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Extended version with source code of the paper Observer-based Controllers

for Max-plus Linear Systems

Laurent Hardouin, Ying Shang, Carlos Andrey Maia, Bertrand Cottenceau

Abstract

Max-plus linear systems are often used to model transportation networks, communications systems

and manufacturing systems. One way of controlling this kind of systems consists in choosing the date

of input events in order to achieve the desired performances, e.g., to obtain output events in order to

respect given dates. This kind of control is optimal, according to a just-in-time criterion, if the input-

event dates are delayed as much as possible while ensuring the output events to occur before a desired

reference date. In this context, this paper presents an observed-based controller approach, where only a

linear combination of the states, obtained from measurement, is available for the controller. As in the

classical sense, this is a state-feedback control problem, which is solved in two steps: first an observer

computes an estimation of the state by using the input and the output measurements, then this estimated

state is used to compute the state-feedback control action. As a main result, it is shown that the optimal

solution of this observer-based control problem leads to a greater control input than the one obtained

with the output feedback strategy. A high throughput screening example in drug discovery illustrates this

main result by showing that the scheduling obtained from the observer-based controller is better than the

scheduling obtained from the output feedback controller.

I. INTRODUCTION

Many discrete event dynamic systems, such as transportation networks ([14], [20]), communication

networks, manufacturing assembly lines [6], are subject to synchronization phenomena. These systems

behavior can be represented by timed-event graphs (TEGs) which are timed Petri nets where each place

has one upstream transition and one downstream transition. Its description can be transformed into a max-

plus or a min-plus linear model and vice versa ([2], [10]). This property has advantaged the emergence
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of a specific control theory for these systems, and several control strategies have been proposed, e.g.,

optimal open loop control ([9], [23], [29]) and optimal state-feedback control in order to solve the model

matching problem ([11], [22], [25], [26]). Control strategies allowing the state to stay in a specific subset

are proposed in ([1], [21], [26]). State estimation has also been considered in some recent works ([13],

[18], [19], [27]). The observer aims at estimating the state for a given plant by using input and output

measurements. The state trajectories correspond to the transition firings of the corresponding TEG. Their

estimation is worthy of interest because it provides insight into internal properties of the system. For

example, these state estimations are sufficient to reconstruct the markings of the graph, as it is done in

[15] for Petri nets without temporization. Moreover, the state estimation has many potential applications,

such as fault detection, diagnosis, and state-feedback control. In general, the complete measurement of all

the state variables is not possible due to the lack of sensors. It is then classical to use the state estimation

provided by the observer to feed the controller.

This paper proposes to use the observer introduced in ([18], [19]) to design the observer-based

controllers for max-plus linear systems. As in the classical sense, this is a state-feedback control problem,

which is solved in two steps: first an observer computes an estimation of the state by using the input and

the output measurements, then this estimated state is used to compute the state-feedback control action.

The observer is designed by analogy with the classical Luenberger observer [24] for linear systems. As a

main result, it is shown that the optimal solution of this observer-based control problem leads to a greater

control input than the one obtained with the output feedback strategy. For instance, in a manufacturing

setting, the observer-based controller would provide a better scheduling by starting the process later

than the output feedback control, while ensuring the same output parts finishing time. This scheduling

would allow users to load the raw parts later rather than earlier to avoid unnecessary congestions in the

manufacturing line.

This paper is organized as the following. The max-plus algebra is a particular idempotent semiring,

therefore, section II reviews some algebraic tools concerning these algebraic structures. Some results about

the Residuation theory and its applications over semirings are also given. Section III recalls the description

of TEGs in a semiring of formal series. Section IV presents the concepts of output controllability and state

observability. Section V presents the observer for max-plus linear systems, it is designed by analogy with

the classical Luenberger observer for linear systems. If the max-plus linear systems modeled in TEGs

are observable, then the observer ensures equality between the state and the estimated state in spite of

possible disturbances. Section VI reviews the output feedback and state-feedback controllers as introduced

in ([25], [26]). Section VII presents the observer-based controller and compares its differences between

the output feedback controller and the observer-based state-feedback controller. In particular, it is shown
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that this new strategy increases the performances. Section VIII illustrates the main results using a high

throughput screening example in drug discovery. An observer-based controller is constructed and proved

to have a better performance comparing with an output feedback controller.

II. ALGEBRAIC SETTING

An idempotent semiring S is an algebraic structure with two internal operations denoted by ⊕ and

⊗. The operation ⊕ is associative, commutative and idempotent, that is, a⊕ a = a. The operation ⊗ is

associative (but not necessarily commutative) and distributive on the left and on the right with respect

to ⊕. The neutral elements of ⊕ and ⊗ are represented by ε and e respectively, and ε is an absorbing

element for the law ⊗ (∀a ∈ S, ε⊗ a = a⊗ ε = ε). As in classical algebra, the operator ⊗ will be often

omitted in the equations, moreover, ai = a⊗ ai−1 and a0 = e. In this algebraic structure, a partial order

relation is defined by a � b ⇔ a = a ⊕ b ⇔ b = a ∧ b (where a ∧ b is the greatest lower bound of

a and b), therefore, an idempotent semiring S is a partially ordered set (see [2], [20] for an exhaustive

introduction). An idempotent semiring S is said to be complete if it is closed for infinite ⊕-sums and if

⊗ distributes over infinite ⊕-sums. In particular, > =
⊕

x∈S x is the greatest element of S (> is called

the top element of S).

Example 1 (Zmax ): Set Zmax = Z ∪ {−∞,+∞} endowed with the max operator as sum and the

classical sum + as product is a complete idempotent semiring, usually denoted Zmax, of which ε = −∞

and e = 0.

Theorem 1 (see [2], Th. 4.75): The implicit inequality x � ax⊕ b as well as x = ax⊕ b defined over

S, admit x = a∗b as the least solution, where a∗ =
⊕
i∈N

ai (Kleene star operator).

Definition 1 (Residual and residuated mapping): An order preserving mapping f : D → E , where D

and E are partially ordered sets, is a residuated mapping if for all y ∈ E there exists a greatest solution

to the inequality f(x) � y (hereafter denoted f ](y)). Obviously, if equality f(x) = y is solvable, f ](y)

yields the greatest solution. The mapping f ] is called the residual of f and f ](y) is the optimal solution

of the inequality.

Theorem 2 (see [2] Th. 4.50,[3]): Let f : D → C be an order preserving mapping. The following

statements are equivalent:

(i) f is residuated.

(ii) there exists an unique order preserving mapping f ] : C → D such that f ◦ f ] � IdC and f ] ◦ f �

IdD.
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Theorem 3 ([2, Th. 4.56]): Let C, B be two semirings, and f : C → B a residuated mapping. The

following properties hold:

f ◦ f ] ◦ f = f and f ] ◦ f ◦ f ] = f ]. (1)

Example 2: Mappings Λa : x 7→ a ⊗ x and Ψa : x 7→ x ⊗ a defined over an idempotent semiring

S are both residuated (see [2], Section 4.4.4). Their residuals are order preserving mappings, denoted

respectively by Λ]
a(x) = a◦\x and Ψ]

a(x) = x◦/a. This means that a◦\b (resp. b◦/a) is the greatest solution

of the inequality a⊗ x � b (resp. x⊗ a � b).

In the Appendix, useful properties about left and right residuation are recalled. The proofs are given in

([2], Chapter 4). Below an original property is given:

Lemma 1: If y ∈ D admits a right inverse w and a left inverse z, then the two following statements

hold

• w = z and this unique inverse is denoted y−1;

• moreover, ∀c, b, (b◦\c)y = b◦\(cy) and y(c◦/b) = (yc)◦/b.

Proof:

• Due to associativity of the product law, we have w = w(yz) = (wy)z = z, which proves uniqueness

of a right and left inverse (see Lemma 4.36 in [2]).

