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In the name of the rose: a roadmap for rose
research in the genome era
Marinus J. M. Smulders1, Paul Arens1, Peter M. Bourke1, Thomas Debener2, Marcus Linde2, Jan De Riek3, Leen Leus3,
Tom Ruttink3, Sylvie Baudino4, Laurence Hibrant Saint-Oyant5, Jeremy Clotault5 and Fabrice Foucher5

Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens
up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also
become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and
software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly
heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of
the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of
historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding
work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible
lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises
after the completion of any draft genome sequence: ‘Now that we have “the” genome, what’s next?’. Having access to
a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be
addressed. We outline possible approaches for a number of these questions.

Introduction
Rose is the most well-known and beloved ornamental

plant worldwide. As in most other ornamental plant
breeding programmes, molecular tools have up to now
rarely been used. There is a number of obstacles to
implementing molecular breeding in roses. These include
its tetraploid nature, the fact that it is vegetatively pro-
pagated and that large genetic gains can still be achieved
by simple crossing and selection. Moreover, a significant
gap exists between research and breeding practices,
impeding the application of developed genetic tools in
practice. While for large agricultural crops the primary
focus is on yield and other quantitative traits for both the
academic community and breeders, rose research has

focussed on both characteristics that are qualitative, such
as presence/absence of the ‘double flower’, and some
disease resistances, and on complex qualitative traits,
including flower colour, scent emission, bud outgrowth1,
floral development and vernalization response2. Although
rose is an ideal model species for studying the molecular
basis of these traits, they are easily examined by eye by
breeders. For instance, scent is a complex trait that is
being studied, but it is examined by an experienced nose
in a breeding programme.
The worldwide rose research community is relatively

small. Therefore, the development of new information
and tools for rose breeding and genetics in the past few
years has been an important step. The availability of rose
genome sequences3–5 has made the identification of
candidate genes for these traits possible. Once a candidate
gene has been found, allelic diversity may be linked to
functional diversity (see ref.6), leading to ‘candidate
alleles’, which is of much use in a highly heterozygous and
polyploid crop. Next-generation sequencing has also
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facilitated the creation of transcriptomes and large num-
bers of single-nucleotide polymorphism (SNP) markers,
which can be assessed using the 68k WagRhSNP array for
rose7 or by single SNP assays using flanking sequence
information. Owing to newly developed software for
dosage scoring and genetic mapping in polyploids, ultra-
dense genetic maps have recently been produced in
diploid5 and tetraploid rose8,9 that contain many more
markers than maps from previous diploid rose popula-
tions (collated in ref.2). These maps have enabled sub-
sequent quantitative trait locus (QTL) mapping studies10

and genome-wide association analyses11,12 in tetraploid
rose, helping to identify regions of the genome that are
statistically correlated with traits of interest. As the gen-
omes and most of the resources are publicly available,
rose genomics is far more accessible than ever before.
Here we discuss the opportunities for better under-

standing of structural variation in the rose genome and
genome evolution in the genus Rosa and applications for
QTL mapping, genome-wide association study (GWAS)
analysis and functional analyses of traits, and for measuring
genetic diversity, which, we hope, will ultimately improve
the speed and precision of breeding new rose cultivars.

Genome sequence and genomic tools in rose
The rose genome sequences
Nakamura et al.3 released the first rose genome

sequence from the wild and heterozygous Rosa multiflora.
It was still a genome in pieces (low N50 and 83,189 scaf-
folds, Table 1). The recent release of two high-quality
reference genomes, obtained by sequencing haploids
using a combination of short and long reads, represents a
tremendous improvement with N50 of 3.4 and 24Mb and
551 and 82 scaffolds, respectively (Table 1). Pseudomo-
lecules, corresponding to the chromosomes, were
obtained by anchoring the new sequences to a high-
density diploid SNP genetic map5 or to the high-density

map for tetraploid rose of Bourke et al.8, and validated by
HiC sequencing4. Details concerning genes and transpo-
sable element annotation are listed in Table 1. The gen-
omes are publicly available at GDR13, NCBI and some
dedicated websites (Table 1).
A comparison of the two independent assemblies of the

haploids of Rosa chinensis ‘Old Blush’ indicates that at they
are essentially co-linear, indicating a high level of accuracy
at both the contig and scaffolding level. Some assembly
discrepancies appear as rearrangements (Fig. 1). These
rearrangements may be due to assembly problems or they
may highlight structural differences between the two
haplotypes in ‘Old Blush’, which has been described as an
interspecific hybrid14. One local rearrangement that has
been studied in detail is at the continuous-flowering locus,
where a large inversion led to the loss of the RoKSN gene
(Fig. 1, ref.5). The R. multiflora genome3 has not been
compared to the other two as it is much more fragmented.

Transcriptomics resources
Next-generation sequencing has also facilitated the

creation of transcriptome data of various tissues and
developmental stages for several genotypes and species
(e.g. see refs.15–18). Such data can be further used to
perform gene curation and annotation. As more and more
transcriptomic data will be available with their associated
metadata, a gene expression atlas can be developed; such
tools will help to select for candidate genes and perform
meta-analysis.

Molecular markers
SNPs are abundantly present as genetic variation

between and within accessions, their detection can be
automated and they are easily linked to genome sequen-
ces (based on the flanking regions). Therefore, they are
currently the marker of choice. Large numbers of SNP
markers have been generated in rose using genomic or

Table 1 Principal metrics of the recent published rose genome sequences

Genotype Haploid of ‘Old Blush' Haploid of ‘Old Blush' Rosa multiflora Thunb.

Methods Illumina/PacBio Illumina/PacBio Illumina

N50 3.4 Mb 24 Mb 90.8 kb

No. of contigs 551 82 83189

Total genome size 512 Mb 515 Mb 740 Mb

Annotated genes

Coding 39,669 36,377 67,380

Non-coding 4812 3971 ND

Transposable elements 61.8 65.2 56.4

Class I 35.1 31.6 12.3

Class II 11.7 11.6 2.4

Other 15 22 39.2

Reference 5 4 3

Dedicated websites https://iris.angers.inra.fr/obh/ https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/ http://rosa.kazusa.or.jp/

N50 represents the length of the contig in order to have 50% of the total assembly contained in contigs larger than this value. ND for non determined
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transcriptomic sequences19,20. The 68k WagRhSNP
Axiom SNP array7 was designed to genotype more than
68,000 SNPs identified from transcriptome sequences
from 12 modern garden roses, two cut rose cultivars and a
R. multiflora hybrid7. PCR-based marker systems, for
example, KASP (Kompetitiv Allele-Specific PCR) can be
used for single SNP marker genotyping as well. Since
many SNP markers are polymorphic in both garden and
cut roses, and in diploid as well as tetraploid roses, there
are now many publicly available resources to identify

regions in the genome that are associated with traits of
interest.
Current and future comparisons across studies will

benefit if this SNP array, or a subset of the SNPs on the
array, is used for genotyping across different studies. For
instance, it would become possible to expand the sample
size of a GWAS study, or to do a combined re-analysis on
data from independent GWAS panels.
Biallelic SNPs can provide similar levels of discerning

power as multi-allelic simple sequence repeat (SSR)

