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37 Despite improved commissioning practices, malfunctions or degradation of building sys-
tems still contribute to increase up to 20% the energy consumption. During operation
and maintenance stage, project and building technical managers need appropriate meth-
ods for the detection and diagnosis of faults and drifts of energy performances in order to
establish effective preventive maintenance strategies. This paper proposes a hybrid and
multilevel fault detections and diagnosis (FDD) tool dedicated to the identification and
prioritization of corrective maintenance actions helping to ensure the energy perform-
ance of buildings. For this purpose, we use dynamic Bayesian networks (DBN) to monitor
the energy consumption and detect malfunctions of building equipment and systems by
considering both measured occupancy and the weather conditions (number of persons on
site, temperature, relative humidity (RH), etc.). The hybrid FDD approach developed
makes possible the use of both measured and simulated data. The training of the Bayesian
network for functional operating mode relies on on-site measurements. As far as dysfunc-
tional operating modes are concerned, they rely mainly on knowledge extracted from
dynamic thermal analysis simulating various operational faults and drifts. The methodol-
ogy is applied to a real building and demonstrates the way in which the prioritization of
most probable causes can be set for a fault affecting energy performance. The results
have been obtained for a variety of simulated situations with faults deliberately injected,
such as increase in heating preset temperature and deterioration of the transmission
coefficient of the building’s glazing. The limitations of the methodology are discussed
and are translated in terms of the ability to optimize the experiment design, control
period, or threshold adjustment on the control charts used. [DOI: 10.1115/1.4043922]

Keywords: energy performance, fault detection and diagnosis, Bayesian network,
38 weather conditions, occupancy

39 1 Introduction
40 According to different sources, it is commonly considered that
41 buildings are responsible for about 30–40% of the energy con-
42 sumption in Western countries. Many studies have demonstrated
43 that, in the operational and maintenance (O&M) stage, buildings
44 actually use more energy than estimated by energy simulations in
45 the design stage [1]. In Ref. [2], a difference of performance of
46 more than 30% has been estimated. This difference is due to
47 uncertainty in the modeling of energy simulations [3], as well as
48 to differences in occupant behavior and in building use over time
49 (e.g., modifying room functions and building occupancy). Mal-
50 functions/degradation and a bad control of systems also contribute
51 to reduction in comfort and increase in energy consumption (in
52 some cases, 10–20% higher than necessary) [4]. Recently, in Ref.
53 [5], it has been demonstrated that the averaged cooling energy in
54 office buildings was about 16% higher than designed due to opera-
55 tional errors. Even if the efforts are made to improve the continu-
56 ous commissioning [6], energy consumption is still higher than

57expected and, therefore, the development of effective preventive
58maintenance strategies for building systems is very important.
59Thus, condition-based maintenance plans the maintenance accord-
60ing to the need determined by the system conditions [7]. Never-
61theless, despite examples of preventive maintenance for heating,
62ventilation, air conditioning, and refrigeration [8], automated
63energy performance diagnosis features are currently scarcely
64applied in building energy management systems practices. A key-
65step within the condition-based maintenance process is the ability
66to monitor the system malfunctioning from the available signals,
67hereafter referred to as fault detections and diagnosis (FDD). The
68automated FDD tools are useful to alarm and identify faults
69promptly and to identify the variables that cause the degradation
70of performances, with due regard to the level of accepted risk.
71Over the last decades, a significant number of researches had
72been carried out in the developments of FDD methods for build-
73ing’s systems (see, e.g., Ref. [9] for air handling units, [10] for
74chiller and [11] for HVAC AQ5systems). Building energy HVAC
75FDD has been proved efficient to reduce energy consumption in
76buildings during O&M stages. Some field observations show that
77energy savings of 5–30% can be achievable by correcting faults
78diagnosed in buildings [12]. Recent FDD case studies in Australia
79[13] show that energy savings between 15% and 28% are possible
80by implementing HVAC FDD systems. Despite all these benefits,
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81 FDD tools are still not broadly used in practice due to the time-
82 consuming nature of the tasks (which must be repeated for each
83 building) and to the complexities of FDD algorithms.
84 According to Ref. [14], FDD methods can be categorized into
85 three types of approaches: quantitative or model-based, qualitative
86 or rule-based, and process-history-based or data-driven.
87 Quantitative or model-based approaches are usually based on
88 the knowledge of the physical laws describing the system (e.g.,
89 heat and mass balances). The common method in the quantitative
90 FDD approach is the residual generation and analysis (difference
91 between measured and simulated values). Model-based
92 approaches do not rely on past data for training; therefore, they
93 are considered efficient for the detection of unknown abnormal-
94 ities. They can be used at the component as well as the whole
95 building levels.
96 Qualitative approaches require a prior knowledge of the system
97 from which simplified relationships (e.g., the rule-based method)
98 are developed. This kind of method is rather simple, but it is also
99 specific to the system under study and often requires a

100 “customized” implementation, which mainly relies on experts and
101 developers’ knowledge [15].
102 Process-history-based or data-driven methodologies are also
103 relatively easy to implement, but they require a significant amount
104 of data to be efficient. Since they rely on historical data, one has
105 to study a whole range of various system operations. In addition,
106 they generally cannot be directly applied on another system with-
107 out taking into account the specificities of the system [16,17].
108 Process-history-based approaches include methods such as artifi-
109 cial neural network (e.g., Ref. [18]), principal component analysis
110 [19], support vector machine (e.g., Refs. [20] and [21]), Bayesian
111 classifiers (e.g., Ref. [22]), Fisher discriminant analysis (e.g., Ref.
112 [23]), etc.
113 In Ref. [24], the authors propose to consider a fourth category
114 of approaches: hybrid approaches obtained by connecting several
115 of the aforementioned approaches in order to improve the overall
116 FDD accuracy and robustness. For example, model-based FDD
117 approaches are often connected to data-driven methods. The pres-
118 ent research proposes a hybrid approach (data-drivenþmodel-
119 based). Our purpose is to train the FDD tool based on a large data
120 collection and completing knowledge through dynamic energy
121 simulations (DES) in order to study the effect of complementary
122 unobserved/dysfunctional operations.
123 Bayesian networks (BNs) can be considered as an appropriate
124 method to accurately represent a building, which is considered as
125 a complex system with uncertain, incomplete, and conflicting
126 information. They are deemed a powerful tool to develop expert
127 systems, and they have the potential to detect and diagnose faults
128 or drifts. A BN is a probabilistic graphical model that represents
129 relationships of probabilistic dependence within variables by
130 means of directed acyclic graphs (see Sec. 2). BNs used as a FDD
131 tool offer a number of undeniable advantages: the ability to
132 manipulate continuous and discrete variables, the ability to take
133 into account time through dynamic Bayesian networks (DBNs),
134 object modeling via the formalism of object-oriented Bayesian
135 networks, and the possibility to expand into decision optimization
136 techniques through the use of influence diagrams (extension of
137 Bayesian networks) [25]. Beyond being able to identify the causes
138 of drift or dysfunction, one remarkable aspect of the BNs, that we
139 cannot find in other methods (such as artificial neural network or
140 support vector machine), is the ability to sort them from the most
141 to the least probable and hence to prioritize inspection and mainte-
142 nance actions. In the frame of research for increasing the energy
143 performances of buildings, BNs have proved their interest and rel-
144 evancy, for example, for HVAC [26], with focus on chiller
145 [22–27], air-handling units [28,29], and heat pumps’ faults
146 diagnosis [30].
147 In this paper, we develop a generic (in contrast of most other
148 approaches, actually specific) hybrid FDD approach to detect and
149 diagnose drifts in energy consumption in a monitored building
150 instrumented with different sensors. Data are validated and/or

151completed by means of energy simulations. Expert knowledge
152enhances the hybrid approach by validating the physical meaning
153of the architecture of the FDD model. BNs are used here as a
154generic model to simulate complex inferences—combining influ-
155ences from weather conditions qualified as external loads (outdoor
156temperature (OT), relative humidity (RH), wind speed, solar radi-
157ation, etc.), variables qualified as internal or intrinsic loads (indoor
158air temperature, internal sources, rate of infiltration), influences of
159energy systems behavior (heat or cooling production, regulation,
160etc.), and the occupants on differing scales of observation (at
161“office,” “floor” or “building” levels)—with regard to the level of
162energy performance (or consumption) of a building. In practice,
163the BN-based hybrid FDD approach proposed in this paper can be
164used either for new projects or for existing buildings for which we
165aim at enhancing energy efficiency.
166The paper is structured as following: in Sec. 2, the general
167aspects of our hybrid FDD approach based on the principle of
168Bayesian networks are explained. In Secs. 3 and 4, we present the
169case study and the application of the hybrid FDD approach to this
170case. In Sec. 5, we propose a deep discussion on the results and
171try to show all the abilities of the approach. Finally, we give some
172conclusions and discuss about future works in Sec. 6.