• According to Theorem 2 and Example 2, b◦\c is the greatest solution of bx � c, then b(b◦\c) � c

which implies b(b◦\c)y � cy, since the product is isotone. Moreover b◦\(cy) is the greatest solution

of bx � cy, then (b◦\c)y � b◦\(cy). On the other way, due to (f.13), b◦\(cy) = (b◦\(cy))y−1y �

(b◦\(cyy−1))y = (b◦\c)y. Hence, equality (b◦\c)y = b◦\(cy) holds throughout. The equality y(c◦/b) =

(yc)◦/b can be proved in a similar way.

Definition 2 (Restricted mapping): Let f : D → C be a mapping and B ⊂ D. We will denote by

f|B : B → C the mapping defined by f|B = f ◦ Id|B where Id|B : B → D, x 7→ x is the canonical

injection. Identically, let E ⊂ C be a set such that Imf ⊂ E . Mapping E|f : D → E is defined by

f = Id|E ◦ E|f , where Id|E : E → C, x 7→ x.

Definition 3 (Closure mapping): A closure mapping is an order preserving mapping f : D → D defined

on an ordered set D such that f � IdD and f ◦ f = f .

Proposition 1 (see [11]): Let f : D → D be a closure mapping. Then, Imf |f is a residuated mapping

whose residual is the canonical injection Id|Imf .

February 22, 2016 DRAFT



5

Example 3: Mapping K : S → S, x 7→ x∗ is a closure mapping (indeed a � a∗ and a∗ = (a∗)∗ see

(f.2) in Appendix). Then, (ImK|K) is residuated and its residual is (ImK|K)] = Id|ImK . In other words,

x = a∗ is the greatest solution of inequality x∗ � a if a ∈ ImK, that is x � a∗ ⇔ x∗ � a∗.

Example 4: Mapping P : S → S, x 7→ x+ =
⊕
i∈N+

xi = xx∗ = x∗x is a closure mapping (indeed

a � a+ and a+ = (a+)+ see (f.2) in Appendix). Then (ImP |P ) is residuated and its residual is (ImP |P )] =

Id|ImP . In other words, x = a+ is the greatest solution of inequality x+ � a if a ∈ ImP , that is

x � a+ ⇔ x+ � a+.

Remark 1: According to (f.5) in Appendix, (a∗)+ = a∗, therefore, ImK ⊂ ImP .

The set of n× n matrices with entries in S is an idempotent semiring. The sum, the product and the

residuation of matrices are defined after the sum, the product and the residuation of scalars in S, i.e.,

(A⊗B)ik =
⊕

j=1...n
(aij ⊗ bjk) (2)

(A⊕B)ij = aij ⊕ bij , (3)

(A◦\B)ij =
∧

k=1..n

(aki◦\bkj) , (B◦/A)ij =
∧

k=1..n

(bik◦/ajk). (4)

The identity matrix of Sn×n is a matrix with entries equal to e on the diagonal and to ε elsewhere. This

identity matrix will also be denoted e, and the matrix with all its entries equal to ε will also be denoted

ε.

Properties 1: ([16], [28]) Given a complete semiring S, and four matrices A ∈ Sp×n, B ∈ Sn×p,,

M ∈ Sp×p, and N ∈ Sn×n, the following equalities are satisfied:

A◦\A = (A◦\A)∗, B◦/B = (B◦/B)∗, (5)

A◦\(M∗A) = (M∗A)◦\(M∗A) = (A◦\(M∗A))∗ (6)

(AN∗)◦/A = (AN∗)◦/(AN∗) = ((AN∗)◦/A)∗. (7)

From now on, to enlighten notation, as in classical algebra mapping ΛC (see Example 2) will be

denoted C.

Definition 4 (Kernel [7], [8]): Let S be a complete idempotent semiring and let C be a n× p matrix

with entries in S, the kernel of C (denoted by kerC) is the subset of all pairs of elements of Sp whose

components are both mapped by C to the same element in Sn, i.e., the following definition

kerC :=
{

(s, s′) ∈ (Sp)2 | Cs = Cs′
}
. (8)

Clearly, kerC is an equivalence relation on X , i.e., Cs = Cs′ ⇐⇒ s′ ≡ s (mod kerC). Furthermore,

it is a congruence and then we can define the quotient S/ kerC.
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Remark 2: The subset of elements s′ ∈ Sp that are equivalent to s modulo kerC is denoted [s]C , i.e.,

[s]C = {s′ ∈ Sp | s′ ≡ s(mod kerC)} ⊂ Sp.

Lemma 2 ([7], [8]): For matrices A ∈ Sn×p, B ∈ Sn×m the following statements are equivalent:

1. ImB ⊂ ImA;

2. B = A(A◦\B).

Proof:

• “Item 1 ⇒ Item 2”: If ImB ⊂ ImA, then, for any element y = Bx ∈ ImB, ∀x, there exists a z

such that y = Az = Bx. Due to Property in (f.8), we have

y = Az = A(A◦\Az) = A(A◦\Bx),

for any x ∈ X . Therefore, Bx = A(A◦\Bx). It implies A(A◦\B) = B.

• “Item 2 ⇒ Item 1”: If B = A(A◦\B), then ImB ⊂ ImA.

Lemma 3 ([7], [8]): For matrices C ∈ Sn×p, B ∈ Sm×p the following statements are equivalent:

1. kerC ⊂ kerB;

2. there exists a linear map L : Sn → Sm, s.t. L ◦ C = B.

Proof:

• “Item 1 ⇒ Item 2”: According to Definition 4, kerC ⊂ kerB can be written as

Cx = Cx′ ⇒ Bx = Bx′,

where (x, x′) ∈ (Sp)2. According to Definition 1, C◦\(Cx) is the greatest element in the equivalence

class [x]C , and Theorem 3 yields C(C◦\(Cx)) = Cx. Hence, the following assertion holds,

kerC ⊂ kerB ⇒ B(C◦\(Cx)) = Bx, ∀x ∈ Sp.

By considering mapping L : Sn → Sm, y 7→ B(C◦\y), the following equality holds L ◦ C = B.

Because B and C are linear mappings, L is linear also, i.e., L(
⊕
y) =

⊕
L(y) and L(λy) = λL(y)

where λ ∈ S.

• “Item 2 ⇒ Item 1”: If a linear mapping L ◦ C = B exists, then the following assertion holds :

Cx = Cx′ ⇒ L ◦ Cx = L ◦ Cx′ = Bx = Bx′, i.e., kerC ⊂ kerB.

Corollary 1: If there exists a linear mapping L ◦ C = B, then

B = (B◦/C)C. (9)
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Proof: If there exists a linear mapping L ◦ C = B then L � B◦/C due to the right residuation

definition. Hence B = L ◦C � (B◦/C)C � B, due to property (f.14). Hence, the equality B = (B◦/C)C

holds. Of course, it implies kerC ⊂ kerB.

III. THE TEG DESCRIPTION IN AN IDEMPOTENT SEMIRING

TEGs constitute a subclass of timed Petri nets, i.e. , in which each place has one upstream and

one downstream transition. A TEG description can be transformed into a (max, plus) or a (min, plus)

linear model and vice versa. To obtain an algebraic model in Zmax, a “dater” function is associated to

each transition. For transition labelled xi, xi(k) represents the date of the kth firing (see [2],[20]). A

trajectory of a TEG transition is then a firing date sequence of this transition. This collection of dates

can be represented by a formal series x(γ) =
⊕

k∈Z xi(k) ⊗ γk where xi(k) ∈ Zmax and γ is a

backward shift operator1 in the event domain (formally γx(k) = x(k − 1)). The set of formal series in

γ is denoted by Zmax[[γ]] and constitutes a complete idempotent semiring.

