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@ Models for few-cycle solitons
@ The mKdV-sG equation
@ Nonlinear widening of the linear guided modes
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@ Models for few-cycle solitons
@ The mKdV-sG equation
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Introduction

@ The shortest laser pulses: a duration of a few optical cycles.

IAC SH power
s B v CTE - SRR - SR« - §

-20 -10 0 10 20 30
time delay [fs]

Fig. 4. Measured and reconstructed IAC of the pulse. A
phase-retrieval algorithm reveals a pulse width of 5 fs.
The reconstructed IAC fits perfectly and is not distinguish-
able. The reconstructed electric field is displayed in the
inset. SH, second harmonic.

Autocorrelation trace, R. Ell et al., Optics Letters 26 (6), 373 (2001).
o Pulse duration down to a few fs. Ex. above: 5fs = 5 x 10~ 15s.
@ How to model the propagation of such pulses?
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Solitary wave vs envelope solitons

@ Envelope soliton: the usual optical soliton in the ps range
D

o Pulse duration L > X wavelength

o Typical model: NonLinear
Schrédinger equation (NLS)

@ It is a soliton if it propagates without deformation on D > L,
due to nonlinearity.
In linear regime: spread out by dispersion.

Dx1/e?
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Solitary wave vs envelope solitons

@ Envelope soliton: the usual optical soliton in the ps range
D
2 o Pulse duration L > X\ wavelength

: o Typical model: NonLinear
Schrédinger equation (NLS)

@ It is a soliton if it propagates without deformation on D > L,

due to nonlinearity.
In linear regime: spread out by dispersion.
@ Solitary wave soliton: the hydrodynamical soliton
o A single oscillation
et o Typical model: Korteweg-de Vries
equation (KdV)

Dall/e?
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Solitary wave vs envelope solitons

@ Envelope soliton: the usual optical soliton in the ps range

D

o Pulse duration L > X\ wavelength

o Typical model: NonLinear
Schrédinger equation (NLS)

@ Solitary wave soliton: the hydrodynamical soliton

Deife’ o A single oscillation
g M o Typical model: Korteweg-de Vries
¢ equation (KdV)

@ Few-cycle optical solitons: L ~ A
e The slowly varying envelope approximation is not valid
o Generalized NLS equation
o We seek a different approach based on KdV-type models
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A transparent medium

@ The general absorption spectrum of a transparent medium
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A transparent medium

@ The general absorption spectrum of a transparent medium

(Ul 1/T wz

@ A simple model: A two-component medium, each component is
described by a two-level model

| >

T T
W, 1/TD w,
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A transparent medium

@ The general absorption spectrum of a transparent medium
m ; //\\
(Ul 1/'('p wz

@ A simple model: A two-component medium, each component is
described by a two-level model

A

1 1 1
W, 1/t w,
@ We assume that the transparency range is very large:
w1 < (1/7p) K wo
(7p: FCP duration).
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A transparent medium

@ A simple model: A two-component medium, each component is
described by a two-level model

< . =

wl ]'/Tp wz

@ We assume that the transparency range is very large:
w1 < (1/7p) € w2
(7p: FCP duration).
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A transparent medium

@ A simple model: A two-component medium, each component is
described by a two-level model

< . =

wl ]'/Tp wz

@ We assume that the transparency range is very large:
w1 < (1/7p) € w2
(7p: FCP duration).
@ In a first stage, the two components are treated separately
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A transparent medium

@ A simple model: A two-component medium, each component is
described by a two-level model

o We assume that the transparency range is very large:
w1 < (1/7p) < wo
(7p: FCP duration).
@ In a first stage, the two components are treated separately
e UV transition only, with (1/7,) < w>

1/‘Il'p w,

— Long-wave approximation
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A transparent medium

@ In a first stage, the two components are treated separately
e UV transition only, with (1/7,) < w»

o=

1T, w,

—> Long-wave approximation

modified Korteweg-de Vries (mKdV) equation
0E _ 1%
d¢C  6dwd

H. Leblond and F. Sanchez, Phys. Rev. A 67, 013804 (2003)

PE  6m 3
s 93 EX( ) (W;wawa - W)

e
or

w=0
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A transparent medium

@ In a first stage, the two components are treated separately
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A transparent medium

@ In a first stage, the two components are treated separately
e IR transition only, with w; < (1/7p)

4

d)l 1/'IrD

= Short-wave approximation
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A transparent medium