1732 Creation of a Bayesian Network to Monitor the
174Performance of a Building

1752.1 Principle and Properties of Bayesian Networks. A BN
176is a statistical modeling tool whose formalism makes it possible to
177deal with uncertainties. The most useful application of BN is to
178assess hierarchically the possible causes of risks, failures or opera-
179tional drifts [31]. Today, BN can be considered as a key modeling
180framework in decision making in a wide variety of domains such
181as social sciences [32,33], robotics [34,35], biochemistry or biol-
182ogy [36,37], medicine [38,39], engineering [40,41] and, of course,
183energy.
184In order to understand fully the properties of BNs, it must first
185be clear that they are a hybrid of two different fields: the theory of
186graphs and the theory of probabilities. In short, a BN is a graphical
187representation of a probabilistic model revealing the different
188relationships that the variables of a model can have. It expresses
189and factorizes the joint probability of m variables in m conditional
190independences and its structure enables local calculations of prob-
191ability using all the information about the joint distributions.
192These conditional independences make it possible to reduce the
193number of calculations necessary for the inference and learning of
194a probabilistic model by simply reducing the size of its structure.
195For example, a joint probability of m variables is written using the
196chain rule (or “general product” rule) as follows:

p x1; x2;…; xmð Þ ¼ p xmjxm%1;…; x1ð Þ…p x2jx1ð Þp x1ð Þ (1)

197198This equation can be shortened by introducing or defining the con-
199ditional independences between its variables. Moreover, by illus-
200trating these independences in the form of a BN, it becomes
201possible simply to increase the number of conditional probability
202distributions for each variable in accordance with the parents and
203rewrite the joint distribution as follows, where pa(xi) refers to the
204parents of xi:

p x1; x2;…; xmð Þ ¼
Yi¼m

i¼1

p xijpa xið Þ
! "

(2)

205206Nevertheless, the fact that the conditional distribution for each
207variable is defined according to its parents does not signify that no
208other variables influence it. In other words, nodes other than its
209parents in the BN can influence a node. These nodes are consistent
210with the Markov condition, which states that a variable is isolated
211by a subset of variables of the overall set V known as the Markov
212blanket [42]. A variable is therefore conditionally independent of
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213 other variables outside its blanket if the nodes of the blanket are
214 observed. This includes its parent and child nodes and the co-
215 parents of its children (see Fig. 1). These nodes, if observed,
216 “block” the node in question from other nodes outside its periph-
217 ery (see Sec. 4.2 and the discussion related to Fig. 6 for an
218 illustration).
219 In the example illustrated in Fig. 1, Eq. (2) is developed as

p Vð Þ ¼ p Ch1;Ch2;CP1;CP2;P0;P1;P2ð Þ
¼ p P0jP1;P2ð Þ & p Ch1jCP1;P0ð Þ & p Ch2jCP2;P0ð Þ & p P1ð Þ
& p P2ð Þ & p CP1ð Þ & p CP2ð Þ (3)

220221 This property of the BN is not only useful but also essential for
222 inference calculation, and makes it possible to determine instanta-
223 neously and visually whether a set of variables is conditionally
224 independent of another one.
225 The most recent developments in BNs have essentially focused
226 on the inference algorithms [43–45] and on the learning of the
227 structure and parameters of the network [46]. We will concentrate
228 on these aspects in constructing BNs to describe functional and
229 dysfunctional modes in the energy systems of a test building.

230 2.2 Construction Stages of a Bayesian Network for the
231 Simulation of a Building. Building management is increasingly
232 relying on automated procedures with sophisticated instrumenta-
233 tion on systems and equipment, allowing the collection of consid-
234 erable quantities of data. In fact, the volume of data collected is so
235 vast that it would be impossible for an operator to monitor directly
236 each variable involved in the procedure. It seems perfectly logical,
237 therefore, to monitor the technical systems of a building using
238 data-driven methods such as the BN.
239 The modeling procedure for a building system comprises three
240 stages [47]

' The first stage consists in collecting a database of measured/
241 real inputs (climate, envelope, energy systems, occupants),
242 and outputs (energy needs) calculated from actual data and/
243 or derived from DES. An approach founded entirely on
244 measured inputs and outputs is possible when characterizing
245 an existing building. For a new building, insofar as the
246 energy performance of its equipment and systems cannot be
247 measured on long periods, it is very difficult to characterize
248 the functional and dysfunctional modes. Therefore, the

249hybrid approach, of real inputs and simulated outputs, proves
250to be very effective in the majority of situations.

' The second stage consists in learning from the created data-
251base to construct a BN (i.e., to model casual relationships
252and conditional probability distributions between the varia-
253bles that will influence the energy performance) enables to
254mimic the building and its energy systems in their normal
255operational modes. That is to establish a “baseline,” essen-
256tially, from which to observe operational drifts. This stage is
257regarded as the inductive part of the BN’s construction in
258that we use the effects/causes to faults/consequences
259relationships.

260Constructing the BN involves making certain choices. For
261example, continuous nodes may be preferred to discrete ones, the
262choice here being a matter of compromise between complexity
263(and thus calculation time) and precision of the model. Whatever
264the decision made, the robustness of the learning methods of the
265BN needs to be tested and the physical representativeness eval-
266uated by appropriate experts.

' The third stage consists in adapting the model to the dysfunc-
267tional operating modes based on the consolidated architec-
268ture obtained at the previous stage. Here, the detection
269capacity of the BN is tested. In other words, an analysis of its
270sensitivity to operational drifts and consequently its ability to
271detect faults. The dysfunctional operating mode database is
272created from DES by simulating preset multiple input faults
273(see Sec. 4.6 for details). The conditional probability matri-
274ces logically constitute the main output of this so-called
275deductive stage, since the inference rules now relate faults/
276consequences to effects/causes.

277Once the model is consolidated, it will be operated to sort the
278possible causes of detected energy performance defects into hier-
279archical order [48].

2802.3 Modeling of Energy Performance in Functional and
281Dysfunctional Modes. The modeling the building’s energy per-
282formance in its functional and dysfunctional modes (correspond-
283ing to the second and third stages mentioned previously) is itself
284divided into six steps (detailed in Sec. 4). The first step will con-
285sist in collecting the problem data. The inputs, i.e., the external
286and internal loads factors that influence the energy performance,
287are measured on-site. The outputs (heating needs), however, are
288simulated via TRNSYS (TRNSYS v17/type 56). A calibration sub-step
289had to be carried out in order to adjust the DES results to meas-
290ured data from the test building. The second step will concern the
291choice and use of the accurate algorithm to learn from calibrated
292input and output data values, which have been first discretized in
293order to reduce calculation times. The third step tests the robustness
294of the BN; a process aided by the judgment of experts. The fourth
295step explores the effectiveness and influence of continuous nodes
296rather than discrete ones. The fifth step consists in developing a
297DBN from which we provide updated baselines from calibrated
298data. The sixth and final step is dedicated to the simulation of dys-
299functional modes. We create new databases by means of DES with
300different faults situations from which the DBNs can be updated.
301Figures 2(a)–2(c) give a conceptual representation of a BN
302modeling functional and dysfunctional modes. Occ_i (i¼ 1 to 3),
303Zone_j (j¼ 1 to 3), Syst_k (k¼ 1 to 3), Sens_n (n¼ 1 to 5) repre-
304sent respectively the occupants, zones (or rooms) of the building,
305technical systems, and measurement sensors.

3062.4 Control Charts for the Detection of Performance
307Faults and Drifts. The principle behind the proposed modeling is
308that the fault detection can be viewed as a binary classification
309task: an observed state belongs to either the normal operation
310class (“under statistical control (SC)”) or the faulty operation class
311(“dysfunctional” or “out-of-control”). A T2 hotelling multivariate
312control chart [49,50] was used.

Fig. 1 The Markov Blanket. The shaded nodes (parents, co-
parents, children nodes) are inside the Markov Blanket of node
“A.” The white ones are outside the blanket.
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313 The detection of faults (dysfunctional or “out of control” states)
314 in the Bayesian network modeling the system can therefore be con-
315 sidered by adding extra discrete nodes to the time-monitored
316 variables—that means inserting control charts at key points for
317 monitoring purposes. In this way, it is possible for example to
318 detect abnormally high heating consumption compared with normal
319 performance for the considered period, which might suggest a fault.

3203 Case Study of a Building

3213.1 Presentation of the Building. The building we choose
322for our case study belongs to CEREMA in Ponts-de-C!e, in France.
323A surface area of 105 m2 was instrumented for the purpose of our
324study (see Fig. 3). This building was erected in the 1970s and is
325constituted of common aggregate blocks without insulation.

