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The (max,+) theory allows to describe the behavior of Timed Event Graphs (TEG) with constant holding times. For time-varying systems, a class of First-In First-Out TEGs with periodic holding times has already been studied in the literature. We show here that such time-varying TEGs can be modeled by equivalent Weighted TEGs for which an input-output model exists. In summary, we can describe FIFO TEGs with periodic holding times by means of ultimately periodic formal series in a dioid denoted E * per δ .

Modeling of Time-Varying (max,+) systems by means of Weighted Timed Event Graphs

Bertrand Cottenceau * ,1 Sébastien Lahaye * Laurent Hardouin *

INTRODUCTION

The class of (max,+) linear systems is of practical interest for the study and the control of traffic (railway, networks) and production systems. It is well known that they correspond to discrete event systems represented by Timed Event Graphs (TEGs) with constant holding times (see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF], [START_REF] Heidergott | Max Plus at Work -Modelling and Analysis of Synchronized Systems -A Course on Max-Plus Algebra and Its Applications[END_REF]).

Some extensions have been studied in order to increase the field of possible applications. For instance, the class of time-varying (max,+) systems has been studied in [START_REF] Lahaye | Linear periodic systems over dioids[END_REF] and in [START_REF] Lahaye | Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra[END_REF]. The authors consider Timed Event Graphs where the holding times associated to places are not constant but can have different values that change periodically. Nevertheless, tokens must not overtake: places have a First-In First-Out behavior.

Recently, the class of Weighted Timed Event Graphs (WTEGs) has been reconsidered with a dioid approach in [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF]. This work is an extension of different studies on TEG whose the arcs are valued [START_REF] Cohen | Timed event graphs with multipliers and homogeneous min-plus systems[END_REF], [START_REF] Hamaci | Modeling and Control of Discrete Timed Event Graphs with Multipliers using (Min,+) Algebra[END_REF]). In [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF], the focus is on the modeling of WTEGs by formal power series on the basis of four elementary operators denoted respectively δ t (time shift operator), γ n (event shift operator), µ m (multiplier operator) and β b (batch operator). When considering only WTEGs such that the parallel paths have the same gain (a subclass named Weight-Balanced TEGs), it is shown in [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF] that the transfer matrix is made of ultimately periodic series. In other words, Weight-Balanced TEGs is an extension of TEGs for which periodic phenomena is still a prevailing aspect.
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We propose first to carry on the study of Weight-Balanced TEGs. In particular, we focus on the response of Single-Input Single-Output (SISO) WBTEGs to particular input trajectories called Impulse. We show that the impulse response, and the response to any event-shifted impulse, is an ultimately periodic counter function. Then, we show that the class of FIFO TEGs with periodic holding times studied in [START_REF] Lahaye | Linear periodic systems over dioids[END_REF] can be modeled by WBTEGs. For each FIFO place with a periodic holding time, we can obtain an equivalent WBTEG. Therefore, due to this model transposition, some control problems such as the ones considered in [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF] can be solved for the FIFO TEGs as well. According to Def.2, a Weight-Balanced TEG has necessarily all its circuits (paths from t i to t i ) with a gain equal to 1. Such circuits are said conservative. Hereafter, only Weight-Balanced TEGs (WBTEGs) are considered. The set of additive operators on Σ is denoted O and is a dioid (idempotent semiring) when considering the operations defined below :

MODELING OF WEIGHTED TIMED EVENT GRAPHS

Weighted TEGs

x ∈ Σ, ∀H 1 , H 2 ∈ O H 1 ⊕ H 2 ∀x, (H 1 ⊕ H 2 )(x) = min(H 1 (x), H 2 (x)) H 1 • H 2 ∀x, (H 1 • H 2 )(x) = H 1 (H 2 (x)
). The null operator (neutral for ⊕ and absorbing for •) is denoted ε : ∀x ∈ Σ, ∀t, (εx)(t) = +∞ and the unit operator (neutral for •) is denoted e : ∀x ∈ Σ, ∀t, (ex)(t) = x(t). Definition 5. (Order on O). The canonical order relation on O is:

∀h 1 , h 2 ∈ O, h 1 h 2 ⇐⇒ h 1 ⊕ h 2 = h 2 . Definition 6. (Kleene star). The Kleene star of a ∈ O is defined by a * = e ⊕ a ⊕ a 2 ... = i≥0 a i .
The behavior of WBTEGs, with the earliest firing rule, can be modeled on dioid O by combining some elementary operators given hereafter. Definition 7. (Basic operators in WBTEGs). The next op-

erators δ t , γ n , µ m , β b ∈ O are central for WBTEGs : x ∈ Σ, τ ∈ Z, δ τ : ∀x, ∀t, (δ τ x)(t) = x(t -τ ), ν ∈ Z, γ ν : ∀x, ∀t, (γ ν x)(t) = x(t) + ν, b ∈ N * , β b : ∀x, ∀t, (β b x)(t) = x(t)/b , m ∈ N * , µ m : ∀x, ∀t, (µ m x)(t) = x(t) × m,
where a ∈ Z is the greatest integer less than or equal to a ∈ Q.

Remark 8. In order to lighten formal expressions, the symbol • (composition) will be omitted when no confusion is possible. For instance γ 3 • δ 2 • µ 2 will be written simply γ 3 δ 2 µ 2 . Let us note that the unit operator can be written e = γ 0 = δ 0 = µ 1 = β 1 . Example 9. For the WBTEG depicted on Fig. 1, we have: x 1 (t) + 1)/4 andx 4 (t) = min( (3x 1 (t -2) + 1)/2 , 3x 2 (t) + 4, 6x 3 (t -7) + 7).

x i ∈ Σ, x 2 = β 2 δ 5 x 1 , x 3 = β 4 γ 1 x 1 and x 4 = β 2 γ 1 δ 2 µ 3 x 1 ⊕ γ 4 µ 3 x 2 ⊕γ 7 µ 6 δ 7 x 3 . With a counter description :∀t, x 2 (t) = x 1 (t -5)/2 , x 3 (t) = (
Proposition 10. The next formal identities can be stated

γ 1 δ 1 = δ 1 γ 1 ; µ m δ 1 = δ 1 µ m ; β b δ 1 = δ 1 β b (1) µ m γ n = γ m×n µ m ; γ n β b = β b γ n×b . (2)
Proof. See [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF].

Theorem 11. For all operator H ∈ O, the next equalities are satisfied :

H = H(δ -1 ) * = (δ -1 ) * H = (γ 1 ) * H = H(γ 1 ) * .
Proof. For a counter function x, we can remark that ∀t, (3) Matrix H ∈ O p×m is called the transfer matrix. Entries H ij are rational elements: they are finitely generated by sums, products and Kleene stars of elementary operators in {γ n , µ m , β b , δ t }.

x(t + 1) ≥ x(t) ⇐⇒ δ -1 x x. Similarly, ∀t, x(t) + 1 ≥ x(t) ⇐⇒ γx x. Therefore, ∀x ∈ Σ, ∀H ∈ O, H(γ 1 ) * x = Hx = (γ 1 ) * Hx = H(δ -1 ) * x = (δ -1 ) * Hx.

Periodic Event Operators

According to (1), the delay operator δ t can commute with any event operator, i.e. an operator in {γ n , µ m , β b }. Therefore, we can always write the operators involved in the behavior of WBTEGs as formal expressions i w i δ ti where w i are operators generated by finite sums and products of event operators. In other words, the behavior of WBETGs can be modeled by formal series in one variable δ with exponents in Z and coefficients w i on a dioid of event operators. It is why we consider separately event operators and delay operators. Definition 12. (Dioid of E-Operators). We denote by (E, ⊕, •) ⊂ O the subdioid of operators obtained by finite sums and products of event operators in {γ n , µ m , β b }.

Elements in E are called E-operators (for event operators). For instance, w = γ 1 µ 2 ⊕ β 2 γ 1 ∈ E. Definition 13. (Gain of w ∈ E). For an E-operator, we define its gain by Γ(w a • w b ) = Γ(w a ) × Γ(w b ) and Γ(w a ⊕ 

F w : Z → Z, k i → k o ,
where k i is an input counter value and k o an output counter value. F w is obtained by replacing x(t) by k i in the expression of (wx 2013)). For periodic Eoperators, we have:

)(t). Example 17. Let us consider w = β 2 γ 1 µ 3 ∈ E. Then, (wx)(t) = (3 × x(t) + 1)/2 . The C/C function of w is F β2γ 1 µ3 : k i → (3 × k i + 1)/2 .
w a , w b ∈ E per ⇒ w a • w b ∈ E per w a , w b ∈ E per and Γ(w a ) = Γ(w b ) ⇒ w a ⊕ w b ∈ E per .
Therefore, all the E-operators arising in the modeling of WBTEGs are periodic, since the elementary operators {γ n , µ m , β b } are periodic and since the sums are balanced. For instance, Fig. 2 gives the representation of F β2γ 1 µ3 (grey dots) and F γ4µ3β2 (black dots). Both are periodic. Moreover, we can remark that γ 4 µ 3 β 2 β 2 γ 1 µ 3 (according to Rem. 18 it is equivalent to F γ4µ3β2 ≥ F β2γ 1 µ3 ).

Transfer Series

The transfer of a SISO WBTEG can be expressed as a formal power series i w i δ ti where w i ∈ E per . The considered series belongs to a dioid defined below. Definition 22. (Dioid E per δ ). We denote by E per δ the dioid of formal power series in variable δ, with exponents in Z and coefficients in E per . The sum and the product are given by: for s 1 = i w 1i δ ti and s

2 = j w 2j δ tj in E per δ , s 1 ⊕ s 2 = k (w 1k ⊕ w 2k ) δ t k and s 1 ⊗ s 2 = τ ∈Z t k +t k =τ w 1k • w 2k δ τ .
Due to property expressed in Th.11, sums and products of series in E per δ can be done modulo an equivalence relation. The most appropriate algebraic structure is then a quotient dioid. This quotient takes the monotonicity of counter functions into account. Definition 23. (Quotient dioid E * per δ ). Dioid E * per δ is defined as the quotient of E per δ by the next equivalence

s a ≡ * s b ⇐⇒    s a (δ -1 ) * = s b (δ -1 ) * s a (γ 1 ) * = s b (γ 1 ) * (γ 1 ) * s a = (γ 1 ) * s b (4) Definition 24. (Balanced series in E * per δ ). A series s = i w i δ ti ∈ E *
per δ is said balanced if ∀k, ∀j, Γ(w k ) = Γ(w j ). For a balanced series, Γ(s) denotes the gain of any coefficient. Remark 25. Transfer series of WBTEGs are necessarily balanced series.

Graphical representation

A series of E * per δ can be depicted graphically in a three dimensional (3D) representation. For a given series s = i w i δ ti ∈ E * δ , its graphical representation is depicted in a 3D basis I-count/O-count/T-shift, where each coefficient w i is represented by its C/C function F wi in the plane defined by T-shift= t i . Example 26. In Fig. 3, the balanced series s = β 2 γ 1 µ 3 δ 2 ⊕ γ 4 µ 3 β 2 δ 5 ⊕ γ 7 µ 6 β 4 γ 1 δ 7 is depicted. It is the transfer series of the WBTEG of Fig. 1. As noticed before, Γ(s) = 3/2 is the input-output gain of all the paths from x 1 to x 4 . The representation of F β2γ 1 µ3 and F γ 4 µ3β2 is given in Fig. 2. The 3D representation is truncated to the positive values of I-count/O-count/T-shift in order to improve the readability.

In the 3D representation, products by operators δ t and γ n have a simple graphical interpretation.

• (Left/Right) product by δ t ≡ a shift of t units towards the positive values of T-shift. • Right product by γ n ≡ a shift of n units towards the decreasing values of I-count. • Left product by γ n ≡ a shift of n units towards the increasing values of O-count. Remark 27. The equivalence (4) can be interpreted graphically. In E * per δ , we have wδ t ≡ * (γ 1 ) * w(γ 1 ) * (δ -1 ) * δ t . Therefore, its graphical representation is obtained by depicting F w in the plane T-shift=t and then by stretching this curve to the decreasing values of T-shift, to the decreasing values of I-count, and to the increasing values of O-count. The result is a solid volume depicted in grey.