Fig. 1 Comparison between the two Rosa chinensis ‘Old Blush’ sequences released in 2018. On the x-axis, the OBDH_1.0 Angers assembly
(accessed from https://iris.angers.inra.fr/obh/) versus, on the y-axis, the RchiOBHm-V2 Lyon/Toulouse assembly (accessed from https://lipm-browsers.
toulouse.inra.fr/pub/RchiOBHm-V2/). Blue points represent forward alignments, while red dots represent reverse alignments, with a minimum length
of 250 bp. The alignment was performed using MUMmer v3.23159. Chromosome 3 of the RchiOBHm-V2 assembly is in the orientation of the ICM map
of Spiller et al.2. The rearrangement at two-thirds of chromosome 3 is around the RoKSN locus5
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markers if a sufficiently large number of SNP markers is
employed. The power to distinguish multiple alleles at a
locus may also be increased by combining a number of
neighbouring SNP markers into a single multi-allelic
marker and analysing them as haplotypes21. Haplotypes
also carry information on identity by descent. The first
strategies have been developed to infer phasing of
haplotypes from genotype data; however, they have a
low efficiency when ploidy increases22. Sequencing
technologies such as Pacific Biosciences and Oxford
Nanopore produce longer sequencing reads, and
therefore also longer (and potentially more informative)
haplotypes.
Re-sequencing for diversity analysis avoids possible

ascertainment bias while offering allele dosage estimates
from read proportions23–25, although various steps in the
actual protocol used may negatively affect the reliability of
dosage estimation in polyploids. Re-sequencing at very
low coverage per individual (skim sequencing) or the use
of a complexity reduction step26, such as restriction-site-
associated DNA sequencing or genotyping by sequencing
(GBS), has been proposed to reduce cost, and indeed have
already been applied in rose5,27,28. Population genetics
analysis that do not require individual genotype infor-
mation (Pool-seq) reduces the number of libraries, while
protocols for reducing the costs of libraries have also been
developed29.
As most cultivated roses are complex hybrids, Insertion/

Deletion variants (InDels) occur frequently5. Indels thus
represent an interesting source of genetic variation. Re-
sequencing will include them; however, indels are difficult
to detect in a reliable way as variant calling programmes
often disagree on the detection of indels. Hence, the
quality (reproducibility) is often much lower than for SNP
calls. In Citrus it was shown that indels can help account
for the contribution of ancestral species30.

Genotyping and genetic mapping
SSR (or ‘microsatellite’) markers have been widely

employed in genetic diversity and mapping studies in rose.
Several genetic maps have been produced with SSR
markers and other markers, including amplified fragment
length polymorphism (AFLP) and nucleotide binding site
(NBS) to map traits, mostly in diploid crosses. These maps
have been integrated by Spiller et al.2 into a consensus
map. The numbering and orientation of this map, with
annotated traits, have subsequently been used for high-
density SNP array-based maps, which in turn were used
for anchoring and ordering the rose genome sequences,
thus tying together most genetic mapping and QTL stu-
dies in rose. As the SNP markers were derived from
expressed sequences, this gave a focus on the part of the
genome where most genes reside and where most
recombinations occur during meiosis, and thus to a high-

quality haploid genome assembly in those regions that are
of the highest interest.
For polyploids, SNP array data currently provided the

clearest information on the allele dose of markers. Using
the dosage of SNP markers, tetraploid SNP genotypes can
be used for linkage analysis with dedicated polyploid
mapping software such as TetraploidSNPMap31 or poly-
MapR10,32. Ultra-dense genetic maps thus have recently
been produced in diploid5 and tetraploid rose8,9,33, either
for separate homologous chromosomes, or integrated
across chromosomal linkage groups (LGs). Yan et al.27

made a map using SNPs in GBS data. The dense SNP
maps have enabled subsequent QTL mapping studies34

and genome-wide association analyses11,12 in tetraploid
rose, helping to identify regions of the genome that are
statistically correlated with traits of interest.

Genetic diversity in rose
Historical rose breeding involved a complex sequence of

interspecific hybridizations between seven to fifteen wild
species that contributed to the germplasm of modern
roses (the number depends on the interpretation and
importance attributed to their contribution to the
domestication), thus shaping the genomes of modern
cultivars after three centuries of breeding35,36. This aty-
pical genetic bottleneck means that genetic diversity in
roses now encompasses two sources of sequence varia-
tion. On the one hand, genetic diversity in the genus Rosa
comprises 140 to 180 wild species, including all genetic
variation therein; on the other hand, it comprises a tre-
mendous number of rose cultivars, currently estimated to
exceed 30,000 cultivated cultivars37.
Several studies on genetic diversity in rose have been

performed with SSR markers38–42, mostly in the cultivated
germplasm. Phylogenetic studies have been conducted on
Rosa species across the genus, and on modern rose culti-
vars, indicating close relationships between different bota-
nical sections and horticultural groups (refs.42–48). These
studies have shed some light on general patterns of genetic
diversity, but give little information on the contribution of
specific parents in hybridizations to desired traits.

Rose domestication
Two important rose species can be considered to be

domesticated in the common sense of the term: the tet-
raploid Rosa gallica in Europe49 and the diploid R. chi-
nensis in Asia39. The most remarkable recent insights in
the origin of modern cultivated roses concern the study of
the genetic structure of old Chinese garden roses39, their
large introgression in the European germplasm since the
eighteenth century42 and the subsequent selection during
the twentieth century within a subsample of these hybrid
garden roses to obtain cut roses40. In contrast, almost
nothing is known on the origin of the roses that are used
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for the production of essential oils: Rosa damascena and
Rosa centifolia.
A comparative analysis of these two domestication

events in different parts of the world has not been carried
out yet. It would involve wild and early cultivated geno-
types of the two species and may reveal the precise
location of domestication events by comparison to wild
gene pools, the presence of potential genetic bottleneck(s)
during the domestication event and even the timing of
domestication events. Generally, the domestication of
perennial species, often with long intergenerational time,
is more recent than most annual crops and involves
shorter or even no genetic bottlenecks, leading to a
reduced domestication syndrome. Rose, as a perennial
species with a short juvenile phase, may have an inter-
mediate pattern. Next to testing the impact of ploidy level
on domestication dynamics, the comparison of regions
targeted by selection in R. gallica and R. chinensis and the
domestication syndrome traits in common between the
two species (double flower, colour diversification) or
specific to one of the species (recurrent blooming in Rosa
chinensis, abiotic stress tolerance in Rosa gallica) could
clarify the phenomenon of convergent or differential
domestications. As in other perennials, including apple,
citrus and olive50–52, introgressions may have played an
important role in the domestication of rose.

