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Extended version with source code of the paper Observer-based Controllers for Max-plus Linear Systems

Max-plus linear systems are often used to model transportation networks, communications systems and manufacturing systems. One way of controlling this kind of systems consists in choosing the date of input events in order to achieve the desired performances, e.g., to obtain output events in order to respect given dates. This kind of control is optimal, according to a just-in-time criterion, if the inputevent dates are delayed as much as possible while ensuring the output events to occur before a desired reference date. In this context, this paper presents an observed-based controller approach, where only a linear combination of the states, obtained from measurement, is available for the controller. As in the classical sense, this is a state-feedback control problem, which is solved in two steps: first an observer computes an estimation of the state by using the input and the output measurements, then this estimated state is used to compute the state-feedback control action. As a main result, it is shown that the optimal solution of this observer-based control problem leads to a greater control input than the one obtained with the output feedback strategy. A high throughput screening example in drug discovery illustrates this main result by showing that the scheduling obtained from the observer-based controller is better than the scheduling obtained from the output feedback controller.

I. INTRODUCTION

Many discrete event dynamic systems, such as transportation networks ( [START_REF] Farhi | Derivation of the fundamental traffic diagram for two circular roads and a crossing using minplus algebra and petri net modeling[END_REF], [START_REF] Heidergott | Max Plus at Work : Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications[END_REF]), communication networks, manufacturing assembly lines [START_REF] Cohen | A linear system theoretic view of discrete event processes and its use for performance evaluation in manufacturing[END_REF], are subject to synchronization phenomena. These systems behavior can be represented by timed-event graphs (TEGs) which are timed Petri nets where each place has one upstream transition and one downstream transition. Its description can be transformed into a maxplus or a min-plus linear model and vice versa ( [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], [START_REF] Cohen | Linear system theory for discrete-event systems[END_REF]). This property has advantaged the emergence the state variables is not possible due to the lack of sensors. It is then classical to use the state estimation provided by the observer to feed the controller. This paper proposes to use the observer introduced in ( [START_REF] Hardouin | Max-plus Linear Observer: Application to manufacturing Systems[END_REF], [START_REF] Hardouin | Observer Design for (max,plus) Linear Systems[END_REF]) to design the observer-based controllers for max-plus linear systems. As in the classical sense, this is a state-feedback control problem, which is solved in two steps: first an observer computes an estimation of the state by using the input and the output measurements, then this estimated state is used to compute the state-feedback control action.

The observer is designed by analogy with the classical Luenberger observer [START_REF] Luenberger | An introduction to observers[END_REF] for linear systems. As a main result, it is shown that the optimal solution of this observer-based control problem leads to a greater control input than the one obtained with the output feedback strategy. For instance, in a manufacturing setting, the observer-based controller would provide a better scheduling by starting the process later than the output feedback control, while ensuring the same output parts finishing time. This scheduling would allow users to load the raw parts later rather than earlier to avoid unnecessary congestions in the manufacturing line. This paper is organized as the following. The max-plus algebra is a particular idempotent semiring, therefore, section II reviews some algebraic tools concerning these algebraic structures. Some results about the Residuation theory and its applications over semirings are also given. Section III recalls the description of TEGs in a semiring of formal series. Section IV presents the concepts of output controllability and state observability. Section V presents the observer for max-plus linear systems, it is designed by analogy with the classical Luenberger observer for linear systems. If the max-plus linear systems modeled in TEGs are observable, then the observer ensures equality between the state and the estimated state in spite of possible disturbances. Section VI reviews the output feedback and state-feedback controllers as introduced in ( [START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF], [START_REF] Maia | On the Model Reference Control for Max-Plus Linear Systems[END_REF]). Section VII presents the observer-based controller and compares its differences between the output feedback controller and the observer-based state-feedback controller. In particular, it is shown February 22, 2016 DRAFT that this new strategy increases the performances. Section VIII illustrates the main results using a high throughput screening example in drug discovery. An observer-based controller is constructed and proved to have a better performance comparing with an output feedback controller.

II. ALGEBRAIC SETTING

An idempotent semiring S is an algebraic structure with two internal operations denoted by ⊕ and ⊗. The operation ⊕ is associative, commutative and idempotent, that is, a ⊕ a = a. The operation ⊗ is associative (but not necessarily commutative) and distributive on the left and on the right with respect to ⊕. The neutral elements of ⊕ and ⊗ are represented by ε and e respectively, and ε is an absorbing element for the law ⊗ (∀a ∈ S, ε ⊗ a = a ⊗ ε = ε). As in classical algebra, the operator ⊗ will be often omitted in the equations, moreover, a i = a ⊗ a i-1 and a 0 = e. In this algebraic structure, a partial order relation is defined by a b ⇔ a = a ⊕ b ⇔ b = a ∧ b (where a ∧ b is the greatest lower bound of a and b), therefore, an idempotent semiring S is a partially ordered set (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], [START_REF] Heidergott | Max Plus at Work : Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications[END_REF] for an exhaustive introduction). An idempotent semiring S is said to be complete if it is closed for infinite ⊕-sums and if

⊗ distributes over infinite ⊕-sums. In particular, = x∈S x is the greatest element of S ( is called the top element of S).

Example 1 (Z max ): Set Z max = Z ∪ {-∞, +∞} endowed with the max operator as sum and the classical sum + as product is a complete idempotent semiring, usually denoted Z max , of which ε = -∞ and e = 0.

Theorem 1 (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], Th. and E are partially ordered sets, is a residuated mapping if for all y ∈ E there exists a greatest solution to the inequality f (x) y (hereafter denoted f (y)). Obviously, if equality f (x) = y is solvable, f (y)

yields the greatest solution. The mapping f is called the residual of f and f (y) is the optimal solution of the inequality.

Theorem 2 (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF] Th. 4.50, [START_REF] Blyth | Lattices and Ordered Algebraic Structures[END_REF]): Let f : D → C be an order preserving mapping. The following statements are equivalent:

(i) f is residuated.

(ii) there exists an unique order preserving mapping f : 

C → D such that f • f Id C and f • f Id D .
f • f • f = f and f • f • f = f . (1) 
Example 2: Mappings Λ a : x → a ⊗ x and Ψ a : x → x ⊗ a defined over an idempotent semiring S are both residuated (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], Section 4. 

Proof:

• Due to associativity of the product law, we have w = w(yz) = (wy)z = z, which proves uniqueness of a right and left inverse (see Lemma 4.36 in [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF]).