Periodicity of WBTEGs

The transfer matrix of a WBTEG is obtained by a rational expression (3). The particularity of WBTEGs is that their Fig. 3. Representation of β 2 γ 1 µ 3 δ2 ⊕ γ 4 µ 3 β 2 δ 5 ⊕ γ 7 µ 6 β 4 γ 1 δ 7 and its response to I and to γ 3 I.

transfer series can be put in an ultimatetly periodic form (see [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF]). Definition 28. A balanced series s ∈ E * per δ is said ultimately periodic if it can be written as s = p ⊕ q(γ ν δ τ ) * or s = p ⊕ (γ ν δ τ ) * q where ν, τ, ν τ ∈ N, p, q and q are balanced polynomials. Remark 29. A balanced polynomial p = n i=1 w i δ ti ∈ E * per δ can be considered as an ultimately periodic series with τ = τ = 0. Theorem 30. (Cottenceau et al. ( 2013)). Let s 1 and s 2 be two ultimately periodic series in E * per δ .

• Γ(s 1 ) = Γ(s 2 ) ⇒ s 1 ⊕ s 2 is ultimately periodic • s 1 ⊗ s 2 and s 2 ⊗ s 1 are ultimately periodic • Γ(s 1 ) = 1 ⇒ s *
1 is ultimately periodic Corollary 31. For a m-inputs p-outputs WBTEG, the entries of the transfer matrix H = CA * B are ultimately periodic series in E * per δ .

IMPULSE RESPONSE OF SINGLE-INPUT SINGLE-OUTPUT WBTEGS

Impulse Response of ordinary TEGs

In [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], it is shown that the whole behavior of a SISO TEG can be deduced from its impulse response, where the impulse is the counter function I ∈ Σ defined as

I(t) = 0 if t < 0, +∞ otherwise.
The output y = HI allows to identify the different coefficients of the transfer series H. An important feature is that the impulse response of a SISO TEG is an ultimately periodic counter :

∃T, N, T 0 s.t. t ≥ T 0 ⇒ y(t + T ) = y(t) + N. As for conventional linear systems, the impulse response of a TEG gives a complete knowledge of its input-output behavior.

Impulse Response of WBTEGs

For a SISO WBTEG, it is not sufficient to observe its impulse response to have a complete knowledge of its behavior. Nevertheless, the impulse response gives a partial view of its behavior that can be obtained also from the 3D representation.

Impulse response of a monomial wδ τ

For an operator wδ τ ∈ E * per δ , the impulse response is relatively simple: y = wδ τ I is described by the counter function y(t) = I(t -τ ) + F w (0), it is an impulse time-shifted by τ time units and event-shifted by F w (0) units. The gain Γ(w) is not observable on the impulse response of wδ τ . For instance, operators γ 2 δ 3 and γ 2 µ 2 δ 3 have the same impulse response, but different gains.

Since the transfer series of a SISO WBTEG is a sum H = i w i δ ti , then we can write the impulse response as

y = HI = i w i δ ti I = min i {I(t -t i ) + F wi (0)}.
Example 32. Let us consider the WBTEG of Fig. 1. Its transfer series is

h 1 = β 2 γ 1 µ 3 δ 2 ⊕ γ 4 µ 3 β 2 δ 5 ⊕ γ 7 µ 6 β 4 γ 1 δ 7 .
Then y 0 = h 1 I = h 1 γ 0 I is a counter function given by y 0 (t < 2) = 0, y 0 (2 ≤ t < 5) = 4, y 0 (5 ≤ 7) = 7, y 0 (t ≥ 7) = ∞. These data come from the curve depicted in the plane I-count=0 in Fig. 3. Time is along the T-shift axis and the counter value is along the O-count axis.

For the same system, if we apply an event-shifted impulse u 3 = γ 3 I as input, then the output is depicted in the plane I-count=3 in Fig. 3. It is important to note that u 3 (t < 0) = 3, u 3 (t ≥ 0) = ∞. The first 3 input events occur at -∞. The response

y 3 = h 1 u 3 = h 1 γ 3 I is described by y 3 (t < 2) = 5, y 3 (2 ≤ t < 5) = 7, y 3 (5 ≤ 7) = 13 and y 3 (t ≥ 7) = ∞.
Remark 33. In the previous example, it is important to remark that the response to γ 3 I can not be obtained from the response to I. Nevertheless, due to the (2, 3)periodicity of the coefficients of h 1 , then h 1 γ 2 = γ 3 h 1 and therefore h 1 γ 3 I = γ 3 h 1 γ 1 I. The response to γ 3 I is the response to γ 1 I event-shifted by 3 units.

