yet the state-of-the-art techniques (Table 3) 
to be evaluated on our dataset. The data set is suitable to 
be annotated with more advanced traits and can be used 
as a benchmark for evaluation of automatic phenotyping 
methods that go beyond classifying plant points as leaves 
and stems.
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