@ In a first stage, the two components are treated separately
e IR transition only, with w; < (1/7p)

4

al)l 1/'IrD

= Short-wave approximation

2
0z0t

@ sine-Gordon (sG) equation: = ¢y siny

with ¢; = —=: normalized initial population difference
Wy
0 E :
and —w = — : normalized electric field
ot E

H. Leblond and F. Sanchez, Phys. Rev. A 67, 013804 (2003)
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

0% oY o'
020t +C15'”‘/’+Cgat (at) tega =0
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

2 4
(0 oY ot
D20t +Cls””p“zat (at s =0
e Or
au—i—csin/t —|—caU3+ca3u 0
5z U2 T8
with v = 8—1/} = E: normalized electric field
ot E,
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

° @—i- [ /t + 87113—#- @—O
9z C1 SIn u o ot c3 81‘3 =
oY

E
with v = ot = E: normalized electric field

@ Integrable by inverse scattering transform in some cases:
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

° @ + ¢ 8—U3 + ¢ @ =0
0z ot o3
with v = 671# = E: normalized electric field
ot E
@ Integrable by inverse scattering transform in some cases:
mKdV,
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

du [t
) 97 +a sm/ u =0
with v = 8—1/} = £: normalized electric field
ot E
@ Integrable by inverse scattering transform in some cases:
mKdV, sG,
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A transparent medium

@ Then the two approximations are brought together
to yield a general model:

The mKdV-sG equation

) @+c sin/tu+caU3—|—2ca3u—0
oz 2ot 2o
oy E

with u = — = — : normalized electric field
ot E
@ Integrable by inverse scattering transform in some cases:
mKdV, sG, and ¢c3 = 2¢s.
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The analytical breather solution

6 -4

o A few cycle soliton:
o Not spread out by dispersion
o Stable

o However, oscillates (breather)
H. Leblond, S.V. Sazonov, |.V. Mel'nikov, D. Mihalache, and F. Sanchez,
Phys. Rev. A 74, 063815 (2006)

@uu;ﬁer

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic 11 / 47



@ Models for few-cycle solitons

@ Nonlinear widening of the linear guided modes
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Waveguide description

@ The evolution of the electric field E:
In (14+1) dimensions:
— The modified Korteweg-de Vries (mKdV) equation

OcE + BOE +~0.E> =0

1
@ Nonlinear coefficient v = X(3),
2nc
) ) (_n//)
Dispersion parameter § = o
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Waveguide description

@ The evolution of the electric field E:
We generalize to (241) dimensions:
— The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

V T
8¢E+562E+787E3—2/ ZEdT' =0

1
@ Nonlinear coefficient v = —X(3).
nc

(=n")
c2c '
Linear group velocity: V = —.

n

Dispersion parameter 5 =
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Waveguide description

@ The evolution of the electric field E:

A waveguide: c c x

cladding core cladding

— The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

V T
OcE + BodZE +700- B> — "‘/ OFEdT’ =0

2

with a = g in the core and a = c¢ in the cladding.

. 1
@ Nonlinear coefficient ~, = e &3),
(1)
Dispersion parameter [, = 5 *2,
c

. . c
Linear group velocity: V, = —.

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



Waveguide description

@ The evolution of the electric field E:
A waveguide:

C c X
cladding core cladding

— The cubic generalized Kadomtsev-Petviashvili (CGKP) equation
1
a<E+5aa§E+%,aTE3+VaTE / OZEdT’ =
(07

with @ = g in the core and a = ¢ in the cladding.
Velocities: Vg < V¢

. 1
@ Nonlinear coefficient v, = X((j’).
2n,C
o (=n%)
Dispersion parameter B, = e
c
. ) c
Linear group velocity: V, =
Ng
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Waveguide description

@ The evolution of the electric field E:

A waveguide: c - c x
cladding core cladding g

— The cubic generalized Kadomtsev-Petviashvili (CGKP) equation
In dimensionless form:

W, [t
8zu = AOL@?U + Baatu3 + vaatu + 7 / 8)2(Udt/

with o = g in the core and a = c¢ in the cladding.
Relative velocities: vz > v
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Linear guided modes

@ The dimensionless CGKP equation

W t
O,u = Aaaf’u + B,0yu> + v 0pu + 70‘ / Q%udt'
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Linear guided modes