Fig. 2 Three stages of the proposed approach: (a) modeling principle for functional mode—inductive stage to
establish “baseline” of behavior in functional (nonfaulty) mode, (b) modeling principle for dysfunctional
mode—inductive stage to characterize effects of faults, and (c) modeling principle for dysfunctional mode—
deductive stage to identify and hierarchize causes of performance drift
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326 Insulation was added to the suspended ceilings in the 1990s. The win-
327 dows are double-glazed (4/6/4) with aluminum frames. The building
328 uses mechanically controlled single flow ventilation. The heating is
329 supplied by a standard high-temperature water loop system.
330 Some hundred sensors were installed to monitor temperature,
331 caloric requirements, and occupancy level (see sensors installation
332 in Fig. 4). Temperature gauges were placed in each room at a
333 height of 1.50 m on interior partition walls, away from windows
334 and doors. The caloric requirements were monitored using ultra-
335 sonic calorimeters placed at the entry of the heating water loop,
336 meaning we may consider that the energy measured is used
337 entirely for heating and that heating network losses are moreover
338 recovered. In view of its complexity, it was decided to monitor
339 the occupancy level using presence (passive infrared motion
340 detection sensors) and windows’ opening/opening sensors. The
341 status of artificial lighting is also checked (with luxometers), and
342 the loads due to plug-connected equipment are measured.
343 The TRNSYS tool was used to model the thermal performances of
344 the building. The model was calibrated/trained with data collected

345by Caucheteux et al. [51] during a whole year from Jan. 1, 2013 to
346Dec. 31, 2013. Once trained, we have applied the model for a new
347heating period (151 days between the Oct. 1, 2015 and the Mar. 1,
3482016) in order to assess the accuracy of our thermal model. We
349defined multizone models from the instrumented zones, and the
350Contam tool was coupled to TRNSYS for the airflow modeling (Con-
351tam is a multizone airflow and contaminant transport analysis pro-
352gram. It can help determine airflows such as infiltration,
353exfiltration, and room-to-room airflows in building systems driven
354by mechanical means, wind pressures acting on the exterior of the
355building, and buoyancy effects induced by the indoor and outdoor
356air temperature difference). The model included mechanical venti-
357lation, air infiltration, and all opening of doors and windows. As
358regards air tightness, it was found that the majority of leaks came
359from windows. Therefore, for the purposes of the modeling, infil-
360trations were considered not just as proportional to the surface of
361walls but also linked to the quality of the openings. Finally, the
362occupants were modeled as “persons seated in thermal comfort at
363their workplace.” The simulations were carried out to determine
364the caloric requirements in each zone (instrumentedþmodeled).
365In Figs. 5(a)–5(c), we present comparisons between simulated and
366real measurements for temperatures and required heat quantity
367(HQ). Specifically, Fig. 5(a) presents the variation of the required
368heat quantity as a function of the difference between indoor and
369outdoor temperatures for both simulated and real data. In Figs.
3705(b) and 5(c), we give the details of the variation of the difference
371between indoor and outdoor temperatures and of the required
372daily heat quantity as functions of time (from the Oct. 1, 2015 to
373the Mar. 1, 2016). To assess the agreement between simulations
374and real results, we calculate the normalized mean bias error
375(NMBE) and the coefficient of variation of the root-mean-squared
376error (CV(RMSE)) which are two metrics recommended by both
377ASHRAE and IPMVP [52, 53]. Based on hourly measurements,
378we calculate a NMBE of %2.82% and a CV(RMSE) of 27.02%.
379ASHRAE guideline 14 and IPMVP, respectively, require that
380these values should not exceed 10% and 5% for NMBE, and 30

Fig. 3 Modeling using Sketchup 3DVR of CEREMA building

Fig. 4 Positioning of different sensors installed by CEREMA
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381 and 20% for CV(RMSE). We must note that the CV(RMSE)
382 calculated for our DES model is beyond the limit recommended
383 by IPMVP. However, since we mainly use the model to detect
384 differences between functional and dysfunctional situations and
385 not to predict exact energy consumption, we finally consider that
386 the DES is accurate in terms of our objective.

3873.2 Characterization of External Loads–Meteorological
388Data. All variables of interest related to outdoor physical phe-
389nomena influencing the energy performances of the building were
390considered as external load factors. The first and best known of
391these phenomena is climatic conditions, which, with year-to-year
392variability, seasonality effects, and variations over time,

Fig. 5 Comparisons between the results obtained from DES model and actual data: (a) Variation of the
required HQ (for the whole surface area of 105 m2) as a function of the difference between indoor and OTs for
both simulated and actual data, (b) variation of the difference between indoor and OTs as a function of time,
and (c) variation of the required daily HQ (for the whole surface area of 105 m2) as a function of time
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393 determine the performance level required for a building and its
394 equipment to ensure the comfort of its occupants.
395 In our study, dynamic meteorological data were collected via a
396 weather station installed on-site. This was equipped with the tem-
397 perature, relative humidity, global horizontal radiation, wind
398 speed, and direction sensors.
399 The station location must be chosen in such a way that it com-
400 ply with WMO recommendations [54], i.e., away from obstacles
401 and in a grassy area. Wind speed measurements may sometimes
402 by affected by certain external phenomena. The measurements
403 taken were therefore broken down into two: light winds and strong
404 winds. If the anemometer has a resolution of 1 m/s, only wind
405 speeds above 1 m/s can be measured.
406 To complete the meteorological data, the renewal of air was
407 monitored through the ventilation flow rates and the air perme-
408 ability of the building. The flow-rate measurement of the single
409 flow ventilation installed was achieved via by an air flow-rate
410 measurement cone connected to a hot wire sensor or anemometer.

411 3.3 Characterization of Internal Loads. The behavior of
412 building occupants can make it difficult to follow the conventional
413 scenarios outlined by the regulations in place. People interact with
414 their immediate environment searching for desired comfort level
415 of which the most direct indicator is indoor temperature. In adjust-
416 ing this temperature (or other systems), occupants influence the
417 energy consumption.
418 Electrical equipment and appliances are supplementary sources
419 of energy. These variables—indoor or preset temperature, number
420 of occupants, internal sources—contribute to the building dynam-
421 ics and have to be considered as internal loads. These interdepend-
422 ent variables are indirectly characterized via the installed sensors.
423 Table 1 lists all variables that are directly measured or (indirectly)
424 calculated.
425 Occupancy can become a significant internal load. By
426 “occupancy” is meant the number of persons present in the build-
427 ing at a given time in conjunction with their behavior. The energy
428 consumption of a building is directly linked to the occupancy rate
429 as well as the behavior of the users. Workplace occupants can be
430 a serious source of loss and this is a factor that affects the building
431 dynamics: for instance, opening doors and windows necessitates
432 an additional supply of heat energy in order to balance thermal
433 losses. However, occupants can also be a source of energy by their
434 activity. In our study, we have considered that every occupants
435 are sitting persons in thermal comfort. Their metabolic rate is
436 about 58 W/m2/person (1 Met) [55] with a body surface for aver-
437 age adult of 1.7 m2; therefore, the energy released by metabolism
438 is taken at 100 W/person (direct energy source). Devices used by
439 occupant (household appliances in a residential building and IT-
440 related in a tertiary building) also supply energy to the building
441 that can be quantified as an internal source (indirect energy
442 source). This indirect energy source is dissociated from the occu-
443 pancy and dealt with independently in the form of internal
444 sources.
445 To estimate the occupancy level of a building, several estima-
446 tors are used based on different measurement protocols that have
447 been established [51–56]. They can be based on video recordings,

448measurement of CO2 concentration, motion detection, noise anal-
449ysis, or electricity consumption data [57,58]. The combination of
450several of these measurements provides more detailed information
451regarding the occupancy level and thus a reduction of the uncer-
452tainty of the estimation [59]. In our study, the occupancy level is
453characterized via measurements from motion detection sensors
454(passive infrared), CO2 sensors, lux meters for artificial lighting,
455sensors for opening/closing of windows, and electricity consump-
456tion sensors for socket loads. As far as internal heat sources are
457concerned, it is quite a complex matter to measure the quantity of
458heat effectively released by occupants and electrical equipment.
459The most common practice consists in measuring electricity con-
460sumption and assuming that all the power consumed by electrical
461equipment is totally released within the building.
462The indoor temperature is the ambient temperature of a room
463that is regulated via a preset temperature in order to achieve the
464desired thermal comfort. The indoor temperature can be measured
465in every room. In addition, surface temperature measurements can
466be taken, as well as measurements of the air temperature at the
467exit of the heating supply devices.