In this paper, TEGs are defined in this setting by the following model:

x = Ax⊕Bu⊕Rw,

y = Cx, (10)

where u ∈ U = (Zmax[[γ]])p, y ∈ Y = (Zmax[[γ]])m and x ∈ X = (Zmax[[γ]])n are respec-

tively the controllable inputs, outputs and state vectors, i.e., each of their entries is a trajectory which

represents the collection of firing dates of the corresponding transition. Matrices A ∈ (Zmax[[γ]])n×n,

B ∈ (Zmax[[γ]])n×p, and C ∈ (Zmax[[γ]])m×n represent the links between each transition, and then

describe the structure of the graph. Vector w ∈ W = (Zmax[[γ]])l represents uncontrollable inputs (i.e.

disturbances). Each entry of w corresponds to a transition which disables the firing of internal transition

of the graph, and then decreases the performance of the system. This vector is bounded to the transitions

through matrix R ∈ (Zmax[[γ]])n×l. Matrix R, that equals to the identity matrix, is a particular case

where each transition is directly affected by independent disturbances.

From now on, each uncontrollable input transition wi is assumed to be connected to one and only

one internal transition xj , this means that each column of matrix R has one entry equal to e and the

others equal to ε and at most one entry equal to e on each row. Furthermore, each output transition yi

is assumed to be linked to one and only one internal transition xj , i.e. , each row of matrix C has

one entry equal to e and the others equal to ε and at most one entry equal to e on each column. These

1Operator γ plays a role similar to operator z−1 in the Z-transform for the conventional linear systems theory.
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requirements are satisfied without loss of generality, since it is sufficient to add extra input and output

transitions. Note that if R is equal to the identity matrix, w can represent initial state of the system x(0)

by considering w = x(0)γ0 ⊕ ... (see [2], p. 245, for a discussion about compatible initial conditions).

By considering Theorem 1, this system can be rewritten as:

x = A∗Bu⊕A∗Rw

y = CA∗Bu⊕ CA∗Rw, (11)

where CA∗B ∈ (Zmax[[γ]])m×p (respectively, CA∗R ∈ (Zmax[[γ]])m×l) is the input/output (respectively,

the disturbance/output) transfer matrix. Matrix CA∗B represents the earliest behavior of the system,

therefore, it must be underlined that the uncontrollable input vector w (initial conditions or disturbances)

is only able to delay the transition firings, i.e. , according to the order relation of the semiring, to

increase the vectors x and y. Consequently, it is assumed that the model and the initial state correspond

to the fastest behavior (e.g. ideal behavior of a manufacturing system without extra delays) and that

disturbances only delay the occurrence of events (e.g. disturbance due to machine breakdown or delay

due to an unexpected failure in component supply).

IV. OUTPUT CONTROLLABILITY AND STATE OBSERVABILITY

Definition 5: (Structural Controllability [2]) A TEG is said to be structurally controllable if every

internal transition can be reached by a path from at least one input transition.

Theorem 4: ([16], [30]) A TEG is structurally controllable if the corresponding matrix A∗B is such

that at least one entry on each row is different from ε.

Definition 6: (Output Controllability) A system described by

x = Ax⊕Bu

y = Cx, (12)

is said to be output controllable if ∀x and y = CA∗x, there exists an input u s.t. y = CA∗Bu.

Theorem 5: For a system given by Eq. (12), the following statements are equivalent :

1. ∀x, and y = CA∗x⇒ ∃u s.t. y = CA∗Bu, i.e., the system is output controllable;

2. ImCA∗ ⊂ ImCA∗B;

3. CA∗B((CA∗B)◦\(CA∗)) = CA∗.

Proof:

• “Item 1 ⇒ Item 2”: Because Item 1 is satisfied, for any output y = CA∗x, ∀x, there exists an

input u such that y = CA∗Bu. It implies ImCA∗ ⊂ ImCA∗B.
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• “Item 2 ⇒ Item 3”: According to Lemma 2, ImCA∗ ⊂ ImCA∗B is equivalent to

CA∗B((CA∗B)◦\(CA∗)) = CA∗.

• “Item 3 ⇒ Item 1”: If CA∗B((CA∗B)◦\(CA∗)) = CA∗, then any element y = CA∗x ∈ ImCA∗

can be written as y = CA∗B((CA∗B)◦\(CA∗x)). Define u = (CA∗B)◦\(CA∗x), then for any

y = CA∗x ∈ ImCA∗, there exists such an u, such that y = CA∗Bu.

Definition 7: (Structural Observability [2]) A TEG is said to be structurally observable if, from every

internal transition, there exists a path to at least one output transition.

Theorem 6: ([16], [30]) A TEG is structurally observable if the corresponding matrix CA∗ is such

that at least one entry on each column is different from ε.

Definition 8: (State Observability) A system over an idempotent semiring described by (12) is said

to be state observable if, for any pair of inputs u and u′ satisfying CA∗Bu = CA∗Bu′, the equality

A∗Bu = A∗Bu′ holds.

Theorem 7: For a system given by Eq. (12), the following statements are equivalent :

1. ∀u, u′, the equality CA∗Bu = CA∗Bu′ implies A∗Bu = A∗Bu′, i.e. the system is state

observable;

2. kerCA∗B = kerA∗B;

3. A∗B = ((A∗B)◦/(CA∗B))CA∗B.

Proof:

• “Item 1 ⇔ Item 2”: According to Definition 4, Item 1 means that kerCA∗B ⊂ kerA∗B. On the

other hand, ∀(u, u′), we have A∗Bu = A∗Bu′ ⇒ CA∗Bu = CA∗Bu′ i.e., kerA∗B ⊂ kerCA∗B,

hence the equality holds.

• “Item 2 ⇒ Item 3”: According to Lemma 3 and Corollary 1, kerCA∗B ⊂ kerA∗B is equivalent

to ((A∗B)◦/(CA∗B))CA∗B = A∗B.

• “Item 3⇒ Item 1”: For all (u, u′), we have CA∗Bu = CA∗Bu′. After applying ((A∗B)◦/(CA∗B))

on both sides, we obtain ((A∗B)◦/(CA∗B))CA∗Bu = ((A∗B)◦/(CA∗B))CA∗Bu′. The previous

equality implies A∗Bu = A∗Bu′, because ((A∗B)◦/(CA∗B))CA∗B = A∗B.

Remark 3: All the results in this section can be extended to the system given by Eq. (10), by rewriting
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the system as

x = Ax⊕Bu, with B =
[
B R

]
, u =

 u

w

 ,
y = Cx, (13)

where the extended input is u ∈ (Zmax[[γ]])p+l, the output is y ∈ (Zmax[[γ]])m, and the state is

x ∈ (Zmax[[γ]])n.

V. MAX-PLUS OBSERVER

R w

w

Fig. 1. The observer structure of max-plus linear systems.

Fig. 1 depicts the observer structure directly inspired from the Luenberger observer in classical linear

system theory([18],[19],[24]). The observer matrix L is used to provide information from the system

output into the simulator in order to take the disturbances w acting on the system into account. The

simulator is described by the model2(matrices A, B, C) which is assumed to represent the fastest behavior

of the real system in a guaranteed way3, furthermore the simulator is initialized by the canonical initial

conditions ( i.e. x̂i(k) = ε, ∀k ≤ 0). These assumptions induce that ŷ � y since disturbances and initial

conditions, depicted by w, are only able to increase the system outputs. By considering the configuration

in Fig. 1 and these assumptions, the computation of the optimal observer matrix L will be proposed

in order to achieve the constraint x̂ � x. Optimality means that the obtained observer matrix L is the

greatest one due to the residuation theory (see Definition 1). Therefore, the estimated state x̂ is the

2Disturbances are uncontrollable and a priori unknown, then the simulator does not take them into account.
3Unlike in the conventional linear system theory, this assumption means that the fastest behavior of the system is assumed to

be known and that the disturbances can only delay its behavior.
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greatest which achieves the objective, so as close as possible to x. Obviously this optimality is only

ensured under the assumptions considered (i.e. ŷ � y). As in the development proposed in conventional

linear systems theory, matrices A, B, C and R are assumed to be known, then the system trajectories

are given by Eq. (11). According to Fig. 1, the observer equations, similarly as the Luenberger observer,

are given by:

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y) = Ax̂⊕Bu⊕ Ly, since by assumption ŷ � y,

= Ax̂⊕Bu⊕ LCx = Ax̂⊕Bu⊕ LC(A∗Bu⊕A∗Rw) (14)

ŷ = Cx̂.