Mosaic genomes in modern roses
Species hybridizations may have led to ‘mosaic’ gen-

omes, which are formed by small parts of discontinuous
ancestral genomes, as has been observed in cultivated
Citrus50. Re-sequencing of the first modern rose cultivar
‘La France’ and three or four species each from the sec-
tions Cinnamomeae, Synstylae and Chinenses showed that
large regions of chromosome 2, 3 and 5 of the triploid
cultivar ‘La France’ have a strictly Chinenses origin, while
other regions of chromosome 2, 5 and 7 had a Synstylae
origin only4. This study on ‘sequence signatures’ is the
first step towards a more comprehensive understanding of
the history of the rose breeding process.
Owing to the vegetative propagation of cultivars since

their commercial introduction, the original genome con-
stitution can still be accessed and sequenced and thus 300
years of rose breeding history can be reconstructed.
Sequencing of founder individuals of subsequently
developed horticultural groups, or cultivars with great
commercial or breeding success, may reveal the origin of
ancestral genome segments (sequence signatures).
Reconstructing the segregation of these ‘founder haplo-
types’ throughout centuries of breeding as captured in
cultivar collections, while correlating these genomic seg-
ments with the evolution of horticultural traits in roses,
may identify signatures of selection. In addition to ‘La
France’, a broader study of various Tea hybrids may show

if the observed patterns of single ancestry of specific
chromosomic regions were targeted by breeders or if they
appeared by chance, by researching over-representation of
a given ancestry in the pedigree. This approach has
already been used in apple, peach, cherry and strawberry
to identify haplotypes passed on by highly successful
parents during the breeding process53–59. Identification of
genealogical relationships between cultivars60 can be used
for validation.
Understanding the mosaic genomes of modern culti-

vated roses may also detect the occurrence and determine
the impact of structural divergence between hom(e)olo-
gous chromosomes during meiosis. A study of pairing
behaviour between tetraploid rose parents of a segregating
population showed evidence for ‘segmental allote-
traploidy’: pairing of some chromosomes was preferential
(partially disomic) while most other chromosomes
behaved tetrasomically8. Sometimes, these two modes of
inheritance were observed in segments of the same
chromosome, in the meiosis of one of the parents. A
comparison of chromosome pairing behaviour during
rose meiosis and the occurrence of structural variation
between hom(e)ologous chromosomes across several
meiosis in different genetic backgrounds is needed in
order to understand the link between these two phe-
nomena, including which type(s) of structural variation
exist. Alternatively, the behaviour may be genetically
governed. In the latter case the mechanism may not be
rose-specific. Nevertheless, rose is a suitable model crop
for such studies as several species and much historical
material (old cultivars produced involving species crosses)
is available. A broad analysis of the modes of inheritance
in various modern rose cultivars, but also in old garden
roses and wild roses, should clarify whether ‘segmental
allotetraploidy’ occurs commonly in the genus Rosa or
whether it is genotype-specific, and whether it occurs
more frequently in some subsets of the rose germplasm
than others.

Sports
Rose cultivars are clonally multiplied through vegetative

propagation. However, mutations occur frequently, lead-
ing to variation, sometimes visible phenotypically
(‘sports’). Most of this variation is thought to be due to
point mutations, although transposon activity and epige-
netic effects cannot be ruled out. Consistent with point
mutations, original cut rose varieties and mutants thereof
were identical with 11 SSR markers, so mutant families
could easily be detected, while all seedling-derived vari-
eties could be clearly distinguished from them and from
each other (similarity <0.90)61.
Comparing the genome of pairs of sport and original

cultivar may provide information on genomic regions that
explain mutant phenotypes and help to understand why
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some traits are more often involved in sports, such as
climbing growth habit or petal colour changes.

The Canina meiosis
Species of the Caninae section display a unique type of

asymmetric meiosis that has not been described in other
angiosperm species62,63. It also appears in Alba roses, a
European Old garden rose group, which could be hybrids
between sections Caninae and Gallicanae64. The Caninae
section is composed of tetraploid, pentaploid and hex-
aploid species. Irrespective of the ploidy level, the Cani-
nae asymmetric meiosis involves the formation of one set
of bivalent-pairing chromosomes and the remaining
chromosomes are univalent (unpaired). One reduced set
of bivalent chromosomes and all the univalent chromo-
somes are included in an egg cell, while the other reduced
bivalent chromosome set is transmitted by pollen cells. It
was shown by molecular markers and fluorescent in situ
hybridization that the two bivalent-forming chromosomes
are highly homologous, whereas univalent chromosomes
are more divergent65,66. Genome sequencing of several
species of the section Caninae may help to reveal whether
structural variation among bivalent and univalent chro-
mosomes is the primary cause of asymmetric meiosis or if
and how the decision per chromosome to pair or not to
pair is genetically controlled. Inheritance of haplotypes or
complete chromosomes through pollen and egg cells can
be most efficiently studied using a dense array of SNP
markers. The software package polymapR can deal with
odd ploidies and with offspring of plants with different
ploidy level10,32. Based on the offspring data preferential
chromosomal pairing in each parent can be detected, and
all meiotic recombination events would become visible.

Structural genomic variation in rose
Interspecific genomic variation
In the genus Rosa the 2C DNA amount in diploid

species ranges from 0.78 pg in Rosa xanthina (section
Pimpinellifoliae) to 1.29 pg in ‘Félicité and Perpétue’
(hybrid Sempervirens)67 and from 0.73 pg in R. zhong-
dianensis (section Pimpinellifoliae) to 1.77 pg in R. bru-
nonii (section Synstylae)68. The recently sequenced R.
chinensis is among the largest genomes known among
diploid roses (estimated at 1.16 pg67 to 1.67 pg68). Roses
from the Pimpinellifoliae section generally have the
smallest genome size, while Synstylae roses have the lar-
gest genomes68.
Genome size variation in angiosperms is typically

associated with two types of events: whole-genome
duplication (WGD) or transposable element amplifica-
tion69,70. With regard to the latter, approximately 68% of
the R. chinensis reference genome sequence consists of
transposable elements, especially long-terminal repeat
retrotransposons like Gypsy and Copia elements5. For

most transposable element families, a two-fold higher
abundance was found in Rosa as compared to Fragaria
vesca5, explaining a substantial part of the genome size
difference between R. chinensis and F. vesca. Shallow
shotgun sequencing of a comprehensive sets of species
across the genus Rosa and subsequent clustering and
quantification of repetitive sequences will reveal if
species-specific repetitive elements exist. More extensive
(re)sequencing will be needed to ascertain whether dif-
ferential amplification of transposable elements can
explain the variation in genome size among rose species.
Besides the role of transposable elements in genome

size evolution, the insertion of copia elements into specific
protein-coding genes5,71 gave rise to two of the most
important horticultural traits: double flower and recurrent
blooming (see below). Rose breeding in general may have
favoured species from sections with large genomes, as
transposon activity is known to create allelic diversity72. A
related question is whether retrotransposon activity is
higher in tetraploid taxa compared to diploids, and whe-
ther this has also led to functional variation that is useful
for the ornamental value of roses.
Whole-genome assembly and gene prediction has

revealed no signs of recent WGD events in R. chinensis4,5.
In addition, despite the difference in genome size, the
240Mb F. vesca genome contains 34,809 predicted
genes73, while the 560Mb ‘Old Blush’ R. chinensis genome
has only fractionally more predicted genes (39,669 genes5;
36,377 genes4).

Rose comparative genomics
From an evolutionary point of view, rose is a very

interesting model species as it includes species at several
ploidy levels as well as many cultivars with a hybrid ori-
gin74. The sequencing of thousands of individuals in
Arabidospis thaliana75, rice76 and maize77 has demon-
strated extensive differences in genome constitution even
among accessions within a species, leading to the defini-
tion of ‘core’ genes (which are present in all members of a
species), and ‘distributed’ or ‘dispensable’ genes (present
in a subset of members). The ‘pan-genome’ represents the
full genome complement across all sampled members.
Metagenome-like assembly strategies in rice76 and an

analysis of 3010 re-sequenced rice accessions78 revealed
that ‘distributed’ gene families showed enrichment in
regulation of immune and defence responses. Other stu-
dies also unveiled their role in adaptation to abiotic and
biotic stresses79, species diversification and development
of novel gene functions80. (Meta)genome assembly and
gene annotation of species across the Rosa genus and in
closely related species, and subsequent comparative
genomics will be required to define whether rose also has
conserved and lineage-, section- and/or species-specific
genes. One of the possible hypotheses is that resistance

Smulders et al. Horticulture Research            (2019) 6:65 Page 6 of 17



(R) genes behave as a dispensable group gene family,
while susceptibility (S) genes generally would be mem-
bers of core gene families. For such questions to be
answered, it will be necessary to collect and analyse
genome sequences of species and accessions across the
genus that represent the taxonomic diversity, but also the
diversity in various abiotic and biotic conditions in which
roses grow.
Among the most interesting cases to study in roses is

the question of resistance genes. The sequencing of bac-
terial artificial chromosome (BAC) clones around the
Rdr1 locus, contributing to the rose black spot resistance,
in R. multiflora (9 TIR-NBS-LRR (TNL) genes) and R.
rugosa (11 TNL genes) enabled both rearrangements and
duplications in this locus to be discovered81,82. A larger
analysis of clusters of resistance genes in roses is needed
to understand how their organization and evolution can
be associated with resistance levels.

Important traits in rose
For decades, genetic and physiological approaches have

been developed to decipher ornamental traits and to
identify regions of important genes controlling these
traits83. We will briefly summarize the most important
findings and the main issues for current or future research
in these traits since the publication of the rose genome
sequence. We will focus amongst others on floral traits,
including the mode and date of blooming (once-flowering
versus continuous flowering), simple versus double flow-
ers, petal development and flower colour. Besides an
interest from developmental biology in the mechanisms,
these traits are also important targets for breeders (see
section ‘Rose breeding’).

Mode of blooming: recurrent versus once-flowering
Wild roses flower in spring over a few weeks. Those that

have the ability to bloom again after the first blooming are
described as recurrent blooming. There are many recur-
rent blooming species in the ornamental sector, including
Jasmine, Carnation, Hydrangea, Pelargonium and Laven-
der. After the first flowering period, a recurrent blooming
rose has the ability to flower a second time, either con-
tinuously during the favourable season (continuous
flowering habit) or later in the season, which may be
occasional (occasional re-blooming habit)71. The
continuous-flowering phenotype is caused by a mutation
in a TFL1-like flowering repressor gene (RoKSN). Two
alleles leading to recurrent flowering have been described:
one is due to the insertion of a copia transposable ele-
ment71 and the other is due to a large rearrangement at
the RoKSN locus, leading to the deletion of the gene5. In
both cases, the floral repressor is not produced and the
roses flower continuously. In once-flowering roses, the
expression of RoKSN is repressed in spring when the plant

flowers and this is regulated by GA84. The RoKSN protein
forms a complex with RoFD and competes with RoFT, a
floral activator for repression of flowering85.
Presently, only extreme phenotypes have been studied

(continuous versus once-flowering). Sequencing of alleles
of the genes involved in flower initiation and flowering
time in several cultivars and species by either whole-
genome sequencing or targeted re-sequencing may
improve the understanding of the molecular bases of
intermediate phenotypes (equilibrium between vegetative
and floral development). This may lead to the character-
ization of new RoKSN alleles or new loci controlling
recurrent flowering or responding to environmental cues;
for instance, by relating the genetic variation of RoKSN
alleles to precise phenotyping of flowering (counting the
number of flowers in time and space) as initiated on the
TFL1/FT family genes by Wang et al.86. Association
mapping across germplasm with a wide range of pheno-
typic differences in flowering may detect new loci. These
genetic approaches can be extended by a functional ana-
lysis, such as knocking down RoKSN expression in once-
flowering roses, as was previously demonstrated in
Fragaria.

Number of petals
Flowers of wild roses have five petals. During domes-

tication and selection of roses, flowers with numerous
petals, called ‘double flower’, have been selected. Up to
517 petals have been observed in a single flower87. It has
been proposed that the double flower phenotype is due to
dysregulation of the ABCE genes during floral develop-
ment88. A dominant gene located on LG32,89 controls
single versus double petals (with the double flower phe-
notype being a dominant qualitative trait). Using a GWAS
panel, it was proposed that this locus also controls the
number of petals of the double flowers5, next to two QTLs
on LG2 and LG587. Hibrand Saint-Oyant et al.5 identified
a rose APETALA2/TOE homologue within the QTL
region on LG3 as most likely candidate gene for the major
regulator of petal number in rose. Silencing it decreased
the number of petals90. It was proposed that the insertion
of a TE in the eight intron is responsible for transcription
of a messenger RNA without a miR172 binding site,
leading to a deregulation of the APETALA2/TOE
homologue91,92.
The ideal number of petals for cut roses, from a com-

mercial point of view, is between 40 and 60 petals, while a
greater range occurs in commercial garden rose cultivars.
Understanding the interaction between the major gene
and other QTLs, in relation to environmental signals, will
help to develop a model for petal number development
and the effects of different combinations of alleles to
obtain the desired inflorescence. For this we need to
determine allelic diversity at this and other loci, look at
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expression differences, and experimentally test the effects
of different combinations of alleles.

Petal colour and development
Flower colour plays an important role in the attrac-

tiveness of rose flower for insects, but also for humans;
colour therefore has an important aesthetic value. Most
flower colours are present in the genus Rosa, except for
blue, and a large diversity in the colour variants is avail-
able, including colour intensity and the organization of
colour on the petals. These colours come from different
genetic backgrounds: pink and purple from Rosa rugosa,
and yellow from Rosa ecae, Rosa foetida and Rosa hemi-
sphaerica. The orange colour, induced by the pelargoni-
din pigment, was introduced by Kordes. The darker-
coloured central zone of rose flowers was probably
derived from Rosa persica.
Yellow and orange colours are the result of carotenoid

pigment accumulation, while red colours are explained by
anthocyanin accumulation, mainly glycosylated xantho-
cyanidin93,94. In rose, a unique glycosyltransferase enzyme
performs glycosylation at two different positions95. Dif-
ferent homologues of anthocyanin biosynthesis pathway
genes are accumulated during pigment accumulation in
the rose petals of ‘Old Blush’93. A blue/violet colour is
usually the result of accumulation of delphinidin-based
anthocyanins. The absence of delphinidin in rose is
attributed to the lack of flavonoid 3′,5′-hydroxylase96.
Recently, a connection between colour and scent emission
was proposed through the action of SPL9-miRNA156,
putatively controlling the synthesis of anthocyaninin and
Germacren D4.
The genetic inheritance of flower colour was studied in

different genetic backgrounds and a number of QTLs
have already been identified2,97. Owing to a detailed
annotation of carotenoid-related and flavonoid biosyn-
thetic genes in the rose genome3,4, co-localization
between genes and QTLs can now be investigated and
candidate genes analysed. This may help to answer some
intriguing questions regarding colour in rose: (i) Why is
the red colour predominant in modern roses, (ii) why it is
difficult to obtain a bright yellow colour and (iii) what are
the origins of variegation?

Self-incompatibility
In rose, self-incompatibility (SI)98 was proposed to be

gametophytic as in other Rosaceae, where the S-locus is
composed of genes coding for F-box and S-RNase pro-
teins, as the male and female components of SI,
respectively99. In rose, the S-locus was mapped on
LG32,100, in a region where S-RNase and F-box genes
were located in the reference genome5. Transcripts of
one S-RNase and one F-box gene accumulate in pistils
and stamens, respectively. Furthermore, the OB genome

sequence allowed the analysis of a region so far only
covered by molecular markers linked to the SI pheno-
type. This region is syntenic with the S-locus in Prunus
persica5.

Fragrance
Fragrances in garden roses are very diverse and scent

has always been an important trait in the selection pro-
cess. However, not all marketed roses are heavily scented,
despite the effort of breeders. In particular, roses bred for
the cut flower market often lack scent. In modern roses or
Hybrid Tea roses, scent is mainly produced by the petals,
although stamens can also contribute101. Hundreds of
volatile molecules, belonging to different biosynthetic
pathways, have been isolated from rose petals. The com-
bination of these molecules generates the particular rose
scent bouquet. The biosynthetic pathways of many rose
scent compounds are not completely known. The bio-
synthesis of 3,5-dimethoxytoluene, responsible for the ‘tea
scent’ of some cultivars, involving O-methyltransferases,
was the first to be deciphered102,103. The pathway leading
to 2-phenylethanol (2PE) was also studied in detail, with
the identification of the key enzymes phenylacetaldehyde
synthase104 and phenylacetaldehyde reductase105.
Recently, an alternative pathway, which is seasonally
induced in summer, has been identified in roses for the
production of 2PE. This new pathway uses aromatic
amino acid aminotransferase106 and phenylpyruvate
decarboxylase107.
Terpenoids, especially monoterpene alcohols such as

geraniol, are also major constituents of rose flower vola-
tiles, mostly responsible for the ‘typical rose scent’. Gen-
erally, terpenoid biosynthesis in plants is achieved by
various terpene synthases108. However, with a combina-
tion of transcriptomic and genetic approaches, it was
recently discovered that rose uses a terpene synthase-
independent pathway. A key enzyme of this pathway is
RhNUDX1, belonging to the Nudix protein family. A
positive correlation was found between the expression
levels of RhNUDX1 and the production of the mono-
terpenoid geraniol, indicating the essential role of this
protein in scent production in roses109. Despite these
biochemical studies, knowledge on fragrance biosynthesis
is still incomplete and cannot yet be used to assist bree-
ders in scented rose selection. Indeed, very few genetic
approaches, including QTL and GWAS, have been used
to analyse scent genetic determinism in rose. The first
published analysis of scent was performed using a segre-
gating tetraploid rose population110. This analysis showed
that a large proportion of offspring lacked fragrant volatile
compounds, so that scent may have been lost by such a
cross. Another study of genetic determinism of rose
compounds was conducted in diploid roses2. Several
QTLs influencing volatile contents were found, but no
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functional relationships to known candidate genes were
demonstrated in this study.
Recently, Roccia et al.6 identified a QTL that co-

localized with a gene involved in the pathway for 2PE,
RhPAAS, the expression of which was responsible for the
capacity of descendants to produce 2PE. The identifica-
tion of genes underlying all QTLs and their functional
characterization would be of great interest to elucidate the
control of aroma volatile levels in rose petals. Next to
QTL studies, association studies could be applied on scent
traits. Once the key genes involved in the biosynthetic
pathway of a compound are known, the major challenge is
to understand their evolution in the genus Rosa and how
favourable or unfavourable alleles were selected during
evolution and domestication. For that purpose, more
transcriptomic datasets of roses with contrasting scent
profiles are needed, and re-sequencing data. Genetic
analysis of diploid or tetraploid populations, in which the
alleles from a strong-scented parent segregate, would
enhance the power of such approaches.

Vase life
Concerning petal development and senescence, which is

an important trait for the vase life of cut flowers, Ma
et al.111 reviewed the most important gene networks and
the implication of different hormones in ethylene-
sensitive flowers, among which rose features. Putative
key regulating genes can now be targeted to study the
effects on vase life. One way to do that may be to generate
an inventory of the allelic diversity of the key regulating
genes across the germplasm, followed by crossing and
functional studies. As senescence may also cause sus-
ceptibility to fungal diseases such as botrytis, this type of
research could also offer important links to disease resi-
lience in garden roses.

Disease resistance
The most important infectious diseases of roses are:

downy mildew (Peronospora sparsa), powdery mildew
(Podosphaera pannosa), black spot (Diplocarpon rosae),
spot anthracnose (Sphaceloma rosarum), crown gall
(Agrobacterium tumefaciens) and the rose rosette virus.
Among the insect pests, rose aphids and thrips are critical
for production, in particular for the production of cut and
pot roses. To date, only few commercial rose cultivars
have significant levels of disease resistance112, although it
has become more important in the breeding process,
especially for garden roses. The analyses of the inheri-
tance of resistance to diseases revealed either single genes
(e.g. against black spot Rdr1–433,81,113,114, powdery mil-
dew (mlo115) or QTLs (e.g. against powdery
mildew116,117).
Based on the complete rose genome, resistance loci can

now be linked to groups of candidate genes. This is

facilitated by the fact that most R genes belong to the large
group of NBS-LRR genes. Further, a complete genome
enables markers to be generated from the complete set of
putative R genes, as demonstrated by the RenSeq tech-
nique using capture-based sequencing118. This will speed
up the localization of R genes119, also in wild rose species
not yet used in breeding.
In cases where candidate R genes cannot be immedi-

ately identified, the genome assembly greatly facilitates
the generation of additional, more closely linked SNP
markers in those R-gene regions currently only loosely
covered by molecular markers. This will be of importance
for recently mapped loci, for example, Rdr3 and Rdr4,
where the most closely linked markers define a region of
approximately 9 cM in which no further recombinations
have been identified32,114.

Plant architecture
Plant architecture relates to vigour, productivity and

density (which may influence the incidence of diseases).
In addition, new forms and shapes, including compact
plants (for use in urban areas), may be needed to main-
tain the current rose market share or open up new
markets. Progress in research in this area has been slow.
Studies on rose plant architecture have been done using
manual phenotyping of architectural components120–122

or with three-dimensional digitalization123. These ana-
lyses require fully developed plants and are time con-
suming. Nevertheless, they have produced a number of
QTLs, and markers have been identified for these QTLs,
showing the complexities of these characters. Scientific
progress will depend on our ability to identify functional
genes from relevant developmental pathways in these
QTL regions, on whether allelic effects remain as strong
when transferred into other genetic backgrounds and
their interaction with environment and cultural practices.
High-throughput phenotyping systems may not only
make it less laborious to study plant development, but
they may also pinpoint certain short stages in develop-
ment in which genetic differences manifest themselves
more clearly.

Speeding up functional gene identification
Previously gene cloning was a long and laborious pro-

cess. One approach involved positional cloning and
looking for co-localization with candidate genes, as was
done for the continuous-flowering gene of rose71. Alter-
natively, map-based cloning and BAC library sequencing
was used, as was done for Rdr1, the first resistance gene
for black spot81,124. The reference genome of rose3–5

opens new opportunities to rapidly isolate and char-
acterize important loci by combining genetic, genomic
and transcriptomic approaches. Here, we review various
schemes that may accelerate the identification of
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functional genes and validation of the functional allele
thereof in rose owing to the availability of reference
genomes.
A schematic, idealized work-flow is shown in Fig. 2. A

major gene, located on LG 3 of the genetic map, is
identified by QTL mapping or a GWAS analysis (Fig.
2a). Flanking markers delimit the corresponding region
in the genome sequence, in which five genes have been
annotated that may be good candidates for the trait

(Fig. 2b). Using transcriptomics, one gene (Fig. 2c) was
found to be differentially expressed. By mutant
sequencing (Fig. 2d) two interesting variants were
identified for gene 3 (presence of an indel, which may
affect the functioning of the gene). Further investiga-
tions may be necessary for validation (screening for
allelic variants in a wider germplasm pool, synteny
analyses or functional analyses through gene editing
and/or transformation, etc.).

a.

b.

c.

d.

LG 3

chr03

AATTATACCGGCAATCAATCTCGGCCGAACGAACCGGCT
AATTATACCGGCAATCAATCTCGGCCGAACGAACCGGCT
AATTATACCGGCAATCAATCTCGGCCGAACGAACCGGCT
AATTATACCGGCAATCAATCTCGGCCGAACGAACCGGCT
AATTATACCGGCAATCAATCTCGGCCGAACGAACCGGCT
AATTATACCGGCAATCAATCTCG       GAACCGGCT
AATTATACCGGCAATCAATCTCG       GAACCGGCT
AATTATACCGGCAATCAATCTCG       GAACCGGCT

1 2 3 4 5 6 7

Fig. 2 Illustrative scheme for gene cloning by combining genetic, genomic and transcriptomic approaches. a Using genetic approaches
(such as quantitative trait loci (QTL) mapping in F1 progenies or association analysis across a panel of accessions), major genes or QTLs can be
detected for important ornamental traits and located on the seven rose linkage groups. b In the corresponding region of the rose genome sequence,
using the functional annotation of the rose genome (each purple box represent an annotated gene), putative candidate genes can be identified
based on similarities with genes known to be involved in the studied process in model plants such as Arabidospis thaliana. In the candidate genomic
region, five genes have been identified with possible roles (pink boxes), as transcription factors. c By transcriptomic approach, a differentially
expressed gene between two contrasting conditions for the studied trait can be identified. d For the gene with contrasting expression, allelic variants
can be identified by sequencing mutant pairs or diversity panels. In this example, two alleles are detected, which differ by an indel. Other variants can
be single-nucleotide polymorphisms (SNPs) (synonymous or non-synonymous) or insertions of transposable elements
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Linking genetic maps with the physical sequence:
demarcation of chromosomal regions
Owing to the link between genetic maps and the phy-

sical genome sequences (see section ‘Genome sequence
and genomic tools in rose’), future studies may rapidly
identify the sequence of flanking regions where genes of
interest are located (Fig. 2a, b). Development of larger
population sizes for the genetic studies will result in
smaller target intervals, and hence fewer candidate genes.
It is now also feasible to combine results from different
genetic analyses, as demonstrated recently for the cloning
of the major gene controlling the double-flower locus. For
this, information from four different F1 progenies were
combined to narrow down the sequence interval to a
293 kb region on chromosome 35. A similar strategy could
be employed for other major QTL using software such as
BioMercator125. GWAS panels may also be combined if
they share the set of SNP markers and if the phenotyping
is done in the same way.

From a sequence region to the best candidate genes
The next step is to identify the best candidate gene(s) in

the previously defined genomic region, using gene anno-
tation and knowledge of the molecular basis of the studied
trait (Fig. 2b). For example, a gene known to control flower
development in Arabidopsis, an APETALA2 homologue,
was identified in the genomic region of the DOUBLE-
FLOWER locus5. Similarly, an F-box protein and an S-
RNAse gene were identified in the region of the SI locus5.
Transcriptomic analyses (or meta-analysis using gene

atlas) can be performed in parallel to identify differentially
expressed genes, which also represent good candidates
(Fig. 2c). For example, a genetic analysis identified a
monoterpene synthesis locus on LG2 that co-located with
a gene differentially expressed between scented and non-
scented roses109. This led to the identification of
RhNUDX1 as a likely candidate.
Direct sequencing of mutant pairs (sports, see also

section ‘Sports’) is now an option to identify the func-
tional mutation. This could involve targeted sequencing
of the gene(s) located in genomic regions known to
influence the trait (with techniques such as fluidigm or
multiplex amplicon sequencing), sequencing of all the
coding sequences (exome sequencing126, targeted
sequencing with capture hybridization to subsets of
genes127) or even whole-genome re-sequencing128. This
will potentially lead to the detection of important allelic
variants, including non-synonymous mutations, insertions
or deletions (Fig. 2d).

