

2D/3D Optical Data Storage in Polymers with Nonlinear Microscopy

Denis Gindre

► To cite this version:

Denis Gindre. 2D/3D Optical Data Storage in Polymers with Nonlinear Microscopy. 3rd International Workshop on Nano and Bio-Photonics (IWNBP 2015), 2015, Cabourg, France. hal-02564173

HAL Id: hal-02564173 https://univ-angers.hal.science/hal-02564173

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2D/3D Optical Data Storage in Polymers with Nonlinear Microscopy

Denis Gindre

Laboratoire MOLTECH-Anjou, UMR CNRS 6200 Université d'Angers France

Outline

Introduction

Two-photon processes for Optical Data Storage Data storage by photoinduced isomerization of azobenzenes Data storage by photoinduced cross-linking of coumarins Image and 3D storage / tagging Conclusion

NRP 2015

The digital revolution

10 ⁸ 10 ¹² 10 ¹⁵	700 1 1	MB TB (terabyte) PB (petabyte)	 = a CD-ROM = 50 000 trees made into paper and printed = 3 years of earth pictures by the EOS satellite
10 ¹⁸	1	EB (exabyte)	= total volume of information (pictures, texts, videos,
10 ¹⁹	10	EB	= data traffic estimated among smartphones in 2019 (half is videos)
10 ²¹	40	ZB (zettabyte)	= volume of information in the world (2020)

7 TB/day (2013)

Introduction

10 TB/day (2013)

50 TB/day Radio telescope Square Kilometer Array (2020)

Story of Data Storage

Story of Optical Data Storage

Optical Data Storage

The size of the spot (Airy disk) is limited by the diffraction

Near Field Optics

to avoid the diffraction limit with evanescent waves

(potential) future of • Volume storage

optical data storage

The

Holographic disks

Multi-photonic and non linear optical processes

With the help of nonlinear optical processes, data bits can be recorded in the deep volume of the material.

Two-photon processes for Optical Data Storage

Two-Photon Absorption

IWNBP 2015

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

Second Harmonic Generation (SHG)

Induced polarization :

 $\vec{p} = \alpha \vec{E} + \beta \vec{E}\vec{E} + \dots$

linear nonlinear

SHG $\neq 0 \Rightarrow \beta \neq 0 \Rightarrow$ non centro-symmetry of the material SHG efficiency \Rightarrow density of the molecules

Chromophores orientation

Optical Data storage by photoinduced isomerization of azobenzenes

Data storage with azobenzenes

Chromophores : Disperse Red 1 (DR1) grafted to PMMA

- photo-induced *cis-trans* isomerisation
- Photo-induced molecular movements
- Loss of the initial order

photoinduced depoling

Photo-induced depoling principle

binary data storage by photoinduced depoling

20 µm

2nd SHG scan

Readout P = 2 mW

Initial SHG scan

50 µm

1st SHG scan

10 µm

3rd SHG scan

IWNBP 2015

5 µm

4th SHG scan

Rata storage by photoinduced cross-linking of coumarins

Reversible process

IWNBP 2015

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

Photo-induced cross-linking of coumarins

The ratio between monomer / dimer is controlled by the power of the laser → Modulation of the SHG response

IWNBP 2015

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

Synthesis

D. Gindre et al , submitted to Molecules (2016)

IWNBP 2015

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

Absorption spectrum

Chemistry study of coumarin based molecules

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

binary optical data storage

IWNBP 2015

K. Iliopoulos et al, J. Am. Chem. Soc., 132, 14343 (2010)

Reversibility

- (a) SHG image (readout at λ = 800 nm) after a line was written at λ = 700 nm.
- (b) SHG image after irradiation of the area with a UV reactor (λ = 250 nm).
- (c) SHG image after a new line was written perpendicular to the first one.

Multiphoton microscopy : setup

Principle of image storage

IWNBP 2015

2. SHG read-out **contrast** as function of illumination power

32 21

255

0

200

100 mW

Black pixel

30 mW

White pixel

3rd International Workshop on Nano and Bio-Photonics | Cabourg | December 6-11th, 2015

Image storage in azobenzenes

Writing image = variation of the laser power for each point

Grayscale reference image 100 x 100 pixels 8 bit

Optical Microscope examination after image writing

В 100 µт

SHG imaging

D. Gindre et al, Opt. Exp., 14, 9896 (2006)

Image storage by controlled dimerization

1- Calibration

2 - Fast SHG reading of poled area λ = 800 nm, P = 5 mW before writing

3 - Image writing λ = 695 nm, P = 26 mW, 1 ms < Exp. Time < 1000 ms I = Cste

D. Gindre et al, Opt. Lett., 38, 4636 (2013)

NRP 2015

3D Optical Data Storage

Resolution optimization

3D Binary storage

60 mW (700 nm) = white pixels 0 mW for the background Space between letters :

read-out at 800nm (power 10mW)

100x100 pixels/image Depth increment = 1 μm. Pixel time = 200 μs

50 scans

100x100 pixels/image Depth increment = 1 μ m. Pixel time = 200 μ s

45 scans

3D Image storage

Images 128x128 pixels recorded at **700 nm** and restored by SHG at 400 nm Space between images = $5 \mu m$

Crosstalk between 2 images

3D Image storage

recorded at **700 nm** and restored by SHG at **400 nm**

Space between images = $2 \mu m$

SHG images

3D movie storage

Poor quality bulk

Hidden tagging application

Invisible and Security TAG Written with a focused laser beam

Hidden tagging application

For tagging applications, the (cleavage) should be prohibited.

Without protection

→ Protection of the premarked polymer with stop UV film Formulation from acrylic resin ENCOR-5126 + Solasorb UV200 + Tinuvin P

With UV protection

- Possibility to store information into a copolymer thin film with non linear optical processes.
- Image storage by modulation of the power of writing laser. The read-out requires SHG microscopy
- Possibility to write information in the volume with high densities. The information is collected by two-photons imaging techniques (SHG or/and TPEF)
- Possible application to non linear hidden tagging

Acknowledgements

Marc Sallé Pr. MOLTECH Anjou, Chemistry

Emilie Champigny PhD, 3D Storage

Konstantinos Iliopoulos Post-doc, Optics

Oksana Krupka Post-doc, Synthesis

Bouchta Sahraoui Pr MOLTECH-Anjou, NLO measurements

Yohann Morille IE CNRS, Labview development

Marie Evrard Valorisation engineer, aging/UV protection

Fundings

Moltech Projet (pari scientifique) Region Pays de la Loire

Thank you for your attention