4684 Construction of the Bayesian Network
469The construction of the BN follows the six steps mentioned in
470the previous Sec. 2.3.

4714.1 Step 1—Collection of Data and Prediction of Heat
472Quantities by Means of Dynamic Energy Simulations. The
473inputs and outputs of the model are shown in Table 2.
474The indoor data were collected from a floor of the building with
475sensors installed according to the measurement plan shown in
476Fig. 4. The outdoor data were mainly obtained from our meteoro-
477logical station and completed with data from a regional station.
478All the data were recorded from Jan. 1, 2013 to Dec. 31, 2013.
479The outputs are the predicted heat quantities in each room of the
480building; predictions were made through the DES model.

4814.2 Step 2—Choice of the Learning Algorithm for the
482Construction of the Bayesian Networks. The construction of a
483BN consists mainly in finding the set of relationships (links)
484between variables (nodes) and the conditional probabilities tables
485between the thus linked variables. The goal here is to find the BN,
486with a controlled level of complexity, which best fits the training
487database and can give accurate predictions. We typically have to
488deal with a complex combinatorial problem, which first requires
489specific algorithms to detect conditional independences and then
490heuristic search in the solutions space. We have tested several cur-
491rent learning algorithms to find the one(s) that are the most appro-
492priate for our problem. Table 3 shows all the different alternatives
493we have compared. Most of these inference algorithms dedicated
494to discrete nodes are available in the HUGIN software or toolboxes
495like BNT computed with MATLAB by Murphy [60].
496From the same database, an algorithm alone can provide multi-
497ple nearly optimal solutions, and, another algorithm can give dif-
498ferent candidate solutions. A way to compare the efficiency of the
499algorithms is to calculate the biased variances for each model

Table 1 Monitored variables

Calculated Measured

Occupancy level Motion/presence sensors Indoor/preset temperature
Interior sources Entrance and exit of occupants Surface temperature
AL due to windows’ openinga Opening/closing of windows and blinds Supply air temperature

Intensity of light Pressure differential
Concentration of CO2 Heat energy consumption
Electrical energy

aThis variable is deduced from the measurements but is not considered as an internal load. It is used along with the permeability, wind velocity, and rela-
tive pressure data to characterize the leakages.
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500 using an information criterion for the selection of the model (e.g.,
501 akaike information criterion (AIC)—or Bayesian information cri-
502 terion (BIC)); the main concern here is to use the same score
503 when comparing the BN architectures in order to choose the one
504 which is the best in an objective way.
505 In order to test our method, we applied it to a single office (see
506 Fig. 4—corner office #5) for which a large range of sensors and
507 data were available.
508 Figure 6 shows the inputs (parent nodes) taken from meteoro-
509 logical data (upper part of the diagram) and those taken from
510 measurements obtained from sensors inside the rooms (lower
511 part). This figure reports one of the best candidate solution
512 obtained, considering hourly measurements over the whole year,
513 with nodes discretized via an algorithm based on AIC. The mar-
514 ginal probabilities and tables of conditional probabilities for the
515 nodes were learned from a no-fault data file (since we are in oper-
516 ating mode).

517It needs to be specified clearly that the purpose of our method-
518ology is not to establish automatically the final BN architecture
519but just to give to the user a starting point reflecting visually the
520causal relationships between the various variables. Experts from a
521physical understanding of various phenomena must validate these
522conditionally dependences and independences. Their expertise is
523essential in the construction of the final BN architecture. More-
524over, the experts may add or delete some arcs in the network if
525they consider that necessary.
526As an example of causal relationships explanation, the network
527in Fig. 6 shows that the energy need (output of the child node)
528HQ, equivalent to the heating consumption, is directly dependent
529on indoor temperature IT but equally on the air leakage (AL) level
530AL of the envelope. However, the fact that the conditional distri-
531bution for each variable is defined according to its parents does
532not signify that no other variables influence it. Indeed, nodes IG
533and HQ are conditionally independent if and only if all the nodes

Table 2 Input and output variables of the model constructed by BN

Inputs
(collected from Jan. 1, 2013 to Dec. 31, 2013)

Output
(estimated from DES simulations)

Outdoor—meteorological data Indoor—measured directly from sensors or calculated Required HQ calculated individually for each room

Atmospheric pressure (AP) AL
Diffuse radiation (DR) Internal heat gains (IG)
OT Indoor temperature (IT)
RH Presence or occupancy level (Pre)
Solar Azimuth (SA) Solar heat gains (SG)
Solar height (SH)
Total horizontal radiation (THR)
Wind direction (WD)
Wind speed (WS)

Table 3 The different combined or hybrid learning algorithms

Search for conditional independence relationships Hybrid algorithms

Grow-shrink Restricted maximization
Incremental association Max-min hill-climbing

Max-min parents and children search
Heuristic search in solution space

Hiton parents and children search
Greedy search Chow-Liu
Tabu search Aracne search

Fig. 6 Bayesian network for operational mode solely for Office #5 (with hourly measurements
over a period of a year)
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534 belonging to the Markov blanket of IG (or HQ) are observed (i.e.,
535 one knows theirs values). Thus, in Fig. 6, HQ is conditionally
536 independent of IG if the nodes IT and AL are observed. That
537 means that knowing IG when IT and AL are observed does not
538 change anything in the computation of the probabilities of the var-
539 ious modalities of the node HQ. Nevertheless, if AL is not
540 observed, then IG influences the probabilities of the modalities of
541 the node HQ because of the path: IG-Pre-SA-THR-OT-AL-HQ.
542 In addition, the OT node influences the HQ if AL is not observed.
543 From a physical point of view, if the AL is inexistent (perfect air-
544 sealing quality) the OT should not influence the HQ (i.e., HQ is
545 influenced by OT only if AL exists).
546 The same task of modeling the operational mode by BN was
547 carried out for a whole floor by “forcing,” during the network
548 architectural stage, the grouping together of variables of the same-
549 type (for example, heating consumption HQ for offices nos. 2–7
550 combined). The relationships between nodes of the same type are
551 shown with thin-lined arrows. The relationships between nodes of
552 different types (for example, OT and air leakage in the office #6
553 AL_Office#6) are shown with thick-lined arrows. Of course,
554 many number of different BN models for operational mode are
555 possible, limited only by the extent to which the physical coher-
556 ence of the relationships established between the network varia-
557 bles can be justified. In Fig. 7, we show the BN adopted based
558 upon a minimized BIC index, from which we can discuss some
559 examples of causal relationships. Physically, there is a link
560 between outdoor (OT, RH) and indoor (indoor temperature (IT))
561 conditions. The network shown in Fig. 7 proposes a link between
562 RH and the AL. It is not what was first expected, but the link is con-
563 sistent. Indeed, considering that AL can be regarded as a heat loss
564 by air leakage, there is an obvious link with the outdoor conditions.
565 Some links are less intuitive. For example, the link between Solar
566 Azimuth (SA) and people presence (Pre) was unexpected. Never-
567 theless, if we consider the correlation between SA and the hour of
568 the day, it is now obvious to see a relationship between the hour of
569 the day and the presence of people. Of course, all relationships can
570 be discussed but a coherent explanation can be provided for most
571 of them and the BN can be consider as acceptable.

572 4.3 Step 3—Study of the Bayesian Networks Robustness
573 Against Database Reduction. The ability of a BN to detect and
574 diagnose faults is conditional upon its robustness against parame-
575 ters related to the data exploitation or extraction. We need to
576 check if the general architecture of the BN and its capacity to
577 model the data is deeply modified when we consider only a part of

578the database or when we take the average of the hourly measure-
579ments on a daily base. The main objective is to see eventually if
580we can construct a BN with equivalent quality but with fewer data
581to process.
582First, keeping to the same hourly measurements, we have
583reduced the database to data for which heating consumption was
584different from zero for all offices. We thus excluded data for
585which an energy need had not been calculated for at least one of
586the six offices. The new BN obtained in this case is presented in
587Fig. 8. Comparison to the equivalent BN with the complete data-
588base shows only minor changes in the relationships between varia-
589bles of the same type and in the relationships between types. Only
590one significant relationship appears (see black thick arrow),
591between the indoor temperature in office #6, IT_office#6, and the
592energy need in this office HQ_office#6. Therefore, this first modi-
593fication of the quantity of data taken into account and the very
594slight change of the BN seems to demonstrate the robustness of
595our method and that we can reduce the database to the periods
596recording energy needs.
597The second test consists in modifying the frequency of data
598acquisition. Here, we examined the sensitivity of the BN to a
599change from hourly to daily measurements; the inputs are the
600averages of the values recorded over a day for all characteristics
601measured (including, e.g., wind direction, in degrees). In Fig. 9,
602we show the new BN modeling the relationships between varia-
603bles for the whole floor #1 reducing data to daily measurements
604over a period of a year. The results are interesting: although a
605large majority of the internal relationships between nodes remains
606after change of frequency of measurement, one can see a higher
607number of new links between characteristics of different types
608(see black thick arrows).
609The two BN’s robustness tests we have conducted allow us to
610conclude that we can use a reduced part of averaged data with
611small disturbances of the BN architecture and of its efficiency.
612The calculation time decreases which will be useful when we will
613adopt continuous nodes rather than discrete ones in step 4 (Sec.
6144.4) and when we will need to develop DBNs in step 5 (Sec. 4.5).