By applying Theorem 1 and by considering Eq. (11), Eq.(14) becomes:

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Bu⊕ (A⊕ LC)∗LCA∗Rw. (15)

By applying (f.1) the following equality is obtained:

(A⊕ LC)∗ = A∗(LCA∗)∗, (16)

by replacing in Eq. (15):

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)∗LCA∗Bu

⊕A∗(LCA∗)∗LCA∗Rw,

and by recalling that (LCA∗)∗LCA∗ = (LCA∗)+, this equation may be written as follows:

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Bu⊕A∗(LCA∗)+Rw.

Eqs. (f.2) and (f.5) yield (LCA∗)∗ � (LCA∗)+, then the observer model may be written as follows:

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Rw

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw. (17)

As said previously, the objective considered is to compute the greatest observation matrix L, denoted as

Lopt, such that the estimated state vector x̂ be as close as possible to state x, under the constraint x̂ � x,

formally it can be written as, finding the greatest L satisfying the following inequality:

(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕A∗Rw, ∀(u,w),

or equivalently :

(A⊕ LC)∗B � A∗B (18)

and, (A⊕ LC)∗LCA∗R � A∗R. (19)
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Lemma 4 ([19]): The following equivalence holds :

(A⊕ LC)∗B = A∗B ⇐⇒ L � L1 = (A∗B)◦/(CA∗B).

Lemma 5 ([19]): The following equivalence holds

(A⊕ LC)∗LCA∗R � A∗R⇐⇒ L � L2 = (A∗R)◦/(CA∗R).

Proposition 2 ([19]): Lopt = L1 ∧ L2 is the greatest observer matrix L such that:

x̂ = Ax̂⊕Bu⊕ Ly � x = Ax⊕Bu⊕Rw, ∀(u,w).

Corollary 2 ([18]): The matrix Lopt ensures the equality between estimated output ŷ and measured

output y, i.e. the two equality holds:

C(A⊕ LoptC)∗B = CA∗B, (20)

C(A⊕ LoptC)∗LoptCA
∗R = CA∗R. (21)

Remark 4: According to this Corollary ŷ = y, so the state estimation can computed by considering

matrix B = [B R] , matrix Lopt may be written as: Lopt = (A∗B)◦/(CA∗B).

Theorem 8: If the system given in Eq. (13) is state observable then the observed state is the same as

the real state of the system, i.e. x̂ = x.

Proof: The observed state is given by x̂ = (A⊕ LoptC)∗Bu⊕ (A⊕ LoptC)∗LoptCA
∗Rw (see Eq.

(17)). The real state is given by x = A∗Bu⊕A∗Rw (see Eq. (11)). According to Theorem 7, the system

in Eq. (13) is state observable if and only if ((A∗B)◦/(CA∗B))CA∗B = CA∗B, which can be written

LoptCA
∗B = CA∗B. Hence the following equivalences hold :

LoptCA
∗B = A∗B ⇔

[
LoptCA

∗B LoptCA
∗R

]
=
[
A∗B A∗R

]
⇔ LoptCA

∗B = A∗B and LoptCA
∗R = A∗R.

First, by Lemma 4, Lopt ensures the equality

(A⊕ LoptC)∗B = A∗B.

Secondly, due to (f.1), we have

(A⊕ LoptC)∗LoptCA
∗R = A∗(LoptCA

∗)∗LoptCA
∗R = A∗(LoptCA

∗)+R

= A∗(LoptCA
∗R⊕ (LoptCA

∗R)2R⊕ · · · ).
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Since LoptCA
∗R = A∗R, the following equality is satisfied

(LoptCA
∗)2R = LoptCA

∗A∗R = LoptCA
∗R = A∗R.

More generally, A∗(LoptCA
∗)+R = A∗A∗R = A∗R is true as well. Therefore, Lopt ensures the

equality

(A⊕ LoptC)∗LoptCA
∗R = A∗(LoptCA

∗)+R = A∗R.

Therefore, the observed state is the same as the real state of the system, that is,

x̂ = (A⊕ LoptC)∗Bu⊕ (A⊕ LoptC)∗LoptCA
∗Rw

= A∗Bu⊕A∗Rw = x.

VI. OUTPUT FEEDBACK AND STATE-FEEDBACK CONTROLLERS

This section presents how to synthesize output feedback and state-feedback controllers in order to solve

the model matching problem (or model reference control problem, see [17], [25], [26]). First, an output

feedback control uF = P (v ⊕ Fy) is considered, where P ∈ (Zmax[[γ]])p×p and F ∈ (Zmax[[γ]])p×m,

and is synthesized in order to reach a given specification Gref ∈ (Zmax[[γ]])m×p. Because the transfer

matrix of the system in Eq. (13) is CA∗B ∈ (Zmax[[γ]])m×p, then the output of the controlled system is

y = CA∗BP (v ⊕ Fy), which yields, by applying Theorem 1, the following transfer relation between v

and y:

y = (CA∗BPF )∗CA∗BPv. (22)

The synthesis aim is to get the greatest closed-loop transfer relation smaller than the one specified by

Gref , i.e. , (CA∗BPF )∗CA∗BP � Gref . Practically, this means that the actual output date of the

closed-loop system y(k) = (CA∗BPF )∗CA∗BPv(k) must be smaller than the desired output given by

the specification (Grefv)(k) for each event k. This output y(k) is optimal according to the just-in-time

criterion, if it is the greatest solution satisfying this constraint, i.e. , the system input u(k) is delayed as

much as possible. This section presents the optimal output feedback controller uFopt = Popt(v⊕Fopty),

for any v and y.

Proposition 3: If the specification (CA∗BPF )∗CA∗BPv � Grefv, ∀ v, is satisfied, then the matrix

P ∈ (Zmax[[γ]])p×p satisfies the following inequality:

P � (CA∗B)◦\Gref = Popt. (23)
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Proof: According to Kleene star operator definition (a∗ = e⊕ a⊕ a2 ⊕ ...), we have

(CA∗BPF )∗CA∗BP � Gref ⇒ CA∗BP � Gref .

According to the residuation definition of the left product (see Example 2), the right hand side of this

inequality is equivalent to P � (CA∗B)◦\Gref .

Proposition 4: Considering an output feedback control uF = Popt(v⊕Fy), the greatest output feedback

matrix F ∈ (Zmax[[γ]])p×m, denoted as Fopt, ensuring that the closed-loop behavior of the system respects

the constraint y = (CA∗BPoptF )∗CA∗BPoptv � Grefv, ∀v, is given by :

Fopt =
⊕
{F ∈ (Zmax[[γ]])p×m|(CA∗BPoptF )∗CA∗BPoptv � Grefv, ∀v}

= Popt◦\Popt◦/(CA
∗BPopt). (24)

Proof:

(CA∗BPoptF )∗CA∗BPoptv � Grefv, ∀v,

⇔ (CA∗BPoptF )∗CA∗BPopt � Gref ,

⇔ CA∗BPopt(FCA
∗BPopt)

∗ � Gref , thanks to (f.3),

⇔ Popt(FCA
∗BPopt)

∗ � (CA∗B)◦\Gref = Popt, see Example 2,

⇔ (FCA∗BPopt)
∗ � Popt◦\Popt, see Example 2,

⇔ FCA∗BPopt � Popt◦\Popt, see Example 3,

⇔ F � Popt◦\Popt◦/(CA
∗BPopt), see Example 2.