Impulse response of a WBTEG For a SISO WBTEG, the transfer series is ultimately periodic (see Th.30). It means that, in the 3D representation, the response to an event-shifted impulse γ i I (depicted in the plane I-count= i) is also an ultimately periodic counter function.

Example 34. On Fig. 4, the 3D representation of the next series h 2 is given:

h 2 = µ 3 β 2 δ 3 ⊕ (γ 3 δ 4 ) * µ 3 β 2 γ 1 δ 4 ⊕ γ 3 µ 3 β 2 δ 6 = µ 3 β 2 δ 3 ⊕ µ 3 β 2 γ 1 δ 4 (γ 1 δ 2 ) * .
The ultimate left periodicity 2 of h 2 ∈ E * per δ is given by (γ 3 δ 4 ) * . It means that the coefficient of δ 4 is also the coefficient of δ 4+4 , but event-shifted by 3 units (towards the increasing O-count values). The coefficient of δ 6 is also the coefficient of δ 10 event-shifted by 3 units, and so on. The periodicity of (3, 4) starts with the monomial µ 3 β 2 γ 1 δ 4 and is described by arrows in the plane I-count= 0, but the same ultimate periodicity appears in each plane I-count= i (for T-shift≥ 4).

Moreover, in each plane T-shift= t, coefficients are (2, 3)periodic E-operators (Γ(h 2 ) = 3/2). Therefore, the 3D representation of h 2 is globally unchanged when it is shifted by 2 units to the increasing values of I-count and by 3 units to the increasing values of O-count. In a more formal way, the (2, 3)-periodicity of coefficients leads to h 2 γ 2 = γ 3 h 2 .

The impulse response h 2 I is the curve depicted in the plane I -count = 0. The response to γ i I (the impulse event-shifted by i unit) is depicted in the plane I -count = i (a dashed line when i is an odd number). As said before, due the periodicity of E-operators, then h 2 γ 2 I = γ 3 h 2 I. The reponse to γ 2 I is the response to I event-shifted by 3 units. The same for h 2 γ 3 I = γ 3 h 2 γ 1 I. Finally, it suffices to know the response to I and to γ 1 I to deduce h 2 γ i I when i ≥ 2.

In summary, for an ordinary TEG, the impulse response fully characterizes its behavior [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]). For a SISO Weight-Balanced TEG whose the transfer series is H, all the coefficients of H being (n, n )-periodic Eoperators, the impulse response is not sufficient to have a complete knowledge of H (even if the gain Γ(H) is known). Nevertheless, the transfer H can be deduced from the reponse of a finite set of event-shifted impulses : {I, γ 1 I, ..., γ n-1 I}. For a given place with u as input transition and y as output transition, we associate dater 3 functions u(k) and y(k). We consider that the holding times τ (k) of the place depends on k and τ (k) is periodic:∃N

∈ N s.t. ∀k, τ (k + N ) = τ (k).
Since a place has a FIFO behavior (tokens do not overtake), the output y is linked to u in the following way:

y(k) = max(τ (k) + u(k), τ (k -1) + u(k -1), ...) = max i≥0 {τ (k -i) + u(k -i}. Assuming that τ (k + N ) = τ (k), then max(τ (k) + u(k), τ (k -N )+u(k -N )) = max(τ (k)+u(k), τ (k)+u(k - 3 x(k)
is the date of the (k + 1)-th occurence of event x (5)

Proposition 35. For a FIFO place with a N -periodic holding time τ (k), we can write

y(k) = max 0≤j≤N -1 τ (j) + u N k -j N + j Proof. The Euclidian division of (k -i) by N is k -i = N (k -i)/N + [(k -i) mod N ]. (6) Therefore, we obtain τ (k -i) = τ ((k -i) mod N ) (since τ (k) is periodic) u(k -i) = u (N (k -i)/N + [(k -i) mod N ]) . According to (6), we can write (k -i) -[(k -i) mod N ] = N (k -i)/N , which is equivalent to [k -((k -i) mod N )] = N (k -i)/N + i. Therefore, we have k -[(k -i) mod N ] N = N (k -i)/N + i N = (k -i)/N + i/N = (k -i)/N + i/N . When 0 ≤ i ≤ N -1, then we have k-((k-i) mod N ) N = (k -i)/N . By setting j = [(k -i) mod N ], then (5) can be rewritten as y(k) = max 0≤j≤N -1 {τ (j) + u (N (k -j)/N + j)} , since 0 ≤ i ≤ N -1 ⇒ 0 ≤ [(k -i) mod N ] ≤ N -1.
Proposition 36. The equation y(k) = τ (i)+u N k-i N + i describes the behavior of a SISO WBTEG whose the transfer series in