6154.4 Step 4—Choice of Type of Nodes. In the following
616steps, having confirmed the effectiveness of the construction
617method of the BNs for the purposes our study, we choose to not
618discretize the nodes in order to avoid any loss of information; all
619the nodes will be modeled from continuous statistical distribu-
620tions. We maintained the assumption that they follow a Gaussian
621distribution law and that they are not interlinked via linear

Fig. 7 Bayesian network for operational mode for whole floor (with hourly measurements over a period of a
year)
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622 dependency relationships. It should be noted that these assump-
623 tions can change depending on whether one deals with a discrete
624 or a specific inference node (nonlinear non-Gaussian).
625 Once the network structure and its parameters are defined, it is
626 essential to use propagation algorithms that are appropriate to the
627 chosen structure in order to calculate marginal distributions as
628 well as probability distributions for each variable. Several infer-
629 ence algorithms have been suggested in the literature for Gaussian
630 conditional networks. We used two algorithms based on the junc-
631 tion tree [61,62]. We implemented them with the R scientific com-
632 puting environment. These algorithms allow accurate inference in
633 Gaussian conditional networks.
634 We also wanted to guarantee better AIC or BIC scores (infor-
635 mation criterion) for the choice of BN models. It is therefore nec-
636 essary to reduce the impact of local optima during optimization of
637 the architectures and parameters of the BNs. We thus adopted the
638 bootstrap resampling method already used in Sachs et al. [63]. In
639 practical terms, this consists in repeating the learning of the struc-
640 ture several times, which allowed us to explore a large number of

641networks, to average the networks obtained (see Ref. [64]) and to
642finally conserve only the relationships (links) that were present in
643at least 85% of the networks. Figure 10 illustrates the final BN
644obtained with continuous nodes. Some changes are observed
645between this BN and the one obtained with discrete nodes, but the
646general architecture remains. The BIC score for this BN with con-
647tinuous nodes is nearly the same that for discrete nodes (%49,727
648versus %50,523, i.e., a sensible loss of 1.6%). We will use contin-
649uous nodes for the upcoming simulations with the aim to obtain
650results that are more accurate.

6514.5 Step 5—Creation of Bayesian Network in Dynamic
652Mode. The DBNs are a special class of BNs; it includes the effect
653of time by considering that the value of a variable at a given time
654can influence its own value at the next time [65]. If we consider a
655set of n variables D(t)¼ {D1(t); D2(t); …; Dn(t)} varying with
656time, a DBN adds the joint probability distribution of these varia-
657bles for a bounded interval [0; T]. Generally, this distribution can

Fig. 9 Bayesian network for whole floor (using daily measurements over a period of a year). Implementation
of a T2 Hotelling multivariate control chart to detect drifts of the energy needs is also illustrated.

Fig. 8 Bayesian network for operational mode for whole floor (using hourly measurements during period of
heating only)
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658 be expressed as a static BN with T( n variables where T is the
659 number of time intervals considered. If the process we consider to
660 model is stationary, the assumptions of independence and the
661 associated conditional probabilities are identical for all time inter-
662 vals Dt¼(t) – (t% 1). In this case, the DBN can be represented by
663 a BN whose structure is duplicated for each time-step. A node
664 therefore represents a random variable whose value indicates its
665 state at time t.
666 The DBN are widely studied by researchers. In the domain of
667 energy optimization, DBN are used as a prognostic approach for
668 modeling aggregated load of HVAC systems [66,67], for detect-
669 ing occupant’s interactions with windows [68] or for evaluating
670 the reliability of grid-connected photovoltaic systems [69]. In our
671 case, the prognostic capacity of DBNs is an important improve-
672 ment in the anticipated detection of operational faults and drifts.
673 Given that the number of dimensions rises as a result of the intro-
674 duction of the time factor, the problem of optimization related to
675 this choice of BN model may be dealt with via the “least absolute
676 shrinkage and selection operator” or LASSO algorithm explained

677in [70]. Interested readers may use the “lars” package for R soft-
678ware in order to make computations.
679Figures 11(a) and 11(b) present the (repeatable) relationships
680between the variables of the BN at times (t% 1) and t for two lev-
681els of significance p. This p-value corresponds to the probability
682that the hypothesis of an existing relationship between two varia-
683bles at two consecutive times is null. In the following simulations,
684we have only considered the relationships with a p-value of 0.001,
685which in addition contributes to reduce the complexity of the
686DBN and the simulations time.
687Figure 12 illustrates how a DBN can be used to predict energy
688needs or the heat quantity in office #6 (HQ_office#6) using rela-
689tionships of dependence between time t and t% 1. The curve with
690the continuous orange line shows the results of simulation by
691DBN for the predicted/probable values of heat quantity HQ_of-
692fice#6 with time (for a time sequence t), considering the values for
693all other variables at instants t% 1 and t. The inputs are daily
694measurements, and the curve shows energy needs over a year. The
695dashed blue line on the same figure gives real heat quantity

Fig. 10 The Bayesian network for whole floor (using daily measurements over a period of a year) with continuous nodes

Fig. 11 Illustrations of a dynamic Bayesian network with two different levels of significance: (a) Relationships between vari-
ables at (t 2 1) and (t) for a level of significance p-value < 0.01 and (b) relationships between variables at (t 2 1) and (t) for a
level of significance p-value < 0.001
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696 HQ_office#6 measured over the year. The fit between the two
697 curves is very good as long as the target variable HQ_office#6 is
698 calculated with all the available information (including the heat
699 quantities of other offices, HQ_office#j). In terms of metrics of
700 comparison between the actual and simulated heat quantities, we
701 found values of NMBE and CV(RMSE) respectively at %3.8%
702 and 18.7% which are still below the threshold values recom-
703 mended by ASHRAE Guideline [52] and IPMVP [53]. For com-
704 plete information, the Frechet distance between actual and
705 predicted values is estimated at 2703. Regarding more precisely
706 the fit of the two curves, it is worth pointing out that the simula-
707 tions give a lot of noise for the “warm” period, which, however, is
708 of no consequence in the context of assessment of the overall per-
709 formances guarantee. Therefore, we can estimate that the use of
710 DBNs for this inductive stage to setup a “baseline” (see Fig. 2(b)),
711 from which to detect faults and drifts, is relevant.

712 4.6 Step 6: Experiment Design Used for Simulating the
713 Effects of Fault Situations. Once the baseline corresponding to
714 the normal operating conditions has been obtained, the following
715 step is used to simulate the effects of small faults on the dynamic
716 performances of the building. Then, we create a new database by
717 means of DES with different faults situations from which the
718 DBNs can be updated. It is important to underline that, for this
719 step, we consider that the architecture of the previous DBNs
720 obtained in step 5 is stable; the updating will only concern the
721 conditional probability tables. This makes the assumption that
722 the faults effects, of which amplitudes still remain controlled at
723 the (early) time of detection, had a priori been modeled by the pre-
724 vious DBNs, considering the whole ranges of the variables values
725 of the learning database that encompass the faults amplitudes.
726 From the 14 input variables (the 15th variable is the output heat
727 quantity) constituting the basis of the DBN, only a part of them
728 are directly requested as factors for the dynamic energy simula-
729 tions. All other variables depend on additional factors. Table 4
730 summarizes the 13 factors for which we have studied the effects
731 of possible deviations from normal conditions.AQ14 The fourth first
732 factors are variables from the DBN, the nine others are factors on
733 which depend the remaining ten variables of the DBN. In our
734 DESs, the deviation could be either positive or negative depend-
735 ing on whether the fault corresponds to a deficit or an excess (i.e.,
736 to a high or low performance threshold). In order to update the
737 DBN, 104 multiple-fault situations have been simulated by DES.

738These situations are summed up in Table 10 in Appendix; all the
739assumptions and data shown in this table are reported in Ref. [56].

