1/ p  1  2
A simple model: A two-component medium, each component is described by a two-level model

1/ p  1  2
We assume that the transparency range is very large: ω 1 (1/τ p ) ω 2 (τp: FCP duration).
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1/  p  1  2
We assume that the transparency range is very large: ω 1 (1/τ p ) ω 2 (τp: FCP duration).

In a first stage, the two components are treated separately UV transition only, with (1/τ p ) ω 2 1/ p  2

A transparent medium

In a first stage, the two components are treated separately UV transition only, with (1/τ p ) ω 2 1/ p  2 =⇒ Long-wave approximation modified Korteweg-de Vries (mKdV) equation 

∂E ∂ζ = 1 6 d 3 k dω 3 ω=0 ∂ 3 E ∂τ 3 - 6π nc χ ( 

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂ 2 ψ ∂z∂t + c 1 sin ψ + c 2 ∂ ∂t ∂ψ ∂t 3 + c 3 ∂ 4 ψ ∂t 4 = 0 ∂u ∂z + c 1 sin t u + c 2 ∂u 3 ∂t + c 3 ∂ 3 u ∂t 3 = 0 with u = ∂ψ ∂t = E E r : normalized electric field
Integrable by inverse scattering transform in some cases: ,
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Then the two approximations are brought together to yield a general model:

The mKdV-sG equation 

∂ 2 ψ ∂z∂t + c 1 sin ψ + c 2 ∂ ∂t ∂ψ ∂t 3 + c 3 ∂ 4 ψ ∂t 4 = 0 Or ∂u ∂z + c 1 sin t u + c 2 ∂u 3 ∂t + c 3 ∂ 3 u ∂t 3 = 0 with u = ∂ψ ∂t = E E r : normalized electric field

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u ∂z + c 2 ∂u 3 ∂t + c 3 ∂ 3 u ∂t 3 = 0 with u = ∂ψ ∂t = E E r : normalized electric field
Integrable by inverse scattering transform in some cases: mKdV,

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation 

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u ∂z + c 1 sin t u + c 2 ∂u 3 ∂t + 2c 2 ∂ 3 u ∂t 3 = 0 with u = ∂ψ ∂t = E E r : normalized electric field
Integrable by inverse scattering transform in some cases: mKdV, sG, and c 3 = 2c 2 .

The analytical breather solution 

Waveguide description

The evolution of the electric field E : In (1+1) dimensions:

-→ The modified Korteweg-de Vries (mKdV) equation

∂ ζ E + β∂ 3 τ E + γ∂ τ E 3 = 0 Nonlinear coefficient γ = 1 2nc χ (3) , Dispersion parameter β = (-n ) 2c ,
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Waveguide description

The evolution of the electric field E : We generalize to (2+1) dimensions: -→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

∂ ζ E + β∂ 3 τ E + γ∂ τ E 3 - V 2 τ ∂ 2 ξ Edτ = 0 Nonlinear coefficient γ = 1 2nc χ (3) , Dispersion parameter β = (-n ) 2c , Linear group velocity: V = c n . g c c x core cladding cladding -→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ∂ ζ E + β α ∂ 3 τ E + γ α ∂ τ E 3 - V α 2 τ ∂ 2 ξ Edτ = 0
with α = g in the core and α = c in the cladding.

Nonlinear coefficient γ α = 1 2n α c χ (3) α , Dispersion parameter β α = (-n α ) 2c ,
Linear group velocity:

V α = c n α . g c c x core cladding cladding -→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation ∂ ζ E + β α ∂ 3 τ E + γ α ∂ τ E 3 + 1 V α ∂ τ E - V α 2 τ ∂ 2 ξ Edτ = 0
with α = g in the core and α = c in the cladding. Velocities :

V g < V c Nonlinear coefficient γ α = 1 2n α c χ (3) α , Dispersion parameter β α = (-n α ) 2c ,
Linear group velocity:

V α = c n α . g c c x core cladding cladding -→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation
In dimensionless form:

∂ z u = A α ∂ 3 t u + B α ∂ t u 3 + v α ∂ t u + W α 2 t ∂ 2 x udt
with α = g in the core and α = c in the cladding.