The dimensionless CGKP equation

W t
O,u = Aaafu + Vo Orl + ;/ a)gudt/

@ We linearize and seek for solutions of the form
u = f(x)exp[i (wt — k;z)].
27w

Va

Waveguide dispersion relation: tan(kya) = kﬁ
X

f = Rcos(kyx) in the core
f = Ce "Xl in the cladding

Material dispersion relation: kia = (Aaw3 — k, — wva)

Mode profiles of the form {

@uuge
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Linear guided modes

@ The dimensionless CGKP equation
w. t
O,u = A03u + Vo Oru + 2a/ d2udt’

@ We linearize and seek for solutions of the form
u = f(x)exp[i (wt — k.z)].

o Waveguide dispersion relation: tan(kya) = kﬁ
, f = Rcos(kyx) in the core
M files of the fi
® Mode profiles of the form { f = Ce " in the cladding

@ Guiding condition: A2w3 —ww < k, < A1w3

As in the usual symmetric dielectric planar waveguide.
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Nonlinear propagation in linear guide

@ We solve the CGKP equation starting from

u(x,t,z = 0) = Acos(wt)f(x)e /",
o f(x)= { Cc?es(ﬁf;)r’)’ ::Z: ;i; i z: is a linear mode profile
@ Normalized coefficients Ay = A> =B =B, = W) = W, =1,
— we assume that
- Temporal compression occurs
- Spatial defocusing occurs, (else it collapses!)
- Dispersion and nonlinearity are identical in core and cladding.
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@ Guided wave profiles

0.8
0.6 | L

04 ¢

02t |

-2 -1-a 0 al x 2
(Normalized so that the total power is 1. vo =3, w = 2.)

@ The pulse is less confined in nonlinear (blue, and red)
than in linear (pink and cyan) regime.
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Nonlineary may reduce confinement. Indeed:
@ Waveguiding is due to total internal reflection.
— when the wave propagates too fast in the cladding,
it cannot match the field oscillations in the core.
@ In the few-cycle regime,
not only linear, but also nonlinear velocity (large and positive here).
@ The nonlinear velocity is larger in the core
and creates a nonlinear variation of the index.
@ It may compensate the linear part, and reduce the confinement.
@ Important in very narrow guides,
where linear confinement itself is low.

.
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Nonlinear waveguide

@ Wave guided and confined
by using nonlinear velocity:

a higher nonlinear coefficient in the cladding than that in the core.
1 T T T T T T T

0.8
1

0.6
0.4
0.2

Guided profiles of the nonlinear waveguide. Normalized so that the totaépowe,l;

anger:

is 1. lga
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Two-cycle soliton of the nonlinear waveguide

!
t 100 150
) ; ; ;
L
= of
1L
2 7\ f | | | | |
-150 -100 -50 0 t 50 100 150
B, — B =
H. Leblond and D. Mihalache, Phys. Rev. A 88, 023840 (2013) B g

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



© Waveguide coupling in the few-cycle regime
@ Derivation of the coupling terms
@ Examples of behavior of the linear non-dispersive coupling
@ Few-cycle optical solitons in linearly coupled waveguides
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© Waveguide coupling in the few-cycle regime
@ Derivation of the coupling terms

@uu;ﬁen

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



o 2D waveguiding structure: two cores 1 and 2 and dielectric cladding

2

1
C - c - c

X

@ The generalized Kadomtsev-Petviashvili (GKP) equation
(dimensionless)

t
Ou = A3 u + Boosu® + Vo dru + V;“/ d2udt,

o = g in the cores 1 and 2, a = ¢ in the cladding.
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e Individual waveguides, in the linearized model (B, = 0):
The field is u = Rfi(x)e'“t=72) = Rf(x)e'?,
fi, (j =1, 2): guided mode profile, R: amplitude.
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e Individual waveguides, in the linearized model (B, = 0):
The field is u = Rfi(x)e'“t=72) = Rf(x)e'?,
fi, (j =1, 2): guided mode profile, R: amplitude.
@ We seek for a solution as
u= R(z)A(x)e" + S(2)f(x)e",

i.e., two interacting modes.

hstoniqae:
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e Individual waveguides, in the linearized model (B, = 0):
The field is u = Rfi(x)e'“t=72) = Rf(x)e'?,
fi, (j =1, 2): guided mode profile, R: amplitude.
@ We seek for a solution as
u= R(z)A(x)e" + S(2)f(x)e",
i.e., two interacting modes.

@ We report it into the GKP equation and get
— in the cladding 0;Rfi + 0,5 =0

“inguidel  O,Rf+0,5h = % (Ke — Kg) S

and so on.

Photonique:
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@ Individual waveguides, in the linearized model (B, =

The field is u = Rfi(x)e'“t=72) = Rf(x)e'?,
fi, (j =1, 2): guided mode profile, R: amplitude.
@ We seek for a solution as

u = R(2)A(x)e™ + S(2)h(x)e™,

i.e., two interacting modes.

@ We report it into the GKP equation and get
— in the cladding 0;Rfi + 0,5 =0

“inguidel  O,Rf+0,5h = % (Ke — Kg) S

and so on.
o Multiplying this by fi and integrating over all x
removes the x-dependency of f;, f» and we get

iwg (Ke — Kg) o

R =0,5 =80 " Te)2 (g )

2w 1+/1
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e Individual waveguides, in the linearized model (B, = 0):
The field is u = Rfi(x)e'“t=72) = Rf(x)e'?,
fi, (j =1, 2): guided mode profile, R: amplitude.

@ We seek for a solution as

u = R(2)A(x)e™ + S(2)h(x)e™,

i.e., two interacting modes.

We report it into the GKP equation and get
— in the cladding 0;Rfi + 0,5 =0

“inguidel  O,Rf+0,5h = % (Ke — Kg) S

and so on.

Multiplying this by fi and integrating over all x

removes the x-dependency of f;, f» and we get
iwg (Ke — Kg) I
R =0,5= £ £ R
0 0,5 o Tk (R+S),

o Involve overlap integrals h = [ fifadx, b = f fifrdx = f f1f2dX
( f -dx” is the integral over the core j =1 or 2.) B avgers Tine @
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@ We seek for a solution as
u= R(z)fl(x)e’.“’ + S(Z)fg(x)ei“",

i.e., two interacting modes.
e Multiplying this by fi and integrating over all x
removes the x-dependency of f;, f» and we get

iwg (Ke — Kg) o

,R=0,5= 8" Te)2(p )

2w 1+ 4

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic
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@ We seek for a solution as
u= R(z)fl(x)e’.“’ + S(Z)fg(x)e’.“’,

i.e., two interacting modes.
e Multiplying this by fi and integrating over all x
removes the x-dependency of f;, f» and we get

B _%(K Kg) b
0,R=0,5 % 14 (R+5),

@ The few-cycle pulse is expanded as a Fourier integral of such modes,
1= J Re'Pdw, up = [ Se'?dw.

B gers !

Photonique:
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@ We seek for a solution as
u= R(z)fl(x)e’.“’ + S(Z)fg(x)e’.“’,

i.e., two interacting modes.
e Multiplying this by fi and integrating over all x
removes the x-dependency of f;, f» and we get

B _%(K Kg) b
0,R=0,5 % 14 (R+5),

@ The few-cycle pulse is expanded as a Fourier integral of such modes,
up = [ Re'Pdw, up = [ Se'?dw.

@ We report 0,R and 9,5 into 0,u1,
and get the linear coupling terms.
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@ We seek for a solution as
u= R(z)fl(x)e’.“’ + S(Z)fg(x)e’.“’,

i.e., two interacting modes.
e Multiplying this by fi and integrating over all x
removes the x-dependency of f;, f» and we get

B _%(K Kg) b
0,R=0,5 % 14 (R+5),

@ The few-cycle pulse is expanded as a Fourier integral of such modes,
up = [ Re'Pdw, up = [ Se'?dw.

@ We report 9,R and 9,5 into O, u,
and get the linear coupling terms.

@ Finally, we get the system of two coupled modified Korteweg-de Vries
(mKdV) equations

Ozt = AdFu1 + BOui + VOrur + COrup + DO up,
8zU2 = Aa? u» + Bat U% + vatUZ + Cat up + Da‘%u]ﬁ“ I,m:r; rhu'g)
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Nonlinear coupling

@ An analogous procedure, treating the nonlinear term as a
perturbation, yields a evolution equation

O,u1 = L(u1) + 0t [I3U% + Iy (3U]2_U2 + ug)] .
o The integrals involved are l5 = [0 Byfitdx, Is = [ B, hdx.

@ The complete final system is

d;ur = AdRuy 4 Bow + Vo

+COeur + DARup + EO; (3U3un + 13)
O;p = Ad2upy + BOwu3 + Viun

+COun + DO} uy + EO; (Buruz + u3)

H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016)
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Nonlinear coupling

@ The complete final system is

d;ur = AdRuy 4 Bows + Vo

+COeur + DIRup + EO; (3u3un + 13)
O;p = Ad2uy + BOwu3 + Viun

+COun + DO uy + EO; (Burup + u3)

@ We evidence

H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016)
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Nonlinear coupling

@ The complete final system is
O,up = AdRuy + Boud + Voru
+COeur + DIRup + EO; (3u3un + 13)
O;p = Ad2uy + BOwu3 + Viun
+COpuy + DOFuy + EOy (Buyun + u3)

@ We evidence
e a standard linear coupling term,

H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016)
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Nonlinear coupling

@ The complete final system is

d;ur = AdRuy 4 Bows + Vo

+COeur + DI} s + EOy (3u3up + 13)
O;p = Ad2uy + BOwu3 + Viun

+COpur + DOy + Edy (Buyun + u3)

@ We evidence

e a standard linear coupling term,
e a linear coupling term based on dispersion,

H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016)
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Nonlinear coupling

@ The complete final system is

d;ur = AdRuy 4 Bows + Vo

+Crur 4+ DO} 1n + EO; (3uqu + ug’)
O;p = Ad2uy + BOwu3 + Viun

+COrun + Di)?ul + EO: (3U1U2 + uf)

@ We evidence
e a standard linear coupling term,
e a linear coupling term based on dispersion,

e a nonlinear coupling term

H. Leblond, and S. Terniche, Phys. Rev. A 93, 043839 (2016)
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© Waveguide coupling in the few-cycle regime

@ Examples of behavior of the linear non-dispersive coupling

[
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@ We assume a purely linear and non-dispersive coupling

O,u = —0(u®) — 02u— Copv,
O,v = —0¢(v®) —d3v — Cou,

@ The initial data is

u=Aysin(wyt + ) ef(’:*t”)z/ﬂ%7
v=A,sin(w,t+p,) e (t=t)/mv.

-
& ingens
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@ A soliton is launched in channel u and a smaller input in channel v.
Initial pulses: u

0
-1 J
-50 -30 -10 10 30 f 50

u forms a soliton, v is spread out.
e Output, uncoupled: ,, ,2f
s 1,

@ Output, coupled: 13
0

-0.6

-1.6
-50 -30 -10 10 30 { 50

A vector soliton forms.

(Blue line: u, red line: v. Output at z = 2,coupling C = -1 or 0. A, =2, A, = 0.2,

A=A =1, FWHM, = FWHM, =3, ¢, = p, =0, t, = t, = 0. B
@ Some energy is transferred form one channel to the other.
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@ Mutual trapping of solitons:
It can occur if their center don't coincide initially

1t - 2.7
Initial pulses: v

-0.7r

-2.7
-50 -30

e Output, uncoupled: u,v(l)'_i,

-1.51

-3.5
-50 -30

30 f 50

@ Output, coupled: 35

u’vl.s—

-0.5F

230 30 -10 10 30 f 30

Blue line: u, red line: v. Output at z = 2, coupling C = —1o0or 0. A, = A, =3,
A=A =1 FWHM, = FWHM, =2, oy = p, =0, t, =1, t, = —1). @ "

angers
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@ Two solitons with different frequencies can lock together.
Initial pulses:

@ Output, uncoupled:

o Output, coupled:

-50 -30 -10 10 30 ¢ 50

Blue line: u, red line: v. Output at z = 2, coupling C = —1o0or 0. A, = A, =18, \, =1,

o

Av = 0.8, FWHM, = FWHM, =3, ¢, = ¢, =0, t, = t, = 0).
@Amgenly
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© Waveguide coupling in the few-cycle regime

@ Few-cycle optical solitons in linearly coupled waveguides

[
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@ We look for stationary states (vector solitons) in this model
@ The "stationary” states oscillate with t and z: .

few-cycle solitons are breathers.
@ A typical example of few-cycle vector soliton

2

2 I I I I I
-110  -100 -90 -80 =70t -60 -50

(Dotted lines: u, solid lines: v. Left: at z = 0, right: at z = 60. < Au@mf}'&&%} b
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@ Evolution of soliton’'s maximum amplitude during propagation.

max,(lul)
5

max,(Ivl)

475 6 71 8
Soliton with < A, >= 1.789.
@ Two types of oscillations:

e Fast: phase - group velocity mismatch
e Slower: periodic energy exchange, as in linear regimey ...
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@ Consider now the coupled equations in the linearized case.