7405 Simulation and Results

7415.1 Results for Certain Simulated Faults. Once the 104
742fault situations are simulated by DES, we have studied various
743fault situations in order to test the FDD capabilities of the updated
744DBNs. In order to avoid overloading the display of the results,
745only the consumption in office 2, HQ_office#2, is analyzed here.
746Because of the density of the measurements, it is difficult to dis-
747tinguish the differences between the fault situations and the base-
748line, referenced as “E0.” Therefore, we limit the comparison of
749the results to the period from 900 to 1800 h.
750Figures 13 and 14 illustrate two examples of simulation of
751energy consumption deviations in office 2 following the appear-
752ance of faults. These figures show the deviations of the energy
753consumption between the baseline E0 and two fault cases. The
754first one (referenced as “case_1”) consists in an increase in the
755preset temperature of þ1 K (see Fig. 13) and the second one
756(references as “case_2”) is a drift of the glazing transmission coef-
757ficient of %0.5 W/m2 K (see Fig. 14). In case_1, the injected fault
758on IT leads to an average relative discrepancy of performance
759equal to þ7.64% (with a standard deviation of þ6.34%. In case_2
760(injected fault on Uwi), we observe respectively values of
761þ1.86% and þ2.02% for the average discrepancy and the stand-
762ard deviation. One will note that the first fault has a higher effect
763than the second one.
764Figure 15 illustrates the probability of a process being under SC
765P(SC|x) over time in the case of an increase in preset temperature.
766The faults are injected independently at time t1¼ 1000 h and the
767simulations are stopped at t2¼ 1800 h. Here, it is worth pointing
768out, since only one variable—HQ_office#2—is analyzed, that the
769T2 Hotelling chart is reduced to one chart, “Xbar and S.” Given
770that case_1 is a simulated fault situation, a very rapid and very
771clear drop of probability P(SC|x) can be seen after the injection of
772faults at t1¼ 1000 h. It is therefore very quick and easy to detect
773fault situations. But, what is really of interest, and this is the
774advantage of using BNs, is the ability to carry out a diagnosis, i.e.,
775to determine the most probable initial cause of the fault.
776For the same detection threshold (here, for example,
777P(SC|x)¼ 0.6) and measurements obtained over a control period
778of 6 h (c.f. Sec. 5.4. Influence of control period below for a

Fig. 12 Energy needs (or HQ) of office #6 (HQ_Office#6)
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779 definition), the fault is more rapidly identified in fault case_1
780 (21 h) than in fault case_2 (463 h ) 19 days). This fact is intrinsi-
781 cally linked to the amplitude of the faults effects. In case%1 we
782 have a simulated average deviation of 249.7 and standard devia-
783 tion of 53.5, and in case_2, a mean and standard deviation of 56.1
784 and 34.1, respectively.

785Detection time is an important performance indicator. It
786depends on various factors; of course, on the amplitude of the
787fault effect on heat or energy needs HQ, but also on the value of
788the detection threshold P(SC|x), and on the width of the control
789period. Detection time is also stochastic in that it depends on the
790fault injection time. Figure 16 presents the distribution laws of

Table 4 Simulation variables for fault situations

Factors Code Low-performance threshold High-performance threshold

AL (coefficient)a AL 2 0.5
Indoor temperature or preset temperature (K)b IT þ1 %1
Internal heat gains (coefficient)c IG 1 2
Level of occupancy (coefficient)d Pre 1 2
Albedo ( )e Alb 0.1 0.4
Glazing solar factor (coefficient)f GF %0.2 þ0.2
Ground temperature (K) GT %3 þ3
Low ceiling (coefficient)g LC 0.5 1.2
Thermal bridges (coefficient)h TB 1.2 0.8
Uroof or High ceiling (coefficient)g UR 0.5 1.2
Uwall (coefficient)i Uwa 0.78 1.62
Uwindow (W/m2 K)j Uwi 3.2 4.2
Ventilation (kg/h)k Ve 200 100

aAL: the air permeability coefficient of the nominal situation was taken to be equal to 1.7 m3/h.m2. The dispersion typically observed on buildings erected
between 1948 and 2000 was retained, which corresponds to a disturbance of the default value by a multiplicative coefficient of between 0.5 and 2. For
instance, the low performance level corresponds here to an air permeability of 3.4 m3/h.m2.
bIndoor or preset temperature: the preset temperature uncertainty equates to the measurement uncertainty of the indoor temperature, which covers sensor
uncertainty and spatial sampling uncertainty, i.e., 61 *C.
cInternal heat gains: it corresponds to heat power from electrical devices use. Its uncertainty can be large if not precisely measured.
dLevel of occupancy: The occupancy measurement procedure (via motion detection) was affected by a bias consistently tending toward underestimation,
due to the possible absence of motion during occupancy as well as the possible presence of multiple individuals in a single office. A disturbance of hourly
occupancy of a factor of between 1 and 2 was therefore applied.
eAlbedo: it is a coefficient (between 0 and 1) that corresponds to the reflective power of external surfaces around the building. The dispersion comes
from the uncertainty of the value (that is usual not measured) and the diversity of surfaces around the building.
fCharacteristics of the bays: to represent the uncertainty of the thermal and radiation characteristics of the bays, the modeling variables of the glazing sys-
tem (woodwork included) are disturbed by the method described in the appendix. The transmission (total and visible) multiplication coefficient for the
glazing was considered to be between 0.8 and 1.2: this corresponds to a solar disturbance factor of 620% around the basic value of 0.81.
gLow and high ceilings: the corrective coefficients applied correspond to an insulation thickness of between 10 cm (0.5( 20 cm) and 24 cm (1.2( 20 cm);
20 cm being the nominal thickness.
hThermal bridges: the chosen dispersion deals with uncertainty of the materials and its implementation in the building.
iExterior walls: the maximum dispersion of the thermal resistance of the air knives from the ThU rules was retained, i.e., between 0.11 and 0.23 m2 K/W
(nominal value Uwall¼ 7 W/m2 K).
jWindows: The amplitude of the disturbances applied to the conductivity of the filling gas and the thermal transmission coefficient of the woodwork
resulted in a variation of transmission coefficient for the glazing system (Uwindows) of between 3.2 and 4.2 W/m2 K.
kNominal ventilation flow rate: ventilation flow rate was measured by the cone method. The measured value was 150 m3/h. The experimental measure-
ment conditions led us to increase this uncertainty and retain a dispersion of between 100 and 200 m3/h.

Fig. 13 Simulation of consumption deviations for an increase in preset temperature (case_1)

J_ID: DS DOI: 10.1115/1.4043922 Date: 6-June-19 Stage: Page: 13 Total Pages: 23

ID: sethuraman.m Time: 21:01 I Path: //chenas03.cadmus.com/Home$/sethuraman.m$/AS-DS##190093

Journal of Dynamic Systems, Measurement, and Control MONTH 2019, Vol. 00 / 000000-13



PROOF COPY [DS-18-1056]

791 detection times for a preset temperature and a glazing transmis-
792 sion coefficient drifts for statistically injected fault times taken,
793 for example, between 1000 and 2000 h and for the same detection
794 threshold of 0.6 and with a control period of 6 h. For a very signif-
795 icant effect on energy needs (case_1 of a positive drift of the pre-
796 set temperature), detection times are short and their distribution
797 follows an exponential law. For a less significant effect (case_2 of
798 negative drift of glazing transmission coefficient), detection times
799 are longer and their distribution follows a lognormal law.
800 If the detection time in case_1 is shorter, it is more difficult to
801 identify the possible causes (and hierarchize them). In fact, the
802 more quickly the fault is identified, the more limited the quantity
803 of available information is, and the more random the characteriza-
804 tion of the fault will be. Table 5 shows a sorted list, obtained via a
805 BN coupled with control chart, of probable causes of faults. The
806 results have been standardized, and the sum of all the percentages
807 for all 13 variables should equal 100%.
808 A lack of discrimination of possible causes is plainly evident in
809 case_1: while the first six causes listed do represent 82.8% of the

810possibilities, the cause at the top of the list is only 2.3 times more
811likely than the sixth one. Moreover, the IT variable which is the
812actual cause of the fault [IT for indoor temperature (or preset)—
813see Table 4] is not identified as being the most possible cause. In
814this specific case_1, we think that the weakness in characterizing
815the fault is due to the fact that the deviations generated by the sim-
816ulation in the first times after t1 were greater than the average of
817249.7 (which is what was measured between the time the fault
818was generated at 1000 h and the end of the simulation at 3400 h).
819In case_2, the drift has been characterized correctly. The detec-
820tion threshold is still 0.6, and the drift is identified after 463 h of
821operation in degraded mode: having recourse to more comprehen-
822sive information, the BN offers clear identification of the cause of
823drift, which is Uwi (Uwindow coefficient). Uwa is identified as the
824second most possible cause, however, with 2.8 times less likeli-
825hood of being the cause. It seems logical to assume that Uwa
826appears as a probable cause because the effect of injecting the
827fault into Uwa only (in a simulation not shown here) gave a simu-
828lated mean deviation of 61.8 and standard deviation of 39.8, in