Therefore, the output feedback control law uFopt = Popt(v⊕Fopty) is the optimal solution to the model

matching problem according to the just-in-time criterion. Next a state-feedback control is considered,

i.e. uK = P (v ⊕ Kx), with K ∈ (Zmax[[γ]])p×n. Hence, the state of the corrected system is x =

A∗BP (v ⊕Kx), which yields, by applying Theorem 1, the following transfer relations:

x = (A∗BPK)∗A∗BPv, (25)

y = CA∗BP (KA∗BP )∗v. (26)
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Proposition 5: Considering a state-feedback control law uK = Popt(v⊕Kx), the greatest state-feedback

matrix K ∈ (Zmax[[γ]])p×n, denoted by Kopt, ensuring y = CA∗BPopt(KA
∗BPopt)

∗v � Grefv, ∀ v, is

given by:

Kopt = Popt◦\Popt◦/(A
∗BPopt). (27)

Proof: The proofs take the same steps as the ones in Proposition 4 by replacing CA∗BPopt by

A∗BPopt.

VII. OBSERVER-BASED CONTROLLERS

As in the classical theory, sometimes the state is not measurable or it is too expensive to measure all

the states. Hence, in this section, we propose to use the estimated state x̂, obtained thanks to the observer

proposed in section V, to compute the state-feedback control law as given in Proposition 5. Then this

control strategy is compared with the output feedback control as given in Proposition 4. Formally, the

observer-based control law uM = P (v⊕Mx̂) is considered, where x̂ = Ax̂⊕Bu⊕Lopty (See Eq.(14)),

where the optimal observer matrix Lopt as given in Proposition 2 is clearly independent of the control

law uM .

x=Ax + Bu + Rw

y=Cx{
      

System

w

yuv

A

x y
y

B C

M

L Observer

Controller
x

P

Fig. 2. The observer-based controller for max-plus linear systems.

This observer-based control law is described in Fig. 2 can be written as

uM = P (v ⊕Mx̂) = Pv ⊕ PM(A⊕ LoptC)∗Bu

= (PM(A⊕ LoptC)∗B)∗Pv = P (M(A⊕ LoptC)∗BP )∗v. (28)

The state and the output can be written, respectively, as

x = A∗Bu = A∗BP (M(A⊕ LoptC)∗BP )∗v, (29)

y = Cx = CA∗BP (M(A⊕ LoptC)∗BP )∗v, (30)
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The synthesis aim is to get the greatest control law such that the output y with this control strategy is

smaller than or equal to the desired output Grefv, i.e. , y = CA∗BP (M(A⊕LoptC)∗BP )∗v � Grefv,

∀v, which is equivalent to obtain the optimal prefilter matrix P and the optimal observer-based controller

matrix M satisfying CA∗BP (M(A⊕ LoptC)∗BP )∗ � Gref .

Proposition 6: If the specification CA∗BP (M(A ⊕ LoptC)∗BP )∗v � Grefv, ∀ v, is satisfied, then

the matrix P ∈ (Zmax[[γ]])p×p satisfies the following equality:

P � (CA∗B)◦\Gref = Popt. (31)

Proof: According to the Kleene star operator definition (a∗ = e⊕a⊕a2⊕...), we have CA∗BP (M(A⊕

LoptC)∗BP )∗ � Gref . According to the residuation definition of the left product (see Example 2), the

right hand side of this inequality is equivalent to P � (CA∗B)◦\Gref .

Proposition 7: Considering the observer-based controller is uM = Popt(v⊕Mx̂), the greatest feedback

matrix M ∈ (Zmax[[γ]])p×n, denoted by Mopt, ensuring y = CA∗BPopt(M(A ⊕ LoptC)∗BPopt)
∗v �

Grefv, ∀ v, is given by:

Mopt = Popt◦\Popt◦/((A⊕ LoptC)∗BPopt), (32)

Mopt = Popt◦\Popt◦/(A
∗BPopt) = Kopt. (33)

Proof:

CA∗BPopt(M(A⊕ LoptC)∗BPopt)
∗v � Grefv, ∀v

⇔ CA∗BPopt(M(A⊕ LoptC)∗BPopt)
∗ � Gref ,

⇔ Popt(M(A⊕ LoptC)∗BPopt)
∗ � (CA∗B)◦\Gref = Popt, see Example 2,

⇔ (M(A⊕ LoptC)∗BPopt)
∗ � Popt◦\Popt, see Example 2,

⇔ (M(A⊕ LoptC)∗BPopt) � Popt◦\Popt, see Example 3,

⇔ M � Popt◦\Popt◦/((A⊕ LoptC)∗BPopt), see Example 2.

By considering Lemma 4, and Proposition 2, the following equality holds (A ⊕ LoptC)∗B = A∗B.

According to Proposition 5, Eq. (33) holds too.

Thanks to the Separation Principle, Proposition 7 shows that the controller synthesis and the observer

synthesis can be done independently. In another words, first, we can find the greatest observer matrix

Lopt to ensure the estimated output same as the original output. Second, we can find the greatest state
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feedback matrix Kopt to ensure the greatest closed-loop transfer relation smaller than the desired transfer

matrix Gref . After combining the greatest observer matrix Lopt and the state feedback matrix Kopt, the

observer-based controller is constructed and denoted as uKopt = Popt(v ⊕ Koptx̂), where x̂ = Ax̂ ⊕

Bu ⊕ Lopty. Next, Proposition 8 compares the performances between the observer-based control law,

uKopt = Popt(v ⊕Koptx̂), and the output feedback control, uFopt = Popt(v ⊕ Fopty).

Proposition 8: The observer-based control law uKopt is greater than the the output feedback control

law uFopt.

Proof: According to Eq. (24) and Eq. (27), the following equality holds :

Fopt = Kopt◦/C.

Hence, FoptC � Kopt and FoptCx̂ � Koptx̂. According to Eq. (17), this inequality can be written

FoptC((A⊕LoptC)∗Bu⊕(A⊕LoptC)∗LoptCA
∗Rw) � Kopt((A⊕LoptC)∗Bu⊕(A⊕LoptC)∗LoptCA

∗Rw),

then, according to Corollary 2, y = ŷ, so this inequality is equivalent to

Fopt(CA
∗Bu⊕ CA∗Rw) � Kopt((A⊕ LoptC)∗Bu⊕ (A⊕ LoptC)∗LoptCA

∗Rw),

⇔ Fopty � Kopt((A⊕ LoptC)∗Bu⊕ (A⊕ LoptC)∗LoptCA
∗Rw) = Koptx̂,

and by recalling that the addition and product laws are order preserving, it appears that:

uFopt = Popt(v ⊕ Fopty) � uKopt = Popt(v ⊕Koptx̂).

Proposition 8 means that the observer-based controller yields a better performance according to the just-

in-time criterion, since the observer-based state-feedback control law uKopt is greater than the output

feedback law uFopt while keeping the outputs be the same. For instance, in a manufacturing setting, the

observer-based controller would provide a better scheduling by starting the process later than the output

feedback control, while ensuring the same output parts finishing time. This scheduling would allow users

to load the raw parts later rather than earlier to avoid unnecessary congestions in the manufacturing line.

VIII. APPLICATIONS TO A HIGH THROUGHPUT SCREENING SYSTEM

High throughput screening (HTS) is a standard technology in drug discovery. In HTS systems, the

optimal scheduling is required to finish the drug screening in the shortest time, as well as to preserve the

consistent time spending on each activity in the screening. If we are interested in the release event time

of each activity, then we can model the HTS system as a TEG model (see [4], [5]). The HTS system in

this section consists of four activities: activity 1, executed on the resource Pipettor, is filling the chemical
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compound A into the wells of a microplate, which lasts for 2 time units. Activity 2, executed on the

resource Pipettor as well, is filling the chemical compound B into the wells of another microplate, which

lasts for 3 time units. After 1 unit waiting time for the compound A and 6 units waiting time for the

compound B, activity 3 is mixing the compound B into the microplate containing the compound A for

4 time units. The mixed compound AB will be released after activity 3 right away. In activity 4, the

remaining compound B will be released after 3 time units.