E * δ is γ i µ N β N γ N -1-i δ τ (i) .
Proof. Let us consider the SISO WBTEG depicted in Fig. 5 

(k) = x 1 (N × k + N -1 -m), x 3 (k) = T + x 2 ( (k -m )/N ) . Output x 3 is linked to input x 1 by x 3 (k) = T + x 1 (N (k -m )/N + N -1 -m). The same WBTEG described in E * per δ leads to x 3 = γ m µ N β N γ m δ T x 1 .
Corollary 37. A FIFO place with a N -periodic holding time τ (k) can be described by an equivalent WBTEG whose the transfer series is

N -1 i=0 γ i µ N β N γ N -1-i δ τ (i) ∈ E * per δ .
Example 38. A FIFO place with a 2-periodic holding time is depicted in Fig. 6: τ (0) = 2, τ (1) = 5 and τ (k + 2) = τ (k). It is equivalent to a SISO WBTEG whose the transfer is Proof. Thanks to Cor. 37, a FIFO TEG with periodic holding times can be transformed into an equivalent WBTEG. Thanks to Th.30, the transfer series in E * per δ is ultimately periodic.

x 2 = (µ 2 β 2 γ 1 δ 2 ⊕ γ 1 µ 2 β 2 δ 5 )x 1 .

EXAMPLE

In this section, we compute the transfer series in E * per δ of the SISO FIFO TEG given in Fig. 7. First, we consider only the system without the output feedback loop (in dashed lines). The place x 1 → x 2 has a 3-periodic holding time (τ 1 (0) = 3, τ 1 (1) = 4, τ 1 (2) = 6) and the place x 2 → y has a 2-periodic holding time (τ 2 (0) = 2, τ 2 (1) = 5). Let us Fig. 7. A FIFO TEG denote by ∇ n = µ n β n a composed E-operator. The system of Fig. 7 is described by:

x 1 = γ 0 δ 0 u ⊕ γ 3 x 2 x 2 = (∇ 3 γ 2 δ 3 ⊕ γ 1 ∇ 3 γ 1 δ4 ⊕ γ 2 ∇ 3 δ 6 )x 1 y = (∇ 2 γ 1 δ 3 ⊕ γ 1 ∇ 2 δ 5 )x 2 The transfer y = Hu comes from the rational expression y = p b p a (γ 3 p a ) * u, with p a = (∇ 3 γ 2 δ 3 ⊕ γ 1 ∇ 3 γ 1 δ 4 ⊕ γ 2 ∇ 3 δ 6 and p b = (∇ 2 γ 1 δ 3 ⊕ γ 1 ∇ 2 δ 5 ). This calculus gives the next result:

H = γ 0 δ 5 ⊕ (γ 1 ∇ 6 γ 4 ⊕ γ 2 ∇ 6 γ 3 ⊕ γ 3 ∇ 6 γ 2 ⊕ γ 4 ∇ 6 γ 1 ⊕ γ 5 ∇ 6 )δ 6
⊕(γ 1 ∇ 6 γ 4 ⊕ γ 2 ∇ 6 γ 3 ⊕ γ 3 ∇ 6 γ 2 ⊕ γ 5 ∇ 6 )δ 8 ⊕(γ 1 ∇ 6 γ 4 ⊕ γ 3 ∇ 6 γ 3 ⊕ γ 5 ∇ 6 )δ 9 ⊕ (γ 3 ∇ 6 γ 3 ⊕ γ 5 ∇ 6 )δ 11 ⊕(γ 5 ∇ 6 γ 3 ⊕ γ 7 ∇ 6 γ 1 ⊕ γ 8 ∇ 6 )δ 13 ⊕ (γ 6 δ 12 ) * γ 5 ∇ 3 δ 14 ⊕ (γ 5 ∇ 6 γ 3 ⊕ γ 9 ∇ 6 )δ 17 ⊕ γ 8 ∇ 3 δ 20 ⊕ (γ 9 ∇ 6 γ 3 ⊕ γ 11 ∇ 6 )δ 23

The ultimate periodicity is described by the term (γ 6 δ 12 ) * and starts with the monomial γ 5 ∇ 3 δ 14 . The response to any shifted impulse γ i I is ultimately periodic: by denoting y i = Hγ i I, then ∀t ≥ 14, y i (t + 12) = y i (t) + 6. Finally, each coefficient of H is at least a (6, 6)-periodic E-operator. Therefore, ∀u, Hγ 6 u = γ 6 Hu. Fig. 8 gives the 3D representation of H. The reponse to I and to γ 3 I are depicted with black curves.