Fig. 14 Simulation of consumption deviations for a deterioration in glazing transmission coefficient (case_2)

Fig. 15 Probability of being under SC after an increase in the preset temperature (case_1) or a decrease in the glazing trans-
mission coefficient (case_2)
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Fig. 16 Statistical distributions of detection times after an increase in the preset temperature (case_1) or a decrease in the
glazing transmission coefficient (case_2)

Table 5 Ranking in descending order of possible causes of faults or drifts [detection threshold 5 0.6 – control period 5 6 h]

Fault/drift Detection time (h) Probable cause #1 Probable cause #2 Probable cause #3 Probable cause #4 Probable cause #5 Probable cause #6

IT (K) (or preset) 21 IG! 20.2% IT! 17.0 Uwa! 13.3 Uwi! 13.0 TB! 10.7 AL! 8.6
Uw (W/m2.K) 463 Uwi! 48.2% Uwa! 17.1 TB! 6.5 AL! 4.0 UR! 2.9 Alb! 2.2

where AL is the air leakage, IT is the indoor or preset temperature, IG is the internal heat gains, Pre is the level of occupancy, Alb is the albedo, GF is the
glazing solar factor, GT is the ground temperature, LC is the low ceiling, TB is the thermal bridges, UR is Uroof or high ceiling, Uwa is Uwall, Uwi is
Uwindow, and Ve is the ventilation.

Fig. 17 Influence of the preset temperature drift amplitude on the probability of process being under SC
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829 other words, values that are very close to the simulated ones for
830 Uwi only: 56.1 and 34.1.

831 5.2 Influence of Drift Amplitude. The influence of the drift
832 amplitude has been suggested in the previous paragraphs. Here,

833we study this influence by considering the effect of different
834values of positive preset temperature drifts. To some extent, this
835parallels to a steady decline of preset temperature control. Figure
83617 shows the probability P(SC|x) that the process is still under sta-
837tistical control over time for different drift values from þ0.5 K to

Table 6 Influence of drift amplitude (case_1 of preset temperature) on ranking of probable causes of faults [detection thresh-
old 5 0.6; control period 5 6 h]

Drift amplitude Detection time (h) Probable cause #1 Probable cause #2 Probable cause #3 Probable cause #4 Probable cause #5 Probable cause #6

Drift of þ0.5 K 127 IG! 19.1% IT! 14.7% Uwa! 12.2% Uwi! 12.0% TB! 11.2% AL! 10.9%
Drift of þ1 K 21 IG! 20.2% IT! 17.0% Uwa! 13.3% Uwi! 13.0% TB! 10.7% AL! 8.6%
Drift of þ1.5 K 11 IT! 38.1% IG! 15.1% Uwi! 11.2% Uwa! 11.0% TB! 6.2% AL! 3.9%
Drift of þ2 K 8 IT! 78.2% IG! 5.1% Uwi! 4.2% Uwa! 3.0% TB! 1.1% AL! 0.8%

where AL is the air leakage, IT is the indoor or preset temperature, IG is the internal heat gains, Pre is the level of occupancy, Alb is the albedo, GF is the
glazing solar factor, GT is the ground temperature, LC is the low ceiling, TB is the thermal bridges, UR is Uroof or high ceiling, Uwa is Uwall, Uwi is
Uwindow, and Ve is the ventilation.

Table 7 Influence of threshold value on ranking of probable causes of faults [control period of 6 h]

Threshold value Detection time (h) Probable cause #1 Probable cause #2 Probable cause #3 Probable cause #4 Probable cause #5 Probable cause #6

Threshold of 0.6 21 IG! 20.2% IT! 17.0% Uwa! 13.3% Uwi! 13.0% TB! 10.7% AL! 8.6%
Threshold of 0.5 53 IT! 40.1% IG! 14.0% Uwa! 12.2% Uwi! 11.8% TB! 8.8% AL! 5.6%
Threshold of 0.4 114 IT! 78.2% IG! 5.1% Uwi! 4.2% Uwa! 3.0% TB! 1.1% AL! 0.8%

where AL is the air leakage, IT is the indoor or preset temperature, IG is the internal heat gains, Pre is the level of occupancy, Alb is the albedo, GF is the
glazing solar factor, GT is the ground temperature, LC is the low ceiling, TB is the thermal bridges, UR is Uroof or high ceiling, Uwa is Uwall, Uwi is
Uwindow, and Ve is the ventilation.

Fig. 18 Principle of the fault characterization moving time-window
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838 þ2 K with a step of 0.5 K. We still consider that, as an example,
839 the detection threshold is 0.6 and the control period is 6 h. We
840 also indicate the different detection times after fault injection
841 (here, fault is arbitrarily injected at 1000 h).
842 Of course, detection time decreases when the value of drift
843 increases but, as suggested in the previous paragraphs, there is a
844 negative impact on the ability to identify the possible cause lead-
845 ing to the detected fault. The results of simulations presented in
846 Table 6 show this negative impact that will push to focus on the

847necessary optimization of the control parameters (detection
848threshold, control period …).

8495.3 Influence of Detection Threshold of Control Chart.
850The results presented previously (see primarily comments on
851case_1) suggest that the detection time has an impact on the qual-
852ity of fault characterization. A short detection time mechanically
853reduces the quantity of information available to the BN coupled

Table 8 Influence of control period on the ranking of possible causes of faults [threshold of 0.6]

Control period dc Probable cause #1 Probable cause #2 Probable cause #3 Probable cause #4 Probable cause #5 Probable cause #6

dc¼ 6 h IG! 20.2 % IT! 17.0 Uwa! 13.3 Uwi! 13.0 TB! 10.7 AL! 8.6
dc¼ 12 h IG! 23.1 % IT! 16.9 Uwi! 13.2 Uwa! 13.1 TB! 9.2 AL! 7.7
dc¼ 24 h IT! 29.1 % IG! 14.0 Uwa! 11.6 Uwi! 11.1 TB! 8.8 AL! 6.8
dc¼ 72 h IT! 56.1 % IG! 10.1 Uwi! 7.8 Uwa! 5.2 TB! 4.1 AL! 3.3
dc¼ 168 h IT! 68.2 % IG! 6.0 Uwi! 4.9 Uwa! 4.0 TB! 2.4 AL! 1.8

where AL is the air leakage, IT is the indoor or preset temperature, IG is the internal heat gains, Pre is the level of occupancy, Alb is the albedo, GF is the
glazing solar factor, GT is the ground temperature, LC is the low ceiling, TB is the thermal bridges, UR isUroof or high ceiling, Uwa is Uwall, Uwi is
Uwindow, and Ve is the ventilation.

Fig. 19 Simulations of consumption deviations for the case with two simultaneous faults (IT and Uwi)

Table 9 Influence of threshold and control period on ranking of possible causes of faults for two faults appearing simultaneously
(IT and Uwi)

Control threshold

0.75 0.6

Control period dc¼ 48 h IT! 32.2%; Uwa! 14.3%; IG! 12.7%
Uwi! 11.4%; TB! 7.1%; AL! 5.3%

IT! 40.0; Uwa! 11.4; Uwi! 11.3
IG! 9.8; TB! 5.8; AL! 3.5

dc¼ 144 h IT! 37.2; Uwa! 12.6; Uwi! 12.4
IG! 10.7; TB! 6.4; AL! 4.0

IT! 43.6; Uwa! 10.0; Uwi! 9.4
IG! 8.7; TB! 5.0; AL! 3.1

where AL is the air leakage, IT is the indoor or preset temperature, IG is the internal heat gains, Pre is the level of occupancy, Alb is the albedo, GF is the
glazing solar factor, GT is the ground temperature, LC is the low ceiling, TB is the thermal bridges, UR isUroof or high ceiling, Uwa is Uwall, Uwi is
Uwindow, and Ve is the ventilation.

J_ID: DS DOI: 10.1115/1.4043922 Date: 6-June-19 Stage: Page: 17 Total Pages: 23

ID: sethuraman.m Time: 21:02 I Path: //chenas03.cadmus.com/Home$/sethuraman.m$/AS-DS##190093

Journal of Dynamic Systems, Measurement, and Control MONTH 2019, Vol. 00 / 000000-17



PROOF COPY [DS-18-1056]

854 with control chart, thus increasing the ultimate risk of poor char-
855 acterization of the fault or drift. This detection time, which we
856 cannot a priori fully control, is linked to the detection threshold of
857 the control chart, which, however, can be controlled/chosen. In
858 Table 7 can be seen the influence of the chosen control chart
859 detection threshold on the characterization of the fault for the first
860 case_1, dealt with previously. The threshold values of 0.6, 0.5,
861 and 0.4 were chosen arbitrarily to illustrate this influence.
862 We can see that the injected IT fault is identified at the 0.5
863 threshold (with a corresponding detection time of around 53 h) as
864 the most likely one (and 2.8 times more likely than the second
865 fault, IG). For a threshold value of 0.4 (with a corresponding
866 detection time of roughly 114 h), the first probable cause is unam-
867 biguously identified; the probability of the IT fault occurring
868 effectively overtakes that of IG with a ratio of over 15. This high
869 level of discrimination is because the impact of the IT fault alone
870 on consumption deviations is intrinsically far greater than the
871 effects of the other variables.