Relative velocities :

v g > v c
Nonlinear coefficient

γ α = 1 2n α c χ (3) α , Dispersion parameter β α = (-n α ) 2c ,
Linear group velocity:

V α = c n α .

Linear guided modes

The dimensionless CGKP equation

∂ z u = A α ∂ 3 t u + B α ∂ t u 3 + v α ∂ t u + W α 2 t ∂ 2 x udt
We linearize and seek for solutions of the form

u = f (x) exp[i (ωt -k z z)]. Waveguide dispersion relation: tan(k x a) = κ k x Mode profiles of the form f = R cos(k x x) in the core f = Ce -κ|x| in the cladding

Linear guided modes

The dimensionless CGKP equation

∂ z u = A α ∂ 3 t u + v α ∂ t u + W α 2 t ∂ 2 x udt
We linearize and seek for solutions of the form

u = f (x) exp[i (ωt -k z z)].
Material dispersion relation:

k 2 x,α = 2ω V α A α ω 3 -k z -ωv α Waveguide dispersion relation: tan(k x a) = κ k x Mode profiles of the form f = R cos(k x x) in the core f = Ce -κ|x| in the cladding

Linear guided modes

The dimensionless CGKP equation

∂ z u = A α ∂ 3 t u + v α ∂ t u + W α 2 t ∂ 2 x udt
We linearize and seek for solutions of the form

u = f (x) exp[i (ωt -k z z)]. Waveguide dispersion relation: tan(k x a) = κ k x Mode profiles of the form f = R cos(k x x) in the core f = Ce -κ|x| in the cladding Guiding condition: A 2 ω 3 -ωv 2 < k z < A 1 ω 3
As in the usual symmetric dielectric planar waveguide.
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Nonlinear propagation in linear guide

We solve the CGKP equation starting from

u(x,t,z = 0) = A cos(ωt)f (x)e -t 2 /w 2 , f (x) = cos(k x x), for |x| ≤ a, Ce -κ|x| , for |x| > a, is a linear mode profile Normalized coefficients A 1 = A 2 = B 1 = B 2 = W 1 = W 2 = 1,
-→ we assume that -Temporal compression occurs -Spatial defocusing occurs, (else it collapses!) -Dispersion and nonlinearity are identical in core and cladding.

Guided wave profiles

(Normalized so that the total power is 1.

v 2 = 3, w = 2.)
The pulse is less confined in nonlinear (blue, and red) than in linear (pink and cyan) regime.

Nonlineary may reduce confinement. Indeed:

Waveguiding is due to total internal reflection.

-→ when the wave propagates too fast in the cladding, it cannot match the field oscillations in the core.

In the few-cycle regime, not only linear, but also nonlinear velocity (large and positive here).

The nonlinear velocity is larger in the core and creates a nonlinear variation of the index. It may compensate the linear part, and reduce the confinement. Important in very narrow guides, where linear confinement itself is low.

Nonlinear waveguide

Wave guided and confined by using nonlinear velocity: a higher nonlinear coefficient in the cladding than that in the core.

Two-cycle soliton of the nonlinear waveguide The field is u = Rf j (x)e i(ωt-βz) = Rf j (x)e iϕ , f j , (j = 1, 2): guided mode profile, R: amplitude. We seek for a solution as

∂ z u = A α ∂ 3 t u + B α ∂ t u 3 + V α ∂ t u + w α 2 t ∂ 2 x udt, α = g in
u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes. We report it into the GKP equation and get -in the cladding

∂ z Rf 1 + ∂ z Sf 2 = 0 -in guide 1 ∂ z Rf 1 + ∂ z Sf 2 = iw g 2ω (K c -K g )
Sf 2 and so on. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) , Involve overlap integrals I 1 = ∞ -∞ f 1 f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx
(" g j •dx" is the integral over the core j = 1 or 2.)