6

w

w

w

4

4

3

4w

3

Fig. 3. The TEG model of the HTS system where the uncontrollable inputs are marked in red.

This system can be represented by the TEG model given in Fig. 3, in which x1 denotes the release

time of activity 1 on the Pipettor for the compound A, x2 denotes the release time of activity 2 on the

Pipettor for the compound B, x3 denotes the release time of activity 3 after mixing the compounds A

and B, and x4 denotes the release time of activity 4 for the remaining compound B. The inputs u1 and

u2 are the controls for the loading times of activity 1 and 2, respectively, so that the users can decide

when to load the chemical compounds A and B. The compound A is loaded 1 time unit when it is ready.

The compound B is loaded after 3 time units when the compound B is ready. The disturbance w1 delays

the release time of the compound A after activity 1, the disturbance w2 delays the release time of the

compound B after activity 2, the disturbance w3 delays the release time of the mixed compound AB after

activity 3, and the disturbance w4 delays the release time of the remaining compound B after activity 4.

The output y1 is the release time of the mixed compound AB. The output y2 is the release time of the

unused compound B. In Fig. 3, the circles represent places and the bars represent the transitions xi. Each

black token in the places represents that the corresponding resource is available, i.e. the activity is ready

to start. For the TEG model of a HTS system shown in Fig. 3, the system over the (max-plus)-algebra

February 22, 2016 DRAFT



19

Zmax[[γ]] is described as the following:

x = Ax⊕Bu⊕Rw,

y = Cx,

where

A =


2γ ε γ2 ε

ε 3γ ε ε

1 6 4γ ε

ε 3 ε ε

 , B =


1 ε

ε 3

ε ε

ε ε

 , C =

 ε ε e ε

ε ε ε e

 , R =


e ε ε ε

ε e ε ε

ε ε e ε

ε ε ε e

 .

The example has been computed by using the toolbox MinMaxGD, a C++ library allowing to handle

periodic series as introduced in ([12]), and it can be noted that this library is also interfaced with Scicoslab.

In this paper the control objective is to keep the system performance, i.e. to obtain a just-in time control

while preserving the system’s full speed. The reference model transfer function series are

Gref = CA∗B =

 2(4γ)∗ 9(4γ)∗

ε 6(3γ)∗

 .
By Proposition 3 and Proposition 4, we can obtain the optimal output feedback controller as uFopt =

Popt(v ⊕ Fopty), where

Popt = (CA∗B)◦\Gref =

 (4γ)∗ 7(4γ)∗

ε (3γ)∗

 ,
Fopt = Popt◦\Popt◦/(CA

∗BPopt) =

 −2(4γ)∗ 1(4γ)∗

ε −6(3γ)∗

 ,
which solves the model matching problem. This feedback Fopt is not causal because there are negative co-

efficients in the matrix. The canonical injection from the causal elements of Zmax[[γ]] (denoted Zmax[[γ]]+)

in Zmax[[γ]] is also residuated (see [11] for details). Its residual is given by Pr
(⊕

k∈Z s(k)γk
)

=⊕
k∈Z s+(k)γk where

s+(k) =

 s(k) if (k, s(k)) ≥ (0, 0),

ε otherwise.

The greatest causal feedback matrix less than or equal to Fopt is

Fopt+ = Pr(Fopt) =

 2γ(4γ)∗ 1(4γ)∗

ε γ2(3γ)∗

 .
The output feedback controller uFopt+ = Popt(v⊕Fopt+y) can be realized using a TEG model shown

in Fig. 4. The pre-filter Popt and the output-feedback control Fopt+ are marked in gray areas. For instance,
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Fopt+(1, 1) = 2γ(4γ)∗ implies that, in the TEG shown in Fig. 4, there is a cyclic component with one

token and 4 time delays for a new transition ξ3 and the output y1 is delayed for 2 time units and one

token before going through the transition ξ3. Fopt+(1, 2) = 1(4γ)∗ implies that the output y2 is delayed

for 1 time unit before going through the transition ξ3. Fopt+(2, 2) = γ2(3γ)∗ implies that there is a cyclic

component with one token and 3 time delays for a new transition ξ4 and the output y2 has two tokens

before going through the transition ξ4. The prefilter Popt can be constructed similarly in the TEG model.

Then, the output feedback control law uFopt+ = Popt(v ⊕ Fopt+y) can be given in the event domain by

considering the (max-plus)-algebra as follows:

Fopt+y :

ξ3(k) = 4ξ3(k − 1)⊕ 2y1(k − 1)⊕ 1y2(k),

ξ4(k) = 3ξ4(k − 1)⊕ y2(k − 2),

Popt(v ⊕ Fopt+y) :

ξ1(k) = 4ξ1(k − 1)⊕ ξ3(k)⊕ 7ξ4(k)⊕ v1(k)⊕ 7v2(k),

ξ2(k) = 3ξ2(k − 1)⊕ ξ4(k)⊕ v2(k),

and the controls u1(k) = ξ1(k) and u2(k) = ξ2(k).

u1

2

x1

1
w1

x3
y1

w3

u2
x2

3w2

4

y2

6

v1

4

v2

3

4

3

ξ3

Fopt+

Popt 

7
3

ξ4

ξ1

ξ2

w4

3

x4

2

1

17

Fig. 4. The TEG realization of the causal output feedback controller uFopt+ = Popt(v ⊕ Fopt+y) for the HTS system.

The output feedback control law uFopt+ = Popt(v⊕Fopt+y) can also be given in the time domain by
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considering the (min-plus)-algebra as follows:

Fopt+y :

ξ3(t) = 1ξ3(t− 4)⊕ 1y1(t− 2)⊕ y2(t− 1),

ξ4(t) = 1ξ4(t− 3)⊕ 2y2(t),

Popt(v ⊕ Fopt+y) :

ξ1(t) = 1ξ1(t− 4)⊕ ξ3(t)⊕ ξ4(t− 7)⊕ v1(t)⊕ v2(t− 7),

ξ2(t) = 1ξ2(t− 3)⊕ ξ4(t)⊕ v2(t),

and the controls u1(t) = ξ1(t) and u2(t) = ξ2(t).

Now we construct the observer-based controller uKopt = Popt(v⊕Koptx̂) with x̂ = Ax̂⊕Bu⊕Lopty,

where Popt is the same as above. According to Lemma 4, Lemma 5 and Eq. (27), Lopt and Kopt are

computed as follows :

Lopt = L1 ∧ L2 = (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R) =


γ2(4γ)∗ 3γ2(4γ)∗

ε −3(3γ)∗

(4γ)∗ 3(4γ)∗

ε (3γ)∗

 ,

Kopt = Popt◦\Popt◦/(A
∗BPopt) =

 −1(4γ)∗ 4(4γ)∗ −2(4γ)∗ 1(4γ)∗

ε −3(3γ)∗ ε −6(3γ)∗

 .
Then, the causal observer matrix Lopt+ is

Lopt+ = Pr(Lopt) =


γ2(4γ)∗ 3γ2(4γ)∗

ε γ(3γ)∗

(4γ)∗ 3(4γ)∗

ε (3γ)∗

 ,

and the causal state-feedback matrix is

Kopt+ = Pr(Kopt) =

 3γ(4γ)∗ 4(4γ)∗ 2γ(4γ)∗ 1(4γ)∗

ε γ(3γ)∗ ε γ2(3γ)∗

 .
The observer-based controller uKopt+ = Popt(v ⊕ Kopt+x̂) with x̂ = Ax̂ ⊕ Bu ⊕ Lopt+y can be

realized using a TEG model shown in Fig. 5. The pre-filter Popt, the observer mapping Lopt+, and the

state-feedback control Kopt+ are marked in gray areas. For instance, Lopt+(1, 1) = γ2(4γ)∗ implies that,

in the TEG model shown in Fig. 5, there is a cyclic component with one token and 4 time delays for a

new transition ξ3 and the output y1 has two tokens before going through the transition ξ3. Lopt+(1, 2) =