An input-output model is well suited to address some control problems such as the ones solved in Cottenceau (2001) or in [START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF]. In particular, one know that for a system whose the transfer is y = Hu, then the greatest neutral output feedback is the system whose the transfer 4 is F = H • \H• /H. System F is the slowest feedback system that we can add between the output and the input without changing the throughput of the system. For this example, the first terms of the series F = H • \H• /H are given by F = (γ 5 ∇ 6 γ 5 ⊕ γ 8 ∇ 6 γ 3 ⊕ γ 9 ∇ 6 γ 1 )δ 1 ⊕ γ 6 ∇ 2 γ 1 δ 2 ⊕ ... For instance, γ 6 ∇ 2 γ 1 δ 2 F . Therefore, the feedback depicted on Fig. 7 (in dashed lines) is neutral for the FIFO TEG. This output feedback let the throughput unchanged (in comparison to the open loop system). The benefit from this feedback is that the path x 1 → y becomes bounded.

  has a gain defined by Γ(p k ) = w i (p k )/w o (p k ) ∈ Q. By extension, for a path Π passing through a set of places p a → p b → ... → p k , the gain is defined as Γ(Π) = Γ(p a ) × Γ(p b ) × ... × Γ(p k ). Definition 2. (Balanced Property). A Weighted TEG is said Weight-Balanced if for each pair of transitions (t a , t b ) ∈ T × T , all the oriented paths from t a to t b have the same gain. Example 3. For instance, the WTEG depicted on Fig. 1 is Weight-Balanced. All the paths from x 1 to x 4 have the same gain equal to 3/2.

Fig. 1 .

 1 Fig. 1. Weight-Balanced TEG.2.2 Dioid of operatorsA counter function x : t → x(t) describes the number of events of type x observed up to time t. By denoting Σ the set of counter functions, an operator is a map H : Σ → Σ which is said linear if ∀x, y ∈ Σ, a) H(min(x, y)) = min(H(x), H(y)) and b) H(λ+x) = λ+H(x). An operator is said additive if only a) is satisfied. Definition 4. (Dioid O). The set of additive operators on Σ is denoted O and is a dioid (idempotent semiring) when considering the operations defined below : x∈ Σ, ∀H 1 , H 2 ∈ O H 1 ⊕ H 2 ∀x, (H 1 ⊕ H 2 )(x) = min(H 1 (x), H 2 (x)) H 1 • H 2 ∀x, (H 1 • H 2 )(x) = H 1 (H 2 (x)). The null operator (neutral for ⊕ and absorbing for •) is denoted ε : ∀x ∈ Σ, ∀t, (εx)(t) = +∞ and the unit operator (neutral for •) is denoted e : ∀x ∈ Σ, ∀t, (ex)(t) = x(t). Definition 5. (Order on O). The canonical order relation on O is:∀h 1 , h 2 ∈ O, h 1 h 2 ⇐⇒ h 1 ⊕ h 2 = h 2 .Definition 6. (Kleene star). The Kleene star of a ∈ O is defined by a * = e ⊕ a ⊕ a 2 ... = i≥0 a i .