Functional analysis
A rapid and efficient genetic transformation protocol

would greatly benefit functional gene studies in rose. The
first publication on rose genetic transformation was in

1994129. Since then, genes implied in colour, disease
resistance, fragrance and architecture have been studied
by stable genetic transformation in rose. In total only
around 20 publications use this technique (Supplemen-
tary Table 1), probably due to the low overall efficiency
(max 12%), the regeneration times required
(6–12 months) and the fact that results appear to be
highly cultivar-specific. Genetic information on loci and
candidate genes involved in regeneration capacity were
studied by Nguyen et al.11,130 in 96 rose genotypes,
offering some hope that regeneration protocols might be
streamlined in future.
To circumvent such limitations in the meantime, some

rose genes have been studied in heterologous systems,
including Tobacco131, Pelargonium132 and Arabi-
dopsis85,133–135. Systems for transient expression in rose
have been developed by agroinfiltration in petals (e.g.
refs.136,137) or leaves81, and by virus-induced gene silen-
cing in leaves, axils, seedlings138 and petals139.
Using the rose genome and inferred protein sequence

data, it will be easier to identify coding sequences of
genes, alternative splicing proteins, promoter and reg-
ulatory element(s). These data could be used to define
CRISPR-Cas9 guide RNAs, for example, using the website
CRISPOR (http://crispor.tefor.net/) on which the Rose
genome sequence is available. The improvement of
genetic transformation efficiency would make the use of
CRISPR-Cas9 technology feasible in rose.

Rose breeding
A strong demand for new cultivars still exists. This is

reflected in the number of applications for plant breeders’
right (PBR). In the European Union (EU), the Community
Plant Variety Office (CPVO) administrates PBR. Since its
inception in 1991, more than 61,000 applications were
filed for ornamental plants, of which 4189 were for roses
(all types) (CPVO 2018: https://cpvo.europa.eu/en/
applications-and-examinations/applications-and-titles-
force). More roses than those listed at CPVO have been
commercialized in this period, as not all roses undergo
PBR application (e.g. garden roses are rarely protected by
PBR). However, it is indicative of a sustained output from
the rose breeding sector.

Potential marker deployment for traits in rose
Many of the important morphological and agronomic

traits in rose are controlled by single dominant loci, for
example, miniature plant habit140, glossy foliage141,
resistance to powdery mildew Rpp1115 and black spot
resistance and so on. As the phenotypes in a tetraploid
progeny will strongly resemble one of the parents (Fig. 3),
the dosage of the parents of the cross determines the
fraction of offspring that will have the right phenotype, or
be within the right range. To achieve a larger fraction of
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progeny carrying the trait, parents with higher allele
dosages have to be combined (Fig. 3). For dominant traits
allele dosage information cannot be obtained by pheno-
typing alone. Simplex can be distinguished from higher
dosages by analysing a small progeny or an analysis of the
pedigree. However, when two or more allele copies are
present, the exact dosage cannot be inferred and needs be
determined using linked SNP markers. Given the current
strategies that breeders use for selection, the first steps in
marker-assisted selection will most probably include
selection of parents with optimized marker dosage for
single genes of importance142.
Ornamental plant breeders often express concern that

innovative traits may be missed by a marker-driven
breeding programme. However, this assumes the breeding
programme is entirely run by marker-assisted breeding
without input from the ‘breeder’s eye’. This is unlikely to
be the case19. Parental selection as outlined here only
concerns optimizing the choice of the most optimal par-
ent pairs out of many possible combinations of parents in
view of an important trait in the offspring.
Determining the precise allelic configuration of QTLs in

tetraploids is complicated, but advances in this direction
have been made in recent years34,143. Markers whose
parental phase is known (i.e. assigned to specific parental
homologous chromosomes) could go a long way towards
unravelling the allelic composition of important genes in
the coming years. Transferring this knowledge into stable
and selectable markers could be a very welcome devel-
opment for the breeding community.

For quantitative traits, the marker-trait association may
follow a dosage-dependent relationship if the allele dosage
is additive5. For complex polygenic traits for which
selection is not possible in the seedling stage, breeders
could benefit from a better knowledge on genes that are in
control, but a genomic selection approach (naive for the
underlying genetics) might be useful as well. Examples of
such traits are senescence (vase life), scent, disease resis-
tance and plant architecture. One of the main criteria in
cut rose selection is production, but this trait is hardly
researched in roses from a genetic perspective.

Multiple functional alleles at one locus
Outbreeding tetraploids may contain multiple alleles at

any single locus. A GWAS analysis of a set of tetraploid
cultivars or accessions will almost certainly include mul-
tiple alleles at one locus, but even the two parents of a
controlled cross may contain more than two different
alleles among the eight alleles that segregate. Separate
marker assays may therefore be needed to comprehen-
sively tag all functional alleles, which may be challenging
(or even impossible) at the single SNP level. One
approach to circumvent this is to look for haplotypes in
which allelic variants are either uniquely embedded or
uniquely linked to a trait. However, reconstructing hap-
lotypes from separate SNP assays for genic regions of
interest is not straightforward in polyploids10. Obtaining
haplotypes directly from sequencing reads is possible, but
depends on SNP density, requires sufficient read depth,
and is sensitive to sequencing errors22. Allele dosage

Fig. 3 Genotypic and phenotypic segregation ratios for a trait regulated by a single dominant gene with two alleles under random
bivalent pairing in a tetraploid rose. At each locus, two alleles may occur in five different allelic states (nulliplex, simplex, duplex, triplex and
quadruplex). The fraction of progeny of a cross with the desired phenotype will therefore differ significantly depending of the allelic state of the
parents. Crosses of one parent carrying a dominant allele in simplex configuration to a homozygous recessive (nulliplex) second genotype will result
in 50% of the progeny carrying the dominant allele (in simplex configuration). In autotetraploids, dominant traits are only guaranteed to be inherited
in a cross when one of the parents has at least three copies of the dominant allele. Note that additivity, multiple alleles and the occurrence of double
reduction have not been taken into account.
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inference from sequencing reads also is not straightfor-
ward, although methods and tools to deal with this are
being developed24.

Pyramiding R genes
Pyramiding of R genes in a single plant genotype is

important to increase the durability of disease resis-
tance144,145. Pyramiding of R genes is complicated by the
fact that diagnostic pathotypes are required in phenotypic
assays for the presence of a particular R gene. Interactions
between host genotypes and genotypes of the pathogen are
often complex, involving multiple factors. Many pathotypes
can be recognized by different R genes, making them
unsuitable as diagnostic pathotypes. As a consequence,
DNA markers linked to specific R loci or those which are
derived from the gene itself would be required to pyramid R
genes in roses and other crops. In roses, markers for Rdr1
have been derived from the gene directly146, whereas mar-
kers for Rdr3 and Rdr4 have been discovered by mapping
these genes to particular regions of the rose genome33,114.
Of particular interest are combinations of Rdr1 and Rdr4 as
each of these genes confer broad-spectrum resistance to a
range of black spot pathotypes. Furthermore, the genes have
different genetic backgrounds and lie on different chro-
mosomes. The region around Rdr4 does not contain
sequences similar to Rdr1 (T.D. and M.L., unpublished
results), which makes it less likely that the combined
resistance specificity against most known isolates can be
broken easily by pathogen adaptation.
Besides the difficulty of phenotypically distinguishing