• According to Theorem Proposition 1 (see [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF]): Let f : D → D be a closure mapping. x i = xx * = x * x is a closure mapping (indeed a a + and a + = (a + ) + see (f.2) in Appendix). Then ( ImP | P ) is residuated and its residual is

( ImP | P ) =
Id |ImP . In other words, x = a + is the greatest solution of inequality x + a if a ∈ ImP , that is

x a + ⇔ x + a + .
Remark 1: According to (f.5) in Appendix, (a * ) + = a * , therefore, ImK ⊂ ImP .

The set of n × n matrices with entries in S is an idempotent semiring. The sum, the product and the residuation of matrices are defined after the sum, the product and the residuation of scalars in S, i.e.,

(A ⊗ B) ik = j=1...n (a ij ⊗ b jk ) (2) 
(A ⊕ B) ij = a ij ⊕ b ij , (3) 
(A• \B) ij = k=1..n (a ki • \b kj ) , (B• /A) ij = k=1..n (b ik • /a jk ). (4) 
The identity matrix of S n×n is a matrix with entries equal to e on the diagonal and to ε elsewhere. This identity matrix will also be denoted e, and the matrix with all its entries equal to ε will also be denoted ε.

Properties 1: ([16], [START_REF] Maxplus | Second Order Theory of Min-linear Systems and its Application to Discrete Event Systems[END_REF]) Given a complete semiring S, and four matrices A ∈ S p×n , B ∈ S n×p ,, M ∈ S p×p , and N ∈ S n×n , the following equalities are satisfied:

A• \A = (A• \A) * , B• /B = (B• /B) * , (5) 
A• \(M * A) = (M * A)• \(M * A) = (A• \(M * A)) * (6) 
(AN * )• /A = (AN * )• /(AN * ) = ((AN * )• /A) * . (7) 
From now on, to enlighten notation, as in classical algebra mapping Λ C (see Example 2) will be denoted C.

Definition 4 (Kernel [START_REF] Cohen | Kernels, images and projections in dioids[END_REF], [START_REF] Cohen | Linear projectors in the max-plus algebra[END_REF]): Let S be a complete idempotent semiring and let C be a n × p matrix with entries in S, the kernel of C (denoted by ker C) is the subset of all pairs of elements of S p whose components are both mapped by C to the same element in S n , i.e., the following definition

ker C := (s, s ) ∈ (S p ) 2 | Cs = Cs . (8) 
Clearly, ker C is an equivalence relation on X , i.e., Cs = Cs ⇐⇒ s ≡ s (mod ker C). Furthermore, it is a congruence and then we can define the quotient S/ ker C. Proof:

• "Item 1 ⇒ Item 2": If ImB ⊂ ImA, then, for any element y = Bx ∈ ImB, ∀x, there exists a z such that y = Az = Bx. Due to Property in (f.8), we have

y = Az = A(A• \Az) = A(A• \Bx), for any x ∈ X . Therefore, Bx = A(A• \Bx). It implies A(A• \B) = B. • "Item 2 ⇒ Item 1": If B = A(A• \B), then ImB ⊂ ImA. Lemma 3 ([7]
, [START_REF] Cohen | Linear projectors in the max-plus algebra[END_REF]): For matrices C ∈ S n×p , B ∈ S m×p the following statements are equivalent:

1. ker C ⊂ ker B;

2. there exists a linear map L :

S n → S m , s.t. L • C = B.
Proof:

• "Item 1 ⇒ Item 2": According to Definition 4, ker C ⊂ ker B can be written as where λ ∈ S.

Cx = Cx ⇒ Bx = Bx , where (x, x ) ∈ (S p
• "Item 2 ⇒ Item 1": If a linear mapping L • C = B exists, then the following assertion holds : To obtain an algebraic model in Z max , a "dater" function is associated to each transition. For transition labelled x i , x i (k) represents the date of the k th firing (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], [START_REF] Heidergott | Max Plus at Work : Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications[END_REF]). A trajectory of a TEG transition is then a firing date sequence of this transition. This collection of dates can be represented by a formal series x(γ) = k∈Z x i (k) ⊗ γ k where x i (k) ∈ Z max and γ is a backward shift operator 1 in the event domain (formally γx(k) = x(k -1)). The set of formal series in γ is denoted by Z max [[γ]] and constitutes a complete idempotent semiring.

Cx = Cx ⇒ L • Cx = L • Cx = Bx = Bx , i.
In this paper, TEGs are defined in this setting by the following model:

x = Ax ⊕ Bu ⊕ Rw, y = Cx, (10) 
where

u ∈ U = (Z max [[γ]]) p , y ∈ Y = (Z max [[γ]]) m and x ∈ X = (Z max [[γ]]
) n are respectively the controllable inputs, outputs and state vectors, i.e., each of their entries is a trajectory which represents the collection of firing dates of the corresponding transition.

Matrices A ∈ (Z max [[γ]]) n×n , B ∈ (Z max [[γ]]) n×p , and C ∈ (Z max [[γ]]
) m×n represent the links between each transition, and then describe the structure of the graph. Vector w ∈ W = (Z max [[γ]]) l represents uncontrollable inputs (i.e. disturbances). Each entry of w corresponds to a transition which disables the firing of internal transition of the graph, and then decreases the performance of the system. This vector is bounded to the transitions

through matrix R ∈ (Z max [[γ]]) n×l .
Matrix R, that equals to the identity matrix, is a particular case where each transition is directly affected by independent disturbances.

From now on, each uncontrollable input transition w i is assumed to be connected to one and only one internal transition x j , this means that each column of matrix R has one entry equal to e and the others equal to ε and at most one entry equal to e on each row. Furthermore, each output transition y i is assumed to be linked to one and only one internal transition x j , i.e. , each row of matrix C has one entry equal to e and the others equal to ε and at most one entry equal to e on each column. These 1 Operator γ plays a role similar to operator z -1 in the Z-transform for the conventional linear systems theory.

February 22, 2016 DRAFT requirements are satisfied without loss of generality, since it is sufficient to add extra input and output transitions. Note that if R is equal to the identity matrix, w can represent initial state of the system x(0) by considering w = x(0)γ 0 ⊕ ... (see [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF], p. 245, for a discussion about compatible initial conditions).