3γ2(4γ)∗ implies that the output y2 is delayed for 3 time units and has two tokens before going through

the transition ξ3. Lopt+(2, 2) = γ(3γ)∗ implies that there is a cyclic component with one token and 3

time delays for a new transition ξ4 and the output y2 has one token before going through the transition
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ξ4. Lopt+(3, 1) = (4γ)∗ implies that there is a cyclic component with one token and 4 time delays for a

new transition ξ5. Lopt+(3, 2) = 3(4γ)∗ implies that y2 is delayed for 3 time units before going through

the transition ξ5. Lopt+(4, 2) = (4γ)∗ implies that y2 implies that there is a cyclic component with one

token and 3 time delays for a new transition ξ6 . The observer-based state feedback matrix Kopt+ and

the prefilter Popt can be explained similarly as above.
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Fig. 5. The TEG realization of the observer-based controller uKopt+ = Popt(v ⊕Kopt+x̂) for the HTS system.

The estimated states x̂ = Ax̂ ⊕ Bu ⊕ Lopt+y can be written in the event domain by considering the
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(max-plus)-algebra as follows:

Lopt+y :



ξ3(k) = 4ξ3(k − 1)⊕ y1(k − 2)⊕ 3y2(k − 2),

ξ4(k) = 3ξ4(k − 1)⊕ y2(k − 1),

ξ5(k) = 4ξ5(k − 1)⊕ y1(k)⊕ 3y2(k),

ξ6(k) = 3ξ6(k − 1)⊕ y2(k),

x̂ :



x̂1(k) = 2x̂1(k − 1)⊕ x̂3(k − 2)⊕ 1u1(k)⊕ ξ3(k),

x̂2(k) = 3x̂2(k − 1)⊕ 3u2(k)⊕ ξ4(k),

x̂3(k) = 1x̂1(k)⊕ 6x̂2(k)⊕ 4x̂3(k − 1)⊕ ξ5(k),

x̂4(k) = 3x̂2(k)⊕ ξ6(k).

where ξi, i = 3, · · · , 6, are the intermediate transitions in the TEG shown in Fig. 5. Then the event

domain representation for the observer-based control law uKopt+ = Popt(v ⊕ Kopt+x̂) is obtained as

follows:

Kopt+x̂ :

ξ7(k) = 4ξ7(k − 1)⊕ 3x̂1(k − 1)⊕ 4x̂2(k)⊕ 3x̂3(k − 1)⊕ 1x̂4(k),

ξ8(k) = 3ξ8(k − 1)⊕ x̂2(k − 1)⊕ x̂4(k − 2),

Popt(v ⊕Kopt+x̂) :

ξ1(k) = 4ξ1(k − 1)⊕ ξ7(k)⊕ 7ξ8(k)⊕ v1(k)⊕ 7v2(k),

ξ2(k) = 3ξ2(k − 1)⊕ ξ8(k)⊕ v2(k),

and u1(k) = ξ1(k) and u2(k) = ξ2(k), where ξi, i = 1, 2, 7, 8, are the intermediate transitions in the TEG

shown in Fig. 5. Similarly, the estimated state x̂ can be written in time-domain equations by considering

the (min-plus)-algebra.

Lopt+y :



ξ3(t) = 1ξ3(t− 4)⊕ 2y1(t)⊕ 2y2(t− 3),

ξ4(t) = 1ξ4(t− 3)⊕ 1y2(t),

ξ5(t) = 1ξ5(t− 4)⊕ y1(t)⊕ y2(t− 3),

ξ6(t) = 1ξ6(t− 3)⊕ y2(t),

x̂ :



x̂1(t) = 1x̂1(t− 2)⊕ 2x̂3(t)⊕ u1(t− 1)⊕ ξ3(t),

x̂2(t) = 1x̂2(t− 3)⊕ u2(t− 3)⊕ ξ4(t),

x̂3(t) = 1x̂3(t− 4)⊕ x̂1(t− 1)⊕ x̂2(t− 6)⊕ ξ5(t),

x̂4(t) = x̂2(t− 3)⊕ ξ6(t).

February 22, 2016 DRAFT



24

Then, the event domain representation for the observer-based control law uKopt+ = Popt(v⊕Kopt+x̂) is

obtained as follows:

Kopt+x̂ :

ξ7(t) = 1ξ7(t− 4)⊕ 1x̂1(t− 3)⊕ x̂2(t− 4)⊕ 1x̂3(t− 2)⊕ x̂4(t− 1),

ξ8(t) = 1ξ8(t− 3)⊕ 1x̂2(t)⊕ 2x̂4(t)

Popt(v ⊕Kopt+x̂) :

ξ1(t) = 1ξ1(t− 4)⊕ ξ7(t)⊕ ξ8(t− 7)⊕ v1(t)⊕ v2(t− 7),

ξ2(t) = 1ξ2(t− 3)⊕ ξ8(t)⊕ v2(t),

and u1(t) = ξ1(t), and u2(t) = ξ2(t). By Proposition 8, the observer-based control law uKopt+ =

Popt(v ⊕Kopt+x̂) is greater than the output feedback control law uFopt+ = Popt(v ⊕ Fopt+y), for any

external input v. This result can be verified in this example, because

Fopt+CA
∗B � Kopt+(A⊕ Lopt+C)∗B and Fopt+CA

∗R = Kopt+(A⊕ Lopt+C)∗Lopt+CA
∗R

hold, where

Fopt+CA
∗B =

 4γ(4γ)∗ 7(4γ)∗

ε 6γ2(3γ)∗

 , Kopt+(A⊕ Lopt+C)∗B =

 (4γ)∗ 7(4γ)∗

ε 3γ(3γ)∗


Fopt+CA

∗R = Kopt+(A⊕ Lopt+C)∗Lopt+CA
∗R =

 3γ(4γ)∗ 4(4γ)∗ 2γ(4γ)∗ ε

ε 3γ2(3γ)∗ ε ε

 .
IX. CONCLUSIONS

The main contribution of this paper is the design of an observer-based controller for max-plus linear

systems, where only a subset of the states obtained from measurement is available for the controller. These

results can be applied to fault detection, model matching, and diagnosis for max-plus linear systems.