872Finally, we must point out that in the example given in our
873study the characterization error for low threshold values grows in
874proportion to the degree to which the first simulated values differ
875from the mean value calculated between times t1 and t2, i.e., the
876start and end times of the simulation.

8775.4 Influence of the Control Period. The previous simula-
878tions have demonstrated that modification of the threshold value
879can improve the characterization of a fault. The aim of adjusting
880the threshold value in this way is to mechanically increase the
881duration over which consumption deviations are measured, thus
882ensuring that comprehensive information is available and used.
883Another strategy is possible, namely the adjustment of the control
884period. The idea is that once a fault has been detected, the mea-
885surement of deviations continues for a certain time period dc in
886order to obtain a better fault “signature.” In practical terms, that
887means to increase the time duration of the signal analysis, i.e., to
888insert a time window into the signal (see Fig. 18).

Fig. 20 Simulations of consumption deviations for the case with two simultaneous faults (IT and Uwi)

Fig. 21 Probability of process being under SC for a case with two faults appearing simultaneously (IT and Uwi)

J_ID: DS DOI: 10.1115/1.4043922 Date: 6-June-19 Stage: Page: 18 Total Pages: 23

ID: sethuraman.m Time: 21:02 I Path: //chenas03.cadmus.com/Home$/sethuraman.m$/AS-DS##190093

000000-18 / Vol. 00, MONTH 2019 Transactions of the ASME



PROOF COPY [DS-18-1056]

889 For the threshold of 0.6, which evidently caused problems for
890 the characterization of the fault in simulation case_1, we tested the
891 influence of the control period, i.e., duration dc, on the identification
892 of probable causes. Table 8 sums up the results obtained for five val-
893 ues of control period. It shows the impact of the control period on
894 the rank and scale of the probabilities achieved when identifying
895 fault causes. The more the length of the control period dc increases,
896 the better the actual cause of fault is detected. In Fig. 19, we show
897 the variation of the probability of being the cause of fault (for the
898 sixth first most probable causes) as a function of dc. Factor IT is con-
899 sidered to be the most probable cause of fault as soon as dc reaches
900 about 16 h. After 60 h of control period, the probability of factor IT
901 to be the cause of fault is five times higher than the one of the second
902 ranked possible cause of fault. This ratio exceed ten for dc beyond
903 140 h. We might finally be inclined to choose a large control period
904 to be certain to detect the actual cause, but if this control period is
905 too long the consequence of the ongoing deterioration of perform-
906 ance might be too critical. The choice of the control period length is
907 always a matter of compromise (see Table 9).
908 The results of simulations in Table 9 show that the cause IT is
909 indeed identified as most likely regardless of the control combina-
910 tion (threshold/period). This is primarily due to the fact that fault
911 IT has a greater impact on consumption deviations than do the
912 other variables. As for cause Uwi, it does feature among the most
913 likely causes of drift but is never ranked in first or second place,
914 where it should be.

915 5.5 Influence of Number of Faults. We have demonstrated
916 the rich potential of BNs coupled to a control chart in the pres-
917 ence of a single fault—a potential conditional upon an appropriate
918 degree of adjustment of the thresholds and control period. Here,
919 we examine the appearance, after a period of 1000 h, of two faults
920 simultaneously, on variables IT and Uwi. The simulations that we
921 present for office 2 were carried out with two threshold values
922 (0.75 and 0.6) and two control periods (48 and 144 h). Figures 20
923 and 21 show the results obtained by simulation via BN. Table 9
924 synthesizes the ranking of probable causes of faults.
925 In this situation where two faults on IT and Uwi are simultane-
926 ously injected, we have found that the value of the average rela-
927 tive discrepancy reaches þ9.06% with a standard deviation of
928 þ7.41%. One remark that the two effects of the fault taken indi-
929 vidually are almost added together (we recall that the average dis-
930 crepancies for case_1 and case_2 have been found, respectively,
931 at þ7.64% and 1.86% (see Sec. 5.1)).

932 6 Conclusion
933 This paper proposes a hybrid FDD method for detecting faults
934 and energy performance drifts in buildings during its operation

935and maintenance stage. The method is based on the graphical
936method of BNs. It is referred as hybrid since we use actual data
937for the BN construction in functional state and DES to create a
938complementary database in dysfunctional states. We have shown
939the potential of the BN in the process of detection and ranking of
940the probable causes of a fault or drift of energy performance for
941an actual building located in Les Ponts-de-C!e, France.
942Our modeling approach is divided into three stages. In the first
943one, we compile a whole-year database of hourly measured/actual
944input variables related to environmental conditions, building
945envelope and energy systems performances, level of occupancy
946and outputs (energy needs) extracted from actual data and/or pre-
947dicted from DES. The DES model of the building is validated by
948comparisons with the measured energy needs.
949In the second stage, we explore a number of alternative Bayes-
950ian networks designed for the modeling of a building in opera-
951tional mode. The BN is used to simulate a baseline of the energy
952needs variations in this operational mode, as a function of input
953variables. A robustness study allows us to reduce the size of the
954database with small disturbances on the BN architecture and on
955its efficiency. This database reduction and the consequent
956decrease in the computation time facilitate the development of
957DBN with continuous nodes for more accurate simulations and
958better diagnosis and prognostic performances. This DBN is
959updated in a third stage using DES simulating several types of
960faults or drifts of the model inputs. Once the inference rules for
961dysfunctional operating modes are constructed, we carry out FDD
962simulations. We show the potential but also the limitations of
963using this approach for the ranking of probable causes of an
964energy performance fault. Some of these limitations can be
965explained by imperfect optimization of the control period and the
966threshold adjustments of the control charts. The suggested
967approach seems to have a lower degree of accuracy when several
968faults appear simultaneously. In our further works, we will try to
969address these shortcomings.
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Table 10 The 104 fault situations simulated to update the DBN [low, high, and nominal level of performance are respectively coded
by numbers (21), (11) and (0)].

Factors!
Air

Leakage
Preset

temperature
Internal

heat Gains
Level of

occupancy Albedo
Glazing

solar factor
Ground

temperature
Low

Ceiling
Thermal
Bridges

Uroof or
high ceiling Uwall Uwindow Ventilation

Fault
situation # # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

E1 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E2 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E3 (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E4 (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E5 (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E6 (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E7 (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1)
E8 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1)
E9 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1)
E10 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1)
E11 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1)
E12 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1)
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Table 10 (continued)

Factors!
Air

Leakage
Preset

temperature
Internal

heat Gains
Level of

occupancy Albedo
Glazing

solar factor
Ground

temperature
Low

Ceiling
Thermal
Bridges

Uroof or
high ceiling Uwall Uwindow Ventilation

Fault
situation # # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

E13 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1)
E14 (þ1) (þ1) (%1) (%1) (%1) (%1) (%1) (%%1) (%1) (%1) (%1) (%1) (%1)
E15 (þ1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E16 (þ1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E17 (þ1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E18 (þ1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E19 (þ1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1)
E20 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1)
E21 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1)
E22 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1)
E23 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1)
E24 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1)
E25 (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1)
E26 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E27 (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E28 (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E29 (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E30 (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E31 (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E32 (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1) (%1)
E33 (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1) (%1)
E34 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1) (%1)
E35 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1) (%1)
E36 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1) (%1)
E37 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0 (%1)
E38 (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) 0
E39 (%1) (þ1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E40 (%1) (þ1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E41 (%1) (þ1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E42 (%1) (þ1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E43 (%1) (þ1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1)
E44 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1)
E45 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1) (%1)
E46 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1) (%1)
E47 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1) (%1)
E48 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1) (%1)
E49 (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (þ1)
E50 (%1) (%1) (þ1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
E51 (%1) (%1) (þ1) (%1) (þ1) (%1) (%1) (%1) (%1) (%1) (%1) (%1) (%1)
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Table 10 (continued)

Factors!
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temperature
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heat Gains
Level of

occupancy Albedo
Glazing

solar factor
Ground

temperature
Low

Ceiling
Thermal
Bridges

Uroof or
high ceiling Uwall Uwindow Ventilation

Fault
situation # # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
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