By considering Theorem 1, this system can be rewritten as:

x = A * Bu ⊕ A * Rw y = CA * Bu ⊕ CA * Rw, (11) 
where

CA * B ∈ (Z max [[γ]]) m×p (respectively, CA * R ∈ (Z max [[γ]]) m×l ) is the input/output (respectively,
the disturbance/output) transfer matrix. Matrix CA * B represents the earliest behavior of the system, therefore, it must be underlined that the uncontrollable input vector w (initial conditions or disturbances) is only able to delay the transition firings, i.e. , according to the order relation of the semiring, to increase the vectors x and y. Consequently, it is assumed that the model and the initial state correspond to the fastest behavior (e.g. ideal behavior of a manufacturing system without extra delays) and that disturbances only delay the occurrence of events (e.g. disturbance due to machine breakdown or delay due to an unexpected failure in component supply).

IV. OUTPUT CONTROLLABILITY AND STATE OBSERVABILITY

Definition 5: (Structural Controllability [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF]) A TEG is said to be structurally controllable if every internal transition can be reached by a path from at least one input transition.

Theorem 4: ([16], [START_REF] Spacek | Max-plus algebra for discrete event systems-some links to structural controllability and structural observability[END_REF]) A TEG is structurally controllable if the corresponding matrix A * B is such that at least one entry on each row is different from ε.

Definition 6: (Output Controllability) A system described by

x = Ax ⊕ Bu y = Cx, (12) 
is said to be output controllable if ∀x and y = CA * x, there exists an input u s.t. y = CA * Bu.

Theorem 5: For a system given by Eq. ( 12), the following statements are equivalent :

1. ∀x, and y = CA * x ⇒ ∃u s.t. y = CA * Bu, i.e., the system is output controllable;

2. ImCA * ⊂ ImCA * B;

3. CA * B((CA * B)• \(CA * )) = CA * .
Proof:

• "Item 1 ⇒ Item 2": Because Item 1 is satisfied, for any output y = CA * x, ∀x, there exists an input u such that y = CA * Bu. It implies ImCA * ⊂ ImCA * B. Definition 7: (Structural Observability [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF]) A TEG is said to be structurally observable if, from every internal transition, there exists a path to at least one output transition.

Theorem 6: ([16], [START_REF] Spacek | Max-plus algebra for discrete event systems-some links to structural controllability and structural observability[END_REF]) A TEG is structurally observable if the corresponding matrix CA * is such that at least one entry on each column is different from ε.

Definition 8: (State Observability) A system over an idempotent semiring described by ( 12) is said to be state observable if, for any pair of inputs u and u satisfying CA * Bu = CA * Bu , the equality

A * Bu = A * Bu holds.
Theorem 7: For a system given by Eq. ( 12), the following statements are equivalent :

1. ∀u, u , the equality CA * Bu = CA * Bu implies A * Bu = A * Bu , i.e. the system is state observable;

2. ker CA * B = ker A * B;

3. A * B = ((A * B)• /(CA * B))CA * B.
Proof:

• "Item 1 ⇔ Item 2": According to Definition 4, Item 1 means that ker CA * B ⊂ ker A * B. On the other hand, ∀(u, u ), we have

A * Bu = A * Bu ⇒ CA * Bu = CA * Bu i.e., ker A * B ⊂ ker CA * B,
hence the equality holds.

• "Item 2 ⇒ Item 3": According to Lemma 3 and Corollary 1, ker

CA * B ⊂ ker A * B is equivalent to ((A * B)• /(CA * B))CA * B = A * B.
• "Item 3 ⇒ Item 1": For all (u, u ), we have CA * Bu = CA * Bu . After applying

((A * B)• /(CA * B))
on both sides, we obtain

((A * B)• /(CA * B))CA * Bu = ((A * B)• /(CA * B))CA * Bu . The previous equality implies A * Bu = A * Bu , because ((A * B)• /(CA * B))CA * B = A * B.
Remark 3: All the results in this section can be extended to the system given by Eq. ( 10), by rewriting February 22, 2016 DRAFT the system as

x = Ax ⊕ Bu, with B = B R , u =   u w   , y = Cx, (13) 
where the extended input is u

∈ (Z max [[γ]]) p+l , the output is y ∈ (Z max [[γ]]) m
, and the state is

x ∈ (Z max [[γ]]) n . V. MAX-PLUS OBSERVER R w w Fig. 1.
The observer structure of max-plus linear systems.

Fig. 1 depicts the observer structure directly inspired from the Luenberger observer in classical linear system theory( [START_REF] Hardouin | Max-plus Linear Observer: Application to manufacturing Systems[END_REF], [START_REF] Hardouin | Observer Design for (max,plus) Linear Systems[END_REF], [START_REF] Luenberger | An introduction to observers[END_REF]). The observer matrix L is used to provide information from the system output into the simulator in order to take the disturbances w acting on the system into account. The simulator is described by the model2 (matrices A, B, C) which is assumed to represent the fastest behavior of the real system in a guaranteed way 3 , furthermore the simulator is initialized by the canonical initial conditions ( i.e. xi (k) = ε, ∀k ≤ 0). These assumptions induce that ŷ y since disturbances and initial conditions, depicted by w, are only able to increase the system outputs. By considering the configuration in Fig. 1 and these assumptions, the computation of the optimal observer matrix L will be proposed in order to achieve the constraint x x. Optimality means that the obtained observer matrix L is the greatest one due to the residuation theory (see Definition 1). Therefore, the estimated state x is the greatest which achieves the objective, so as close as possible to x. Obviously this optimality is only ensured under the assumptions considered (i.e. ŷ y). As in the development proposed in conventional linear systems theory, matrices A, B, C and R are assumed to be known, then the system trajectories are given by Eq. [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF]. According to Fig. 1, the observer equations, similarly as the Luenberger observer, are given by:

x = Ax ⊕ Bu ⊕ L(ŷ ⊕ y) = Ax ⊕ Bu ⊕ Ly,
since by assumption ŷ y,

= Ax ⊕ Bu ⊕ LCx = Ax ⊕ Bu ⊕ LC(A * Bu ⊕ A * Rw) (14) 
ŷ = C x.
By applying Theorem 1 and by considering Eq. ( 11), Eq.( 14) becomes:

x = (A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Bu ⊕ (A ⊕ LC) * LCA * Rw. ( 15 
)
By applying (f.1) the following equality is obtained:

(A ⊕ LC) * = A * (LCA * ) * , (16) 
by replacing in Eq. ( 15):

x = A * (LCA * ) * Bu ⊕ A * (LCA * ) * LCA * Bu ⊕A * (LCA * ) * LCA * Rw,
and by recalling that (LCA * ) * LCA * = (LCA * ) + , this equation may be written as follows:

x = A * (LCA * ) * Bu ⊕ A * (LCA * ) + Bu ⊕ A * (LCA * ) + Rw.
Eqs. (f.2) and (f.5) yield (LCA * ) * (LCA * ) + , then the observer model may be written as follows:

x = A * (LCA * ) * Bu ⊕ A * (LCA * ) + Rw = (A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Rw. ( 17 
)
As said previously, the objective considered is to compute the greatest observation matrix L, denoted as

L opt , such that the estimated state vector x be as close as possible to state x, under the constraint x x, formally it can be written as, finding the greatest L satisfying the following inequality:

(A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Rw A * Bu ⊕ A * Rw, ∀(u, w),
or equivalently :

(A ⊕ LC) * B A * B (18) 
and,

(A ⊕ LC) * LCA * R A * R. ( 19 
)
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Lemma 4 ([19]):

The following equivalence holds :

(A ⊕ LC) * B = A * B ⇐⇒ L L 1 = (A * B)• /(CA * B).

Lemma 5 ([19]):

The following equivalence holds

(A ⊕ LC) * LCA * R A * R ⇐⇒ L L 2 = (A * R)• /(CA * R). Proposition 2 ([19]): L opt = L 1 ∧ L 2
is the greatest observer matrix L such that:

x = Ax ⊕ Bu ⊕ Ly x = Ax ⊕ Bu ⊕ Rw, ∀(u, w).
Corollary 2 ( [START_REF] Hardouin | Max-plus Linear Observer: Application to manufacturing Systems[END_REF]): The matrix L opt ensures the equality between estimated output ŷ and measured output y, i.e. the two equality holds:

C(A ⊕ L opt C) * B = CA * B, (20) 
C(A ⊕ L opt C) * L opt CA * R = CA * R. ( 21 
)
Remark 4: According to this Corollary ŷ = y, so the state estimation can computed by considering matrix B = [B R] , matrix L opt may be written as:

L opt = (A * B)• /(CA * B).
Theorem 8: If the system given in Eq. ( 13) is state observable then the observed state is the same as the real state of the system, i.e. x = x.

Proof:

The observed state is given by x

= (A ⊕ L opt C) * Bu ⊕ (A ⊕ L opt C) * L opt CA * Rw (see Eq. ( 17 
)). The real state is given by x = A * Bu ⊕ A * Rw (see Eq. ( 11)). According to Theorem 7, the system in Eq. ( 13) is state observable if and only if ((A * B)• /(CA * B))CA * B = CA * B, which can be written

L opt CA * B = CA * B.
Hence the following equivalences hold :

L opt CA * B = A * B ⇔ L opt CA * B L opt CA * R = A * B A * R ⇔ L opt CA * B = A * B and L opt CA * R = A * R.
First, by Lemma 4, L opt ensures the equality

(A ⊕ L opt C) * B = A * B.
Secondly, due to (f.1), we have

(A ⊕ L opt C) * L opt CA * R = A * (L opt CA * ) * L opt CA * R = A * (L opt CA * ) + R = A * (L opt CA * R ⊕ (L opt CA * R) 2 R ⊕ • • • ).
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Since L opt CA * R = A * R, the following equality is satisfied

(L opt CA * ) 2 R = L opt CA * A * R = L opt CA * R = A * R.
More generally, A * (L opt CA * ) + R = A * A * R = A * R is true as well. Therefore, L opt ensures the equality

(A ⊕ L opt C) * L opt CA * R = A * (L opt CA * ) + R = A * R.
Therefore, the observed state is the same as the real state of the system, that is,

x = (A ⊕ L opt C) * Bu ⊕ (A ⊕ L opt C) * L opt CA * Rw = A * Bu ⊕ A * Rw = x.

VI. OUTPUT FEEDBACK AND STATE-FEEDBACK CONTROLLERS

This section presents how to synthesize output feedback and state-feedback controllers in order to solve the model matching problem (or model reference control problem, see [START_REF] Hardouin | Towards Geometric Control of Max-Plus Linear Systems with Applications to Manufacturing Systems[END_REF], [START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF], [START_REF] Maia | On the Model Reference Control for Max-Plus Linear Systems[END_REF]). First, an output

feedback control u F = P (v ⊕ F y) is considered, where P ∈ (Z max [[γ]]) p×p and F ∈ (Z max [[γ]]) p×m ,
and is synthesized in order to reach a given specification

G ref ∈ (Z max [[γ]]) m×p .
Because the transfer matrix of the system in Eq. ( 13) is CA * B ∈ (Z max [[γ]]) m×p , then the output of the controlled system is y = CA * BP (v ⊕ F y), which yields, by applying Theorem 1, the following transfer relation between v and y:

y = (CA * BP F ) * CA * BP v. (22) 
The synthesis aim is to get the greatest closed-loop transfer relation smaller than the one specified by

G ref , i.e. , (CA * BP F ) * CA * BP G ref .
Practically, this means that the actual output date of the closed-loop system y(k) = (CA * BP F ) * CA * BP v(k) must be smaller than the desired output given by the specification (G ref v)(k) for each event k. This output y(k) is optimal according to the just-in-time criterion, if it is the greatest solution satisfying this constraint, i.e. , the system input u(k) is delayed as much as possible. This section presents the optimal output feedback controller u F opt = P opt (v ⊕ F opt y),

for any v and y.

Proposition 3: If the specification (CA * BP F ) * CA * BP v G ref v, ∀ v, is satisfied, then the matrix P ∈ (Z max [[γ]]
) p×p satisfies the following inequality:

P (CA * B)• \G ref = P opt . (23) 
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Proof: According to Kleene star operator definition (a * = e ⊕ a ⊕ a 2 ⊕ ...), we have

(CA * BP F ) * CA * BP G ref ⇒ CA * BP G ref .
According to the residuation definition of the left product (see Example 2), the right hand side of this inequality is equivalent to P (CA * B)• \G ref .