This paper first constructs the observer structure for max-plus linear systems, and then finds the greatest

observer matrix such that the estimated output preserves the original output behaviors. Second, this

paper calculates the greatest output feedback and state-feedback control laws such that the closed-loop

transfer relation is smaller than the reference transfer relation in a model matching problem. Then, an

observer-based controller is constructed using the estimated state in the TEG model of max-plus linear

systems. Moreover, it is proved that the observer-based controller provides a greater control than the

output feedback control, i.e. a better performance in terms of just-in-time control criterion. At last, this

paper applies the observer-based controller and the output feedback synthesis to a practical application of

a HTS system in drug discovery. Both of the observer-based controller and the output feedback controller

are constructed in TEG models, and the observer-based controller yields a better scheduling strategy. The

scheduling obtained from the observer-based controller would allow users to load the chemical compounds

at late as possible to avoid unnecessary congestions according to the just-in-time criterion.
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X. APPENDIX

A. Formulas of Star Operations

a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗ (f.1)

(a∗)∗ = a∗ (a+)+ = a+ (f.2)

(ab)∗a = a(ba)∗ (f.3)

a∗a∗ = a∗ a+a∗ = a+ (f.4)

(a∗)+ = (a+)∗ = a∗ a+ � a∗ (f.5)

B. Formulas of Left Residuations

a(a ◦\x) � x (f.6)

a ◦\(ax) � x (f.7)

a(a ◦\(ax)) = ax (f.8)

a ◦\(x ∧ y) = a ◦\x ∧ a ◦\y (f.9)

(a⊕ b) ◦\x = a ◦\x ∧ b ◦\x (f.10)

(ab) ◦\x = b ◦\(a ◦\x) (f.11)

b(a ◦\x) � (a◦/b) ◦\x (f.12)

(a ◦\x)b � a ◦\(xb) (f.13)

C. Formulas of Right Residuations

(x◦/a)a � x (f.14)

(xa)◦/a � x (f.15)

((xa)◦/a)a = xa (f.16)

(x ∧ y)◦/a = x◦/a ∧ y◦/a (f.17)

x◦/(a⊕ b) = x◦/a ∧ x◦/b (f.18)

x◦/(ba) = (x◦/a)◦/b (f.19)

(x◦/a)b � x ◦\(b◦/a) (f.20)

b(x◦/a) � (bx)◦/a (f.21)

XI. SOURCE CODE

#ifndef _WIN32

#include "../include/lminmaxgd.h"

#else
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#include "..\include\lminmaxgd.h"

using namespace std;

#endif

/////////////////////////////////////////////////////////////////////

/* Example : Observer basesd controller and comparison with output feedbnack

Example taken from paper

[2] "Observer-based Controllers for (Max-Plus)-Linear Systems"

Laurent Hardouin, Ying Shang, Carlos Andrey Maia, Bertrand Cottenceau

(IEEE TAC, 2010)

// see also animation on http://perso-laris.univ-angers.fr/˜hardouin/Observer.html

// you must link with a library which contains all source files given in folder src

// gd.cpp poly.cpp serie.cpp smatrix.cpp tools.cpp interf.cpp

// or add these files in your project

// or alternatively you can include the folowing files, it is the most friendly to do

*/

#include "..\src\gd.cpp"

#include "..\src\poly.cpp"

#include "..\src\serie.cpp"

#include "..\src\smatrix.cpp"

#include "..\src\tools.cpp"

/////////////////////////////////////////////////////////////////////

int main()

{

try

{

smatrix A(4,4); // matrice d’tat

smatrix Lopt,L1,L2,Loptcausal;

int i,j;
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smatrix CA,AB,CAB,AR,CAR;

smatrix Gref;

smatrix Popt, Fopt,Kopt;

A(2,2)=gd(1,4);//(gˆ1,dˆ4)

A(2,1)=gd(0,6);//

A(2,0)=gd(0,1);

A(0,0)=gd(1,2);

A(0,2)=gd(2,0);

A(1,1)=gd(1,3);

A(3,1)=gd(0,3);

smatrix C(2,4); // output matrix only coefficient on diagonal equal to e or epsilon

C(0,2)=gd(0,0);

C(1,3)=gd(0,0);

smatrix B(4,2); // matrix of inputs, epsilon everywhere

B(0,0)=gd(0,1);

B(1,1)=gd(0,3);

smatrix R(4,4); // matrix connecting the uncontrollable input and the state

R(0,0)=gd(0,0);

R(1,1)=gd(0,0);

R(2,2)=gd(0,0);

smatrix As=star(A);

CA=otimes(C,As); // CA*

AB=otimes(As,B);

CAB=otimes(C,AB); // CA*B, the input output transfer matrix

February 22, 2016 DRAFT



30

cout<<" CAB"<<CAB<<endl;

AR=otimes(As,R);

CAR=otimes(C,AR); // CA*R, the disturbance output transfer matrix

cout<<" CAR"<<CAR<<endl;

L1=rfrac(AB,CAB);

L2=rfrac(AR,CAR);

Lopt=inf(L1,L2); // the uncausal observer

cout<<"Lopt noncausal : " <<Lopt<<endl;

Loptcausal=prcaus(Lopt); // the causal projection of the oberver matrix

Lopt=Loptcausal;

cout<<"Lopt causal : " <<Loptcausal<<endl;

// Below we check the Corollary 2

smatrix Yu;

Yu=otimes(Loptcausal,C);

Yu=oplus(A,Yu);

Yu=star(Yu);

Yu=otimes(C,Yu);

Yu=otimes(Yu,B);

smatrix Yw;

Yw=otimes(Loptcausal,C);

Yw=oplus(A,Yw);

Yw=star(Yw);
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Yw=otimes(C,Yw);

Yw=otimes(Yw,Loptcausal);

Yw=otimes(Yw,CAR);

if (Yu==Yw)

{

cout<<" Corollary 2 is satified, the estimated output and the real output are equal "<<endl;

cout<<"Yu : " <<Yu<<endl;

cout<<"Yw : " <<Yw<<endl;

}

Gref=CAB; // reference model is chosen equal to the system, we want to keep the input ouptu performance and delaying as much as possible the input

cout<<" Gref "<<Gref<<endl;

Popt=lfrac(Gref,CAB); // the prefilter

cout<<" Popt non causal "<<Popt<<endl;

smatrix Popt_causal=prcaus(Popt);

cout<<" Popt causal "<<Popt_causal<<endl;

Kopt=otimes(AB,Popt);

Kopt=rfrac(Popt,Kopt);

Kopt=lfrac(Kopt,Popt);

cout<<" Kopt non causal"<<Kopt<<endl; // the state feedback controller

Fopt=rfrac(Kopt,C); // the ouput feedback controller

cout<<" Fopt non causal "<<Fopt<<endl;
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// causal projection

Kopt=prcaus(Kopt);

Fopt=prcaus(Fopt);

cout<<" Fopt "<<Fopt<<endl;

cout<<" Kopt "<<Kopt<<endl;

// From now I try to enlighten that the strategy with oberverbasedcontrol is better than

// the feedback, I need your help Ying... :)

smatrix FoptC;

FoptC=otimes(Fopt,C);

// Below it appears that the observer based controller yields a greater control

// See Proposition 8

smatrix Xu,Xw;

Xu=otimes(Lopt,C);

Xu=oplus(A,Xu);

Xu=star(Xu);

Xu=otimes(Xu,B);

Xu=otimes(Kopt,Xu); // the transfer Kopt(A+LoptC)*B

Xw=otimes(Lopt,C);

Xw=oplus(A,Xw);

Xw=star(Xw);

Xw=otimes(Xw,Lopt);

Xw=otimes(Xw,CAR);

Xw=otimes(Kopt,Xw); // the transfer Kopt((A+LoptC)*)(LoptCA*)R
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smatrix FCAB, FCAR;

FCAB=otimes(Fopt,CAB);

FCAR=otimes(Fopt,CAR);

if(!(FCAB==Xu) || !(FCAR==Xw))

{

cout<<" FCAB " <<FCAB<<endl;

cout<<" Xu "<<Xu<<endl;

cout<<" FCAR " <<FCAR<<endl;

cout<<" Xw "<<Xw<<endl;

smatrix test1=oplus(FCAB,Xu);

smatrix test2=oplus(FCAR,Xw);

if ((test1==Xu) && (test2==Xw))

{

cout<<" the oberver-based controller yields a greater control than the output feedback control "<<endl;

}

}

return(0);

}

catch(mem_limite l)

{

cout<<"Exception : too many coefficents in polynom "<<l.memoire<<endl;

return(1);

}

catch(taille_incorrecte obj)

{ // 0 : r non causal

// 1 : tentative d’accs un element d’une matrice avec un indice incorrect
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// 2 : matrice de taille incompatible pour oplus, inf, otimes, rfrac, lfrac

// 3 : etoile de matrice carre uniquement

cout<<"Exception "<<obj.erreur<<endl;

return(1);

}

}
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