the effect of several resistance alleles, pyramiding resis-
tances could create further problems. By combining dif-
ferent resistances from different breeding material
(especially non-elite material, e.g. the introgression of
Rdr4 from a climber rose to cut rose), many undesired
alleles at other loci affecting other traits may be intro-
duced. This linkage drag may necessitate multiple rounds
of back-crossing and selection to recover resistant elite
lines. Luckily, this process can be greatly accelerated using
closely linked markers (coupled with a marker set which
captures the elite genetic background). Owing to the
genome sequence and the ease with which the donor and
receptor plants can be re-sequenced, it should now be
relatively straightforward to saturate regions surrounding
R genes with SNP markers, and enable marker-assisted
back-crossing and gene pyramiding. In addition, GWAS
using the information of ultra-dense SNP maps combined
with the available genome sequences will enable the
detection of minor resistance factors, which can be added
to resistance pyramids.

QTL analysis, association analysis and genomic selection
QTL analysis studies often had a relatively low genetic

resolution due to the limited population sizes used. In

addition, only alleles present and segregating between the
parents of the cross can be detected in such bi-parental
studies. GWAS offer an alternative approach to identify
genomic regions associated with specific traits in more
diverse populations with potentially wider pools of
interesting alleles. However, GWAS in rose panels that
include multiple types of roses, or multiple species may
suffer from serious confounding between population
structure and allelic effects, leading to a loss of dis-
criminatory power. Populations connected through
common parents offer a compromise by enriching allelic
diversity within the context of a balanced and controlled
population structure56. They also reflect the types of
populations generated during a breeding programme.
Combining breeding and research in this way would
represent an efficient use of resources.
Traits such as vase life, which cannot be scored in young

plants, probably represent the first set of candidates for
the deployment of molecular tools within a breeding
programme. However, such traits are often complex or
quantitative, for which molecular tools are less easily
developed. A first step could be an analysis of the phy-
siological components of vase life ending, as was done in
chrysanthemum147. Depending on this, pertinent vari-
ables of vase life that may be more accurately phenotyped
may be found. Subsequently, these determinants may be
studied at the level of their underlying gene pathways.
Given the complexity of such traits, genomic selection
may prove to be a more appropriate approach. Genomic
selection is an alternative method of increasing genetic
gain in plant breeding programmes148. Whether it is
suited to rose has yet to be demonstrated—as rose
breeding involves the mixing of diverse genetic back-
grounds that may distort the modelling of relationships in
prediction models.

Tailored breeding of rose
Breeding goals in roses depend on their usage. In cut

roses, production is a primary breeding goal and has yet to
reach its full potential. Breeding companies differentiate
their selection to specific production areas, resulting in
the best-adapted cultivars for specific environments149.
Disease resistance is needed to reduce the use of pesti-
cides. Because of post-harvest transport of roses from
areas of cultivation (e.g. in Africa and or South America)
to consumers all over the world, diseases are not limited
to the production environment, but also include post-
harvest diseases such as grey mould (Botrytis cinerea).
Likewise, stress tolerance is important during cultivation,
but also for vase life. Rose breeding therefore needs to
incorporate many traits, ideally ones that are stably
expressed across environments34,120.
Fragrance is gaining new interest because of consumer

demand and the improved understanding of its
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underlying genetics. New traits in cut roses include novel
flower shapes, colour evolution and glossiness of the
foliage, and so on. In pot roses, plant habitus, flower
colour, size and number of flowers per stem, number of
petals, production and shelf life are the most important
traits149. In garden rose, disease resistance, fragrance,
abundant, red and everblooming flowers were the traits of
most interest among surveyed consumers150. Carefree
roses are needed for landscaping and urban development
- these are own-rooted roses supporting mechanical
pruning, free of diseases and having an all-season dec-
orative effect, for example, with colourful hips during
wintertime. In the near future, because of climate change
and expanding trade to more ‘difficult’ areas we may also
need cultivars that have improved abiotic stress resis-
tance, including frost tolerance and flowering during hot
summers.
Clonally propagated plants can be easily replicated to

establish a multi-environment set-up. Larger mapping
populations, preferably replicated across multiple differ-
ent environments, allow for genotype × environment
interaction to be studied and understood. This may
include RNA-sequencing eQTL mapping in GWAS151.
Gene editing with CRISPR/Cas is interesting for rose as

a novel tool for directed mutagenesis, as it can produce
homozygous mutations in a polyploid152–154. Apart from
restricted access by IP rights and constraints raised by
legal issues in the EU155, the application of such new
breeding techniques critically depends on the knowledge
about gene functions. Although reference genome
sequences are currently available, an approach using
phenotypic and ‘omics’ data is needed in crops as the vast
majority of genes remains uncharacterized156. Especially
when a loss of function is aimed for, specific information
on the targeted sequences is needed.

Conclusions
In the Rosaceous crops apple and peach, an integrated

approach was carried out to fill the gap between available
genome data and breeding in an EU-funded project:
FruitBreedomics. Complementary approaches were used,
including the development of tools and software, to help
unravel the genetic control of the most important horti-
cultural traits, as well as to develop plant material and
methodologies for breeders. The project started through a
consultation between breeders and researchers, aimed at
cataloguing the most important traits. Overall, the project
led to the development of new phenotyping tools to assess
traits like fruit texture, and both biotic and abiotic stres-
ses. Pre-breeding material with specific characterized
traits was made available for breeders together with tools
for the implementation of molecular markers in breed-
ing157. Such a project may well help bridge the gap that
still exists between rose research and breeding.

The slow adaptation of molecular techniques can, in
some crops, be linked to the long breeding cycle (e.g. in
fruit trees157), although poplar is an example of a tree with
a long breeding cycle in which genomic studies were
initiated many years ago158. For roses, breeding cycles are
not particularly long, but a common platform for inter-
action between the different players (research and bree-
ders) has been lacking. The recent rose genome
sequencing projects that have been conducted were lar-
gely driven by research groups without support from the
breeding industry. On the other hand, the WagRhSNP
array, the high-density genetic maps, and GWAS studies
have been developed with support of rose breeding
companies.
The new tools (e.g. genome sequence, SNP array, soft-

ware for dosage scoring and genetic mapping, etc.) and
technology (e.g. next-generation sequencing) means that a
new era has started for research in polyploid crops such as
rose. Previous results on QTLs can be tied together, and
new studies can build on this resource. Most resources are
freely available at the GDR website13.
Genomic studies have opened up new routes to crop

improvement, and this holds also for rose. We expect that
researchers will use the resources to achieve faster pro-
gress in the fields described above. We hope that rose
breeders will team up with researchers to discuss their
needs and to start to incorporate marker-based selection
methods to improve rose breeding for new demands
within their breeding programmes.
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