Proposition 4: Considering an output feedback control u F = P opt (v⊕F y), the greatest output feedback matrix F ∈ (Z max [[γ]]) p×m , denoted as F opt , ensuring that the closed-loop behavior of the system respects the constraint y = (CA * BP opt F ) * CA * BP opt v G ref v, ∀v, is given by :

F opt = {F ∈ (Z max [[γ]]) p×m |(CA * BP opt F ) * CA * BP opt v G ref v, ∀v} = P opt • \P opt • /(CA * BP opt ). (24) 
Proof: Therefore, the output feedback control law u F opt = P opt (v ⊕ F opt y) is the optimal solution to the model matching problem according to the just-in-time criterion. Next a state-feedback control is considered,

(CA * BP opt F ) * CA * BP opt v G ref v, ∀v, ⇔ (CA * BP opt F ) * CA * BP opt G ref , ⇔ CA * BP opt (F CA * BP opt ) * G ref ,
i.e. u K = P (v ⊕ Kx), with K ∈ (Z max [[γ]]) p×n .
Hence, the state of the corrected system is x = A * BP (v ⊕ Kx), which yields, by applying Theorem 1, the following transfer relations: 

x = (A * BP K) * A * BP v, (25) 
y = CA * BP (KA * BP ) * v. (26) 
) * v G ref v, ∀ v, is
given by:

K opt = P opt • \P opt • /(A * BP opt ). (27) 
Proof: The proofs take the same steps as the ones in Proposition 4 by replacing CA * BP opt by A * BP opt .

VII. OBSERVER-BASED CONTROLLERS

As in the classical theory, sometimes the state is not measurable or it is too expensive to measure all the states. Hence, in this section, we propose to use the estimated state x, obtained thanks to the observer proposed in section V, to compute the state-feedback control law as given in Proposition 5. Then this control strategy is compared with the output feedback control as given in Proposition 4. Formally, the observer-based control law u M = P (v ⊕ M x) is considered, where x = Ax ⊕ Bu ⊕ L opt y (See Eq.( 14)),

where the optimal observer matrix L opt as given in Proposition 2 is clearly independent of the control law u M . This observer-based control law is described in Fig. 2 can be written as

u M = P (v ⊕ M x) = P v ⊕ P M (A ⊕ L opt C) * Bu = (P M (A ⊕ L opt C) * B) * P v = P (M (A ⊕ L opt C) * BP ) * v. ( 28 
)
The state and the output can be written, respectively, as

x = A * Bu = A * BP (M (A ⊕ L opt C) * BP ) * v, (29) 
y = Cx = CA * BP (M (A ⊕ L opt C) * BP ) * v, (30) 
February 22, 2016 DRAFT

The synthesis aim is to get the greatest control law such that the output y with this control strategy is smaller than or equal to the desired output

G ref v, i.e. , y = CA * BP (M (A ⊕ L opt C) * BP ) * v G ref v,
∀v, which is equivalent to obtain the optimal prefilter matrix P and the optimal observer-based controller

matrix M satisfying CA * BP (M (A ⊕ L opt C) * BP ) * G ref . Proposition 6: If the specification CA * BP (M (A ⊕ L opt C) * BP ) * v G ref v, ∀ v, is satisfied, then the matrix P ∈ (Z max [[γ]]
) p×p satisfies the following equality:

P (CA * B)• \G ref = P opt . ( 31 
)
Proof: According to the Kleene star operator definition (a * = e⊕a⊕a 2 ⊕...), we have CA * BP (M (A⊕

L opt C) * BP ) * G ref .
According to the residuation definition of the left product (see Example 2), the right hand side of this inequality is equivalent to P (CA * B)• \G ref .

Proposition 7: Considering the observer-based controller is u

M = P opt (v ⊕ M x), the greatest feedback matrix M ∈ (Z max [[γ]]) p×n , denoted by M opt , ensuring y = CA * BP opt (M (A ⊕ L opt C) * BP opt ) * v G ref v, ∀ v
, is given by:

M opt = P opt • \P opt • /((A ⊕ L opt C) * BP opt ), (32) 
M opt = P opt • \P opt • /(A * BP opt ) = K opt . ( 33 
)
Proof:

CA * BP opt (M (A ⊕ L opt C) * BP opt ) * v G ref v, ∀v ⇔ CA * BP opt (M (A ⊕ L opt C) * BP opt ) * G ref , ⇔ P opt (M (A ⊕ L opt C) * BP opt ) * (CA * B)• \G ref = P opt , see Example 2, ⇔ (M (A ⊕ L opt C) * BP opt ) * P opt • \P opt , see Example 2, ⇔ (M (A ⊕ L opt C) * BP opt ) P opt • \P opt , see Example 3, ⇔ M P opt • \P opt • /((A ⊕ L opt C) * BP opt ), see Example 2.
By considering Lemma 4, and Proposition 2, the following equality holds

(A ⊕ L opt C) * B = A * B.
According to Proposition 5, Eq. (33) holds too.

Thanks to the Separation Principle, Proposition 7 shows that the controller synthesis and the observer synthesis can be done independently. In another words, first, we can find the greatest observer matrix L opt to ensure the estimated output same as the original output. Second, we can find the greatest state February 22, 2016 DRAFT feedback matrix K opt to ensure the greatest closed-loop transfer relation smaller than the desired transfer matrix G ref .

After combining the greatest observer matrix L opt and the state feedback matrix K opt , the observer-based controller is constructed and denoted as u Kopt = P opt (v ⊕ K opt x), where x = Ax ⊕ Bu ⊕ L opt y. Next, Proposition 8 compares the performances between the observer-based control law, u Kopt = P opt (v ⊕ K opt x), and the output feedback control, u F opt = P opt (v ⊕ F opt y).

Proposition 8: The observer-based control law u Kopt is greater than the the output feedback control law u F opt .

Proof: According to Eq. ( 24) and Eq. ( 27), the following equality holds :

F opt = K opt • /C.
Hence, F opt C K opt and F opt C x K opt x. According to Eq. ( 17), this inequality can be written

F opt C((A⊕L opt C) * Bu⊕(A⊕L opt C) * L opt CA * Rw) K opt ((A⊕L opt C) * Bu⊕(A⊕L opt C) * L opt CA * Rw),
then, according to Corollary 2, y = ŷ, so this inequality is equivalent to

F opt (CA * Bu ⊕ CA * Rw) K opt ((A ⊕ L opt C) * Bu ⊕ (A ⊕ L opt C) * L opt CA * Rw), ⇔ F opt y K opt ((A ⊕ L opt C) * Bu ⊕ (A ⊕ L opt C) * L opt CA * Rw) = K opt x,
and by recalling that the addition and product laws are order preserving, it appears that:

u F opt = P opt (v ⊕ F opt y) u Kopt = P opt (v ⊕ K opt x).
Proposition 8 means that the observer-based controller yields a better performance according to the justin-time criterion, since the observer-based state-feedback control law u Kopt is greater than the output feedback law u F opt while keeping the outputs be the same. For instance, in a manufacturing setting, the observer-based controller would provide a better scheduling by starting the process later than the output feedback control, while ensuring the same output parts finishing time. This scheduling would allow users to load the raw parts later rather than earlier to avoid unnecessary congestions in the manufacturing line.