Individual waveguides, in the linearized model (B α = 0):

The field is u = Rf j (x)e i(ωt-βz) = Rf j (x)e iϕ , f j , (j = 1, 2): guided mode profile, R: amplitude. We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
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Individual waveguides, in the linearized model (B α = 0):

The field is u = Rf j (x)e i(ωt-βz) = Rf j (x)e iϕ , f j , (j = 1, 2): guided mode profile, R: amplitude. We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes.

We report it into the GKP equation and get -in the cladding

∂ z Rf 1 + ∂ z Sf 2 = 0 -in guide 1 ∂ z Rf 1 + ∂ z Sf 2 = iw g 2ω (K c -K g )
Sf 2 and so on. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get
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Individual waveguides, in the linearized model (B α = 0):

The field is u = Rf j (x)e i(ωt-βz) = Rf j (x)e iϕ , f j , (j = 1, 2): guided mode profile, R: amplitude. We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes.

We report it into the GKP equation and get -in the cladding

∂ z Rf 1 + ∂ z Sf 2 = 0 -in guide 1 ∂ z Rf 1 + ∂ z Sf 2 = iw g 2ω (K c -K g )
Sf 2 and so on. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) , Involve overlap integrals I 1 = ∞ -∞ f 1 f 2 dx, I 2 = g 1 f 1 f 2 dx = g 2 f 1 f 2 dx
(" g j •dx" is the integral over the core j = 1 or 2.)

We for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) ,
The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω.

We report ∂ z R and ∂ z S into ∂ z u 1 , and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 + C ∂ t u 2 + D∂ 3 t u 2 , ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 + C ∂ t u 1 + D∂ 3 t u 1 ,
We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) ,
The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω.

We report ∂ z R and ∂ z S into ∂ z u 1 , and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 + C ∂ t u 2 + D∂ 3 t u 2 , ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 + C ∂ t u 1 + D∂ 3 t u 1 ,
We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) ,
The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω.

We report ∂ z R and ∂ z S into ∂ z u 1 , and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 + C ∂ t u 2 + D∂ 3 t u 2 , ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 + C ∂ t u 1 + D∂ 3 t u 1 ,
We seek for a solution as

u = R(z)f 1 (x)e iϕ + S(z)f 2 (x)e iϕ ,
i.e., two interacting modes. Multiplying this by f 1 and integrating over all x removes the x-dependency of f 1 , f 2 and we get

∂ z R = ∂ z S = iw g 2ω (K c -K g ) I 2 1 + I 1 (R + S) ,
The few-cycle pulse is expanded as a Fourier integral of such modes, u 1 = Re iϕ dω, u 2 = Se iϕ dω.

We report ∂ z R and ∂ z S into ∂ z u 1 , and get the linear coupling terms. Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 + C ∂ t u 2 + D∂ 3 t u 2 , ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 + C ∂ t u 1 + D∂ 3 t u 1 ,

Nonlinear coupling

An analogous procedure, treating the nonlinear term as a perturbation, yields a evolution equation

∂ z u 1 = L(u 1 ) + ∂ t I 3 u 3 1 + I 4 3u 2 1 u 2 + u 3 2 .
The integrals involved are 

I 3 = ∞ -∞ B α f 4 1 dx, I 4 = ∞ -∞ B α f 3 1 f 2 dx. The complete final system is ∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 +C ∂ t u 2 + D∂ 3 t u 2 + E ∂ t 3u 2 1 u 2 + u 3 2 ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 +C ∂ t u 1 + D∂ 3 t u 1 + E ∂ t 3u 1 u 2 + u 3

Nonlinear coupling

The complete final system is

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 +C ∂ t u 2 + D∂ 3 t u 2 + E ∂ t 3u 2 1 u 2 + u 3 2 ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 +C ∂ t u 1 + D∂ 3 t u 1 + E ∂ t 3u 1 u 2 + u 3 1
We evidence a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term