[
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@ Consider now the coupled equations in the linearized case.
@ The monochromatic solutions are

u _ A —i(wt+bw3z)
(v)=(5 )

@uu;ﬁen
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@ Consider now the coupled equations in the linearized case.
@ The monochromatic solutions are

u _ A —i(wt+bw3z)
(v)=(5 )

@ With, due to coupling,

A = ug cos cwz + ivg sin cwz,

B = vy cos cwz + iugsin cwz.

& ingens
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@ Consider now the coupled equations in the linearized case.
@ The monochromatic solutions are

u _ A —i(wt+bw3z)
(v)=(5 )

@ With, due to coupling,

A = ugcos cwz + ivgsin cwz,

B = vy cos cwz + iugsin cwz.

@ The maximum amplitude and the power density of the wave oscillate
with spatial frequency cw/m = og = 1.326.

'
& ingens
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Oscillations of the few-cycle vector solitons

o The energies E, = [ u?dt and E, = [ vdt oscillate
almost harmonically, as E, =< E, > +AE,sin(2r0,z + ¢£ u),

X
0.2 s
X X
* * * Xx,
g 015 oy i
. *
<> *x*xx&;(x Xx%
< 01 weox N
- * o x X,
q:: — ¥ X
T, =
< 005 Tty Xk
‘m\fﬂ* X
S
b 4
017 18 181 1.82A1A83 184 185 186
<A,>

u

@uu;ﬁers
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Oscillations of the few-cycle vector solitons

o The energies E, = [ u?dt and E, = [ vdt oscillate
almost harmonically, as E, =< E, > +AE,sin(2r0,z + ¢£ u),
@ The same for A, = max(|u|) and A, = max(|v|)

X
0.2 s
X X
* * * Xx,
g 015 oy i
. *
<> *x*xx&;(x Xx%
< 01 weox N
- * o x X,
q:: — ¥ X
T, =
< 005 Tty Xk
‘m\fﬂ* X
S
b 4
017 18 181 1.82A1A83 184 185 186
<A,>

u
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Oscillations of the few-cycle vector solito

o The energies E, = [ u?dt and E, = [ vdt oscillate
almost harmonically, as E, =< E, > +AE,sin(2r0,z + ¢£ u),
@ The same for A, = max(|u|) and A, = max(|v|)
@ Spatial frequency o, € [1.06,1.17], increasing with < A, >.
(linear: o9 = 1.326).

X
0.2 .
X X
* * * Xx,
< 015 . &xXx&
. *
<> *x*xx&;(x Xx%
< 01 weox N
- o % X,
3 . X X
<t T, e
<1 005 Teta .
S
)
b4
0179 18 181 182 183 184 185 186
<A,>

u
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Oscillations of the few

o The energies E, = [ u?dt and E, = [ vdt oscillate
almost harmonically, as E, =< E, > +AE,sin(2r0,z + ¢£ u),
@ The same for A, = max(|u|) and A, = max(|v|)
@ Spatial frequency o, € [1.06,1.17], increasing with < A, >.
(linear: o9 = 1.326).
@ Amplitudes of oscillations vs amplitude of field u

X
0.2 s
X X
* * * Xx,
g 015 oy i
. *
<> *x*xx&;(x Xx%
< 01 weox N
- * o x X,
q:: — ¥ X
T, % .
< 005 Tty Xk
ﬂi\fﬂ* %
S
b 4
0179 18 181 182 183 184 185 186

<A,>

u

@uuger
black saltires: AE,; blue stars: AA,; red crosses: AA,. ’
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Oscillations of the few

o The energies £, = [ u?dt and E, = [ vdt oscillate
almost harmonically, as E, =< E, > +AE, sin(2n0.z + ¢£,4),
@ Amplitudes of oscillations vs amplitude of field u

B
0.2 .
*
“ 3
< 015 Xxx);(xx
- X
= HKx;
< He K 9 *xX X -
< 0.1 X K *&Xxx
3 . ¢
< ey "y * %&:
<1 0.05 TPy, A0
W\ﬁ*\ff’J %
K%
et
b
07179 18 181 182 183 184 185 186
<A,>

black saltires: AE,; blue stars: AA,; red crosses: AA,.

o Well fitted with AE, ~ Ry/Ap— < A, >, etc., with Ag = 1.854.
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Evolution of the ratio v/u

@ Almost constant vs t
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Evolution of the ratio v/u

Or 6 = arctan .
@ Oscillates almost harmonically with z.
@ Amplitudes of oscillations vs field v amplitude:

16 M
141
o 12F
2
210
-~ 67
f==}
< 4 - S
27 e R ++#+++
.
) S
0 1.79 1.8 181 1.82 183 1.84 185 1.86

<A,>
Black line: mean value < 6 >; green line: A6.