VIII. APPLICATIONS TO A HIGH THROUGHPUT SCREENING SYSTEM

High throughput screening (HTS) is a standard technology in drug discovery. In HTS systems, the optimal scheduling is required to finish the drug screening in the shortest time, as well as to preserve the consistent time spending on each activity in the screening. If we are interested in the release event time of each activity, then we can model the HTS system as a TEG model (see [START_REF] Brunsch | Control of Cyclically Operated High-Throughput Screening Systems[END_REF], [START_REF] Brunsch | Modeling and control of high-throughput screening systems[END_REF]). The HTS system in this section consists of four activities: activity 1, executed on the resource Pipettor, is filling the chemical February 22, 2016 DRAFT compound A into the wells of a microplate, which lasts for 2 time units. Activity 2, executed on the resource Pipettor as well, is filling the chemical compound B into the wells of another microplate, which lasts for 3 time units. After 1 unit waiting time for the compound A and 6 units waiting time for the compound B, activity 3 is mixing the compound B into the microplate containing the compound A for 4 time units. The mixed compound AB will be released after activity 3 right away. In activity 4, the remaining compound B will be released after 3 time units. This system can be represented by the TEG model given in Fig. 3, in which x 1 denotes the release time of activity 1 on the Pipettor for the compound A, x 2 denotes the release time of activity 2 on the Pipettor for the compound B, x 3 denotes the release time of activity 3 after mixing the compounds A and B, and x 4 denotes the release time of activity 4 for the remaining compound B. The inputs u 1 and u 2 are the controls for the loading times of activity 1 and 2, respectively, so that the users can decide when to load the chemical compounds A and B. The compound A is loaded 1 time unit when it is ready.

The compound B is loaded after 3 time units when the compound B is ready. The disturbance w 1 delays the release time of the compound A after activity 1, the disturbance w 2 delays the release time of the compound B after activity 2, the disturbance w 3 delays the release time of the mixed compound AB after activity 3, and the disturbance w 4 delays the release time of the remaining compound B after activity 4.

The output y 1 is the release time of the mixed compound AB. The output y 2 is the release time of the unused compound B. In Fig. 3, the circles represent places and the bars represent the transitions x i . Each black token in the places represents that the corresponding resource is available, i.e. the activity is ready to start. For the TEG model of a HTS system shown in Fig. 3, the system over the (max-plus)-algebra February 22, 2016 DRAFT

Z max [[γ]] is described as the following:

x = Ax ⊕ Bu ⊕ Rw, y = Cx,
where

A =         2γ ε γ 2 ε ε 3γ ε ε 1 6 4γ ε ε 3 ε ε         , B =         1 ε ε 3 ε ε ε ε         , C =   ε ε e ε ε ε ε e   , R =         e ε ε ε ε e ε ε ε ε e ε ε ε ε e        
.

The example has been computed by using the toolbox MinMaxGD, a C++ library allowing to handle periodic series as introduced in ([12]), and it can be noted that this library is also interfaced with Scicoslab.

In this paper the control objective is to keep the system performance, i.e. to obtain a just-in time control while preserving the system's full speed. The reference model transfer function series are

G ref = CA * B =   2(4γ) * 9(4γ) * ε 6(3γ) *   .
By Proposition 3 and Proposition 4, we can obtain the optimal output feedback controller as u F opt = P opt (v ⊕ F opt y), where

P opt = (CA * B)• \G ref =   (4γ) * 7(4γ) * ε (3γ) *   , F opt = P opt • \P opt • /(CA * BP opt ) =   -2(4γ) * 1(4γ) * ε -6(3γ) *   ,
which solves the model matching problem. This feedback F opt is not causal because there are negative coefficients in the matrix. The canonical injection from the causal elements of

Z max [[γ]] (denoted Z max [[γ]] + ) in Z max [[γ]
] is also residuated (see [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF] for details). Its residual is given by Pr

k∈Z s(k)γ k = k∈Z s + (k)γ k where s + (k) =    s(k) if (k, s(k)) ≥ (0, 0), ε otherwise.
The greatest causal feedback matrix less than or equal to F opt is

F opt+ = Pr(F opt ) =   2γ(4γ) * 1(4γ) * ε γ 2 (3γ) *   .
The output feedback controller u F opt+ = P opt (v ⊕ F opt+ y) can be realized using a TEG model shown in Fig. 4. The pre-filter P opt and the output-feedback control F opt+ are marked in gray areas. For instance, February 22, 2016 DRAFT F opt+ (1, 1) = 2γ(4γ) * implies that, in the TEG shown in Fig. 4, there is a cyclic component with one token and 4 time delays for a new transition ξ 3 and the output y 1 is delayed for 2 time units and one token before going through the transition ξ 3 . F opt+ (1, 2) = 1(4γ) * implies that the output y 2 is delayed for 1 time unit before going through the transition ξ 3 . F opt+ (2, 2) = γ 2 (3γ) * implies that there is a cyclic component with one token and 3 time delays for a new transition ξ 4 and the output y 2 has two tokens before going through the transition ξ 4 . The prefilter P opt can be constructed similarly in the TEG model.

Then, the output feedback control law u F opt+ = P opt (v ⊕ F opt+ y) can be given in the event domain by considering the (max-plus)-algebra as follows:

F opt+ y :      ξ 3 (k) = 4ξ 3 (k -1) ⊕ 2y 1 (k -1) ⊕ 1y 2 (k), ξ 4 (k) = 3ξ 4 (k -1) ⊕ y 2 (k -2), P opt (v ⊕ F opt+ y) :      ξ 1 (k) = 4ξ 1 (k -1) ⊕ ξ 3 (k) ⊕ 7ξ 4 (k) ⊕ v 1 (k) ⊕ 7v 2 (k), ξ 2 (k) = 3ξ 2 (k -1) ⊕ ξ 4 (k) ⊕ v 2 (k),
and the controls u 1 (k) = ξ 1 (k) and u 2 (k) = ξ 2 (k). The output feedback control law u F opt+ = P opt (v ⊕ F opt+ y) can also be given in the time domain by February 22, 2016 DRAFT considering the (min-plus)-algebra as follows:

F opt+ y :      ξ 3 (t) = 1ξ 3 (t -4) ⊕ 1y 1 (t -2) ⊕ y 2 (t -1), ξ 4 (t) = 1ξ 4 (t -3) ⊕ 2y 2 (t), P opt (v ⊕ F opt+ y) :      ξ 1 (t) = 1ξ 1 (t -4) ⊕ ξ 3 (t) ⊕ ξ 4 (t -7) ⊕ v 1 (t) ⊕ v 2 (t -7), ξ 2 (t) = 1ξ 2 (t -3) ⊕ ξ 4 (t) ⊕ v 2 (t),
and the controls u 1 (t) = ξ 1 (t) and u 2 (t) = ξ 2 (t).

Now we construct the observer-based controller u

Kopt = P opt (v ⊕ K opt x) with x = Ax ⊕ Bu ⊕ L opt y,
where P opt is the same as above. According to Lemma 4, Lemma 5 and Eq. ( 27), L opt and K opt are computed as follows :

L opt = L 1 ∧ L 2 = (A * B)• /(CA * B) ∧ (A * R)• /(CA * R) =         γ 2 (4γ) * 3γ 2 (4γ) * ε -3(3γ) * (4γ) * 3(4γ) * ε (3γ) *         , K opt = P opt • \P opt • /(A * BP opt ) =   -1(4γ) * 4(4γ) * -2(4γ) * 1(4γ) * ε -3(3γ) * ε -6(3γ) *   .
Then, the causal observer matrix L opt+ is

L opt+ = Pr(L opt ) =         γ 2 (4γ) * 3γ 2 (4γ) * ε γ(3γ) * (4γ) * 3(4γ) * ε (3γ) *        
, and the causal state-feedback matrix is

K opt+ = Pr(K opt ) =   3γ(4γ) * 4(4γ) * 2γ(4γ) * 1(4γ) * ε γ(3γ) * ε γ 2 (3γ) *   .
The observer-based controller u Kopt+ = P opt (v ⊕ K opt+ x) with x = Ax ⊕ Bu ⊕ L opt+ y can be realized using a TEG model shown in Fig. 5. The pre-filter P opt , the observer mapping L opt+ , and the state-feedback control K opt+ are marked in gray areas. For instance, L opt+ (1, 1) = γ 2 (4γ) * implies that, in the TEG model shown in Fig. (max-plus)-algebra as follows:

L opt+ y :

                   ξ 3 (k) = 4ξ 3 (k -1) ⊕ y 1 (k -2) ⊕ 3y 2 (k -2), ξ 4 (k) = 3ξ 4 (k -1) ⊕ y 2 (k -1), ξ 5 (k) = 4ξ 5 (k -1) ⊕ y 1 (k) ⊕ 3y 2 (k), ξ 6 (k) = 3ξ 6 (k -1) ⊕ y 2 (k),
x :

                   x1 (k) = 2x 1 (k -1) ⊕ x3 (k -2) ⊕ 1u 1 (k) ⊕ ξ 3 (k), x2 (k) = 3x 2 (k -1) ⊕ 3u 2 (k) ⊕ ξ 4 (k), x3 (k) = 1x 1 (k) ⊕ 6x 2 (k) ⊕ 4x 3 (k -1) ⊕ ξ 5 (k), x4 (k) = 3x 2 (k) ⊕ ξ 6 (k).
where ξ i , i = 3, • • • , 6, are the intermediate transitions in the TEG shown in Fig. 5. Then the event domain representation for the observer-based control law u Kopt+ = P opt (v ⊕ K opt+ x) is obtained as follows:

K opt+ x :      ξ 7 (k) = 4ξ 7 (k -1) ⊕ 3x 1 (k -1) ⊕ 4x 2 (k) ⊕ 3x 3 (k -1) ⊕ 1x 4 (k), ξ 8 (k) = 3ξ 8 (k -1) ⊕ x2 (k -1) ⊕ x4 (k -2), P opt (v ⊕ K opt+ x) :      ξ 1 (k) = 4ξ 1 (k -1) ⊕ ξ 7 (k) ⊕ 7ξ 8 (k) ⊕ v 1 (k) ⊕ 7v 2 (k), ξ 2 (k) = 3ξ 2 (k -1) ⊕ ξ 8 (k) ⊕ v 2 (k),
and u 1 (k) = ξ 1 (k) and u 2 (k) = ξ 2 (k), where ξ i , i = 1, 2, 7, 8, are the intermediate transitions in the TEG shown in Fig. 5. Similarly, the estimated state x can be written in time-domain equations by considering the (min-plus)-algebra.

L opt+ y :

                   ξ 3 (t) = 1ξ 3 (t -4) ⊕ 2y 1 (t) ⊕ 2y 2 (t -3), ξ 4 (t) = 1ξ 4 (t -3) ⊕ 1y 2 (t),
ξ 5 (t) = 1ξ 5 (t -4) ⊕ y 1 (t) ⊕ y 2 (t -3), ξ 6 (t) = 1ξ 6 (t -3) ⊕ y 2 (t),

x : 

                   x1 (t) = 1x

IX. CONCLUSIONS

The main contribution of this paper is the design of an observer-based controller for max-plus linear systems, where only a subset of the states obtained from measurement is available for the controller. These results can be applied to fault detection, model matching, and diagnosis for max-plus linear systems.

This paper first constructs the observer structure for max-plus linear systems, and then finds the greatest observer matrix such that the estimated output preserves the original output behaviors. Second, this paper calculates the greatest output feedback and state-feedback control laws such that the closed-loop a(a • \(ax)) = ax (f.8) 

a • \(x ∧ y) = a • \x ∧ a • \y (f.9) (a ⊕ b) • \x = a • \x ∧ b • \x (f.10) (ab) • \x = b • \(a • \x) (f.11) b(a • \x) (a• /b) • \x (f.12) (a • \x)b a • \(xb) (f.