Nonlinear coupling

The complete final system is

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 +C ∂ t u 2 + D∂ 3 t u 2 + E ∂ t 3u 2 1 u 2 + u 3 2 ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 +C ∂ t u 1 + D∂ 3 t u 1 + E ∂ t 3u 1 u 2 + u 3 1
We evidence a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term

Nonlinear coupling

The complete final system is

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 +C ∂ t u 2 + D∂ 3 t u 2 + E ∂ t 3u 2 1 u 2 + u 3 2 ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 +C ∂ t u 1 + D∂ 3 t u 1 + E ∂ t 3u 1 u 2 + u 3 1
We evidence a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term

Nonlinear coupling

The complete final system is

∂ z u 1 = A∂ 3 t u 1 + B∂ t u 3 1 + V ∂ t u 1 +C ∂ t u 2 + D∂ 3 t u 2 + E ∂ t 3u 2 1 u 2 + u 3 2 ∂ z u 2 = A∂ 3 t u 2 + B∂ t u 3 2 + V ∂ t u 2 +C ∂ t u 1 + D∂ 3 t u 1 + E ∂ t 3u 1 u 2 + u 3 1
We evidence a standard linear coupling term, a linear coupling term based on dispersion, a nonlinear coupling term Two solitons with different frequencies can lock together. Initial pulses:

Output, uncoupled:

Output, coupled: We look for stationary states (vector solitons) in this model The "stationary" states oscillate with t and z: . few-cycle solitons are breathers. A typical example of few-cycle vector soliton (Dotted lines: u, solid lines: v . Left: at z = 0, right: at z = 60. < Au >= 1.837).

Evolution of soliton's maximum amplitude during propagation. Two types of oscillations:

• Fast: phase -group velocity mismatch • Slower: periodic energy exchange, as in linear regime.

Oscillations of the few-cycle vector solitons

The energies

E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > +∆E u sin(2πσ a z + φ E ,u ), The same for A u = max t (|u|) and A v = max t (|v |) Spatial frequency σ a ∈ [1.06,1
.17], increasing with < A u >.

(linear: σ 0 = 1.326).

Amplitudes of oscillations vs amplitude of field u Well fitted with ∆E R A -< A >, etc., with A = 1.854.
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(linear: σ 0 = 1.326).
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Oscillations of the few-cycle vector solitons

The energies

E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > +∆E u sin(2πσ a z + φ E ,u ), The same for A u = max t (|u|) and A v = max t (|v |) Spatial frequency σ a ∈ [1.06,1
.17], increasing with < A u >.

(linear: σ 0 = 1.326).

Amplitudes of oscillations vs amplitude of field u Well fitted with ∆E R A -< A >, etc., with A = 1.854.

Oscillations of the few-cycle vector solitons

The energies E u = u 2 dt and E v = v 2 dt oscillate almost harmonically, as E u =< E u > +∆E u sin(2πσ a z + φ E ,u ), Amplitudes of oscillations vs amplitude of field u Well fitted with ∆E u R A 0 -< A u >, etc., with A 0 = 1.854.

Evolution of the ratio v /u

Almost constant vs t 
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We assume a purely linear and non-dispersive coupling

The initial data is u = A u sin (ω u t + ϕ u ) e -(t-tu) 2 /τ 2 u , v = A v sin (ω v t + ϕ v ) e -(t-tv ) 2 /τv .
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Consider now the coupled equations in the linearized case.

The monochromatic solutions are

With, due to coupling,

The maximum amplitude and the power density of the wave oscillate with spatial frequency cω/π = σ 0 = 1.326.

Oscillations of the few-cycle vector solitons

The energies

The same for A u = max t (|u|) and

.17], increasing with < A u >.

(linear: σ 0 = 1.326).

Amplitudes of oscillations vs amplitude of field u Well fitted with ∆E R A -< A >, etc., with A = 1.854.

A set of coupled waveguides within the same model, as:

We fix ϕ 0 = 0, x = 1, λ = 1, and we vary A 0 and τ . Two kind of solitons: breathing and fundamental.

Breathing soliton: localized in space and time oscillating wave packet