Crosses: raw numerical data; solid lines: linear or parabolic fits.

%) angers

S. Terniche, H. Leblond, D. Mihalache, and A. Kellou, submitted to Phys‘%ev. A

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



© Few cycle spatiotemporal solitons in waveguide arrays
@ Formation of a solitons from a Gaussian pulse
@ Two kind of solitons
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© Few cycle spatiotemporal solitons in waveguide arrays
@ Formation of a solitons from a Gaussian pulse
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@ A set of coupled waveguides within the same model, as:

Ozup = _aat(u%) - bagun — cO¢ (Un—l + Un+1) s

o Initial data

n? t2
un(z = 0,t) = Agsin(wt + @) exp <_x2 - 7_2) ;

o We fix pg =0, x =1, A =1, and we vary Ap and 7.

& ingens
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Formation of a solitons from a Gaussian pulse

o Input

-40

-20
t —

0 —

20

40

6 4 2 0,2 4 6
z=0, fwhm = 3.5. & ivgers'
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Formation of a solitons from a Gaussian pulse

@ Low amplitude output: diffraction and dispersion

40

20
t =——————=—

0 —
20
40
6 4 2 0 02 4 6
z=0.72, Ap = 0.2, fwhm = 3.5. & ingers'
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Formation of a solitons from a Gaussian pulse

@ High amplitude output: space-time localization

40
20

t —
0
20
40

6 4 20 02 4 6
z = 288, Ag = 2.06, fwhm = 3.5. B e
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An energy threshold for soliton formation?

@ Domain for soliton formation

Blue: soliton; red: dispersion-diffraction.
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An energy threshold for soliton formation?

@ Domain for soliton formation

16

1 5 . 5 R e +4++++ﬁ++++++*+#++++ﬁ*’++++++ j«fr#Jrﬂﬁtpff#Z*# ++++ T 4
PHEHHEEHHE R P P R, TSy
++++++++++++ﬁ++H+H**##*H+++*+t+++H++ﬁ+++#’*+++++++“*m++t'f’ﬁ o g, T
s s g e St e
e P R e
15+ R e L B
b P P e B '
PRt e i
e ey
e et
14.5¢ e P R b 9
++++++++++++++++

A3 fwhm

14773 2 25 3 35
Ag

Blue: soliton; red: dispersion-diffraction.
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© Few cycle spatiotemporal solitons in waveguide arrays

@ Two kind of solitons
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@ Two kind of solitons: breathing and fundamental.
localized in space and time

@ Breathing soliton: o
oscillating wave packet

320
330
340
350
360

370

380
-4 -2 0 n 2 4

max |u| = 3.1801
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@ Two kind of solitons: breathing and fundamental.
localized in space and time

@ Breathing soliton: L
oscillating wave packet

3

%) w w w w w
320 330 340 350 t 360 370 380

max |u| = 3.1801 B ingers!

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



localized in space and time

o Fundamental soliton: .
single humped

20
30
40
50
60

70

80

4 2 0, 2 4

max |u| = 2.5667

.
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@ Fundamental soliton: {

0.5

localized in space and time

single humped

7

20

30 40 50 ¢ 60

max |u| = 2.5667
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@ Thank you for your attention.

@uu;ﬁers

Leblond, Mihalache, Kremer, Terniche ( LabcFew-cycle optical solitons in coupled waveguic



@ Models for few-cycle solitons
@ The mKdV-sG equation
@ Nonlinear widening of the linear guided modes

© Waveguide coupling in the few-cycle regime
@ Derivation of the coupling terms
@ Examples of behavior of the linear non-dispersive coupling
@ Few-cycle optical solitons in linearly coupled waveguides

© Few cycle spatiotemporal solitons in waveguide arrays
@ Formation of a solitons from a Gaussian pulse
@ Two kind of solitons
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