  4.75): The implicit inequality x ax ⊕ b as well as x = ax ⊕ b defined over S, admit x = a * b as the least solution, where a * = i∈N a i (Kleene star operator). Definition 1 (Residual and residuated mapping): An order preserving mapping f : D → E, where D

Lemma 1 :

 1 4.4). Their residuals are order preserving mappings, denoted respectively by Λ a (x) = a• \x and Ψ a (x) = x• /a. This means that a• \b (resp. b• /a) is the greatest solution of the inequality a ⊗ x b (resp. x ⊗ a b). In the Appendix, useful properties about left and right residuation are recalled. The proofs are given in ([2], Chapter 4). Below an original property is given: If y ∈ D admits a right inverse w and a left inverse z, then the two following statements hold • w = z and this unique inverse is denoted y -1 ; • moreover, ∀c, b, (b• \c)y = b• \(cy) and y(c• /b) = (yc)• /b.

Definition 2 (Definition 3 (

 23 2 and Example 2, b• \c is the greatest solution of bx c, then b(b• \c) c which implies b(b• \c)y cy, since the product is isotone. Moreover b• \(cy) is the greatest solution of bx cy, then (b• \c)y b• \(cy). On the other way, due to (f.13), b• \(cy) = (b• \(cy))y -1 y (b• \(cyy -1 ))y = (b• \c)y. Hence, equality (b• \c)y = b• \(cy) holds throughout. The equality y(c• /b) = (yc)• /b can be proved in a similar way. Restricted mapping): Let f : D → C be a mapping and B ⊂ D. We will denote by f |B : B → C the mapping defined by f |B = f • Id |B where Id |B : B → D, x → x is the canonical injection. Identically, let E ⊂ C be a set such that Imf ⊂ E. Mapping E| f : D → E is defined by f = Id |E • E| f , where Id |E : E → C, x → x. Closure mapping): A closure mapping is an order preserving mapping f : D → D defined on an ordered set D such that f Id D and f • f = f .

) 2 .

 2 According to Definition 1, C• \(Cx) is the greatest element in the equivalence class [x] C , and Theorem 3 yields C(C• \(Cx)) = Cx. Hence, the following assertion holds, ker C ⊂ ker B ⇒ B(C• \(Cx)) = Bx, ∀x ∈ S p . By considering mapping L : S n → S m , y → B(C• \y), the following equality holds L • C = B. Because B and C are linear mappings, L is linear also, i.e., L( y) = L(y) and L(λy) = λL(y)

Corollary 1 :

 1 e., ker C ⊂ ker B. If there exists a linear mapping L • C = B, then B = (B• /C)C. If there exists a linear mapping L • C = B then L B• /C due to the right residuation definition. Hence B = L • C (B• /C)C B, due to property (f.14). Hence, the equality B = (B• /C)C holds. Of course, it implies ker C ⊂ ker B. III. THE TEG DESCRIPTION IN AN IDEMPOTENT SEMIRING TEGs constitute a subclass of timed Petri nets, i.e. , in which each place has one upstream and one downstream transition. A TEG description can be transformed into a (max, plus) or a (min, plus) linear model and vice versa.

February 2 ⇒

 2 Item 3": According to Lemma 2, ImCA * ⊂ ImCA * B is equivalent to CA * B((CA * B)• \(CA * )) = CA * . • "Item 3 ⇒ Item 1": If CA * B((CA * B)• \(CA * )) = CA * , then any element y = CA * x ∈ ImCA * can be written as y = CA * B((CA * B)• \(CA * x)). Define u = (CA * B)• \(CA * x), then for any y = CA * x ∈ ImCA * , there exists such an u, such that y = CA * Bu.

Fig. 2 .

 2 Fig. 2. The observer-based controller for max-plus linear systems.

3 Fig. 3 .

 33 Fig.3. The TEG model of the HTS system where the uncontrollable inputs are marked in red.

Fig. 4 .

 4 Fig. 4. The TEG realization of the causal output feedback controller uF opt+ = Popt(v ⊕ Fopt+y) for the HTS system.

Fig. 5 .

 5 Fig. 5. The TEG realization of the observer-based controller uKopt+ = Popt(v ⊕ Kopt+ x) for the HTS system.

FF

  opt+ CA * B K opt+ (A ⊕ L opt+ C) * B and F opt+ CA * R = K opt+ (A ⊕ L opt+ C) * L opt+ CA * Rhold, whereF opt+ CA * B =   4γ(4γ) * 7(4γ) * ε 6γ 2 (3γ) *   , K opt+ (A ⊕ L opt+ C) * B = opt+ CA * R = K opt+ (A ⊕ L opt+ C) * L opt+ CA * R =   3γ(4γ) * 4(4γ) * 2γ(4γ)

  transfer relation is smaller than the reference transfer relation in a model matching problem. Then, an observer-based controller is constructed using the estimated state in the TEG model of max-plus linear systems. Moreover, it is proved that the observer-based controller provides a greater control than the output feedback control, i.e. a better performance in terms of just-in-time control criterion. At last, this paper applies the observer-based controller and the output feedback synthesis to a practical application of a HTS system in drug discovery. Both of the observer-based controller and the output feedback controller are constructed in TEG models, and the observer-based controller yields a better scheduling strategy. The scheduling obtained from the observer-based controller would allow users to load the chemical compounds at late as possible to avoid unnecessary congestions according to the just-in-time criterion. X. APPENDIX A. Formulas of Star Operations a * (ba * ) * = (a ⊕ b) * = (a * b) * a * (f.1)(a * ) * = a * (a + ) + = a + (f.2) (ab) * a = a(ba) * (f.3) a * a * = a * a + a * = a + (f.4) (a * ) + = (a + ) * =a * a + a * (f.5) B. Formulas of Left Residuations a(a • \x) x (f.6) a • \(ax) x (f.7)

13 )

 13 C. Formulas of Right Residuations(x• /a)a x (f.14) (xa)• /a x (f.15) ((xa)• /a)a = xa (f.16) (x ∧ y)• /a = x• /a ∧ y• /a (f.17) x• /(a ⊕ b) = x• /a ∧ x• /b (f.18) x• /(ba) = (x• /a)• /b (f.19) (x• /a)b x • \(b• /a) (f.20) b(x• /a) (bx)• /a (f.21) XI. SOURCE CODE #ifndef _WIN32 #include "../include/lminmaxgd.h" #else February 22, 2016 DRAFT

  The subset of elements s ∈ S p that are equivalent to s modulo