  The modelling of WBTEGs by means of operators leads to an input-output representation. For a given WBTEG with m inputs, p outputs, and n internal transitions, by associating a counter function to each input transition (in a vector u), to each output transition (in a vector y), and to each internal transition (in a vector x), we can describe the earliest behavior by x = Ax ⊕ Bu y = Cx where A ∈ O n×n , B ∈ O n×m and C ∈ O p×n are matrices whose the entries are operators. The input-output behavior of the WBTEG is then described by the rational expression y = CA * Bu = Hu.
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 2 Fig. 2. Graphical representation of F β2γ1µ3 and F γ4µ3β2 w b ) = min(Γ(w a ), Γ(w b )), with Γ(γ n ) = 1, Γ(µ m ) = m and Γ(β b ) = 1/b. For instance, Γ(γ 1 µ 2 β 3 ) = 2/3. Definition 14. (Balanced sum in E). For w a , w b ∈ E, the sum w a ⊕ w b is said balanced if Γ(w a ) = Γ(w b ). Remark 15. Due to the weight-balanced property (see Def.2), then the modeling of WBTEGs with operators involves only balanced sums. Definition 16. (C/C function of w ∈ E). We can consider an E-operator as an instantaneous system described by a Counter-to-Counter (C/C) function F w : Z → Z, k i → k o , where k i is an input counter value and k o an output counter value. F w is obtained by replacing x(t) by k i in the expression of (wx)(t). Example 17. Let us consider w = β 2 γ 1 µ 3 ∈ E. Then, (wx)(t) = (3 × x(t) + 1)/2 . The C/C function of w is F β2γ 1 µ3 : k i → (3 × k i + 1)/2 . This function is depicted with grey dots in Fig. 2 where the axis are labeled by Icount (input count) and O-count (output count). Remark 18. It is important to note that ∀w 1 , w 2 ∈ E, then F w1⊕w2 = min(F w1 , F w2 ) and F w1•w2 = F w1 (F w2 ). Definition 19. (Periodic E-operators). An E-operator w ∈ E is said (n, n )-periodic if ∀k ∈ Z, F w (k +n) = F w (k)+n . Operator γ n is (1, 1)-periodic, µ m is (1, m)-periodic and β b is (b, 1)-periodic. The set of periodic E-operators is denoted E per . Remark 20. For a (n, n )-periodic E-operator w, ratio n /n ∈ Q is both the gain Γ(w) and the average slope of F w . Proposition 21. (Cottenceau et al. (2013)). For periodic Eoperators, we have: w a , w b ∈ E per ⇒ w a • w b ∈ E per w a , w b ∈ E per and Γ(w a ) = Γ(w b ) ⇒ w a ⊕ w b ∈ E per .

  This function is depicted with grey dots in Fig. 2 where the axis are labeled by Icount (input count) and O-count (output count). Remark 18. It is important to note that ∀w 1 , w 2 ∈ E, then F w1⊕w2 = min(F w1 , F w2 ) and F w1•w2 = F w1 (F w2 ). Definition 19. (Periodic E-operators). An E-operator w ∈ E is said (n, n )-periodic if ∀k ∈ Z, F w (k +n) = F w (k)+n . Operator γ n is (1, 1)-periodic, µ m is (1, m)-periodic and β b is (b, 1)-periodic. The set of periodic E-operators is denoted E per . Remark 20. For a (n, n )-periodic E-operator w, ratio n /n ∈ Q is both the gain Γ(w) and the average slope of F w . Proposition 21. (Cottenceau et al. (
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 4 Fig. 4. Response of h 2 to I, γ 1 I,...,γ 5 I

Fig. 5 .

 5 Fig. 5. WBTEG model of x 3= γ m µ N β N γ m δ T x 1 N )) = τ (k) + u(k) (since u(k + N ) ≥ u(k)). Therefore, we can write y(k) = max 0≤i≤N -1 {τ (k -i) + u(k -i)}.(5)

  : M 0 (p 12 ) = m (with m < N ), M 0 (p 23 ) = m and w o (p 12 ) = w i (p 23 ) = N . Place p 23 is timed with a constant holding time T . With the dater modeling, we obtain x 2

Fig. 6 .

 6 Fig. 6. A FIFO place with a periodic holding time and the equivalent WBTEG model. Proposition 39. A SISO FIFO TEG with periodic holding times has an input-output transfer represented by a conservative ultimately periodic series in E * per δ .

Fig. 8 .

 8 Fig. 8. Transfer series of the FIFO TEG of Fig. 7 et al. (2001) or in[START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF]. In particular, one know that for a system whose the transfer is y = Hu, then the greatest neutral output feedback is the system whose the transfer 4 is F = H • \H• /H. System F is the slowest feedback system that we can add between the output and the input without changing the throughput of the system. For this example, the first terms of the series F = H • \H• /H are given by

The ultimate right periodicity (1, 2) has to be searched in each plane O-count= j.

• \ and • / are the residuated mappings of the left and the right product (see[START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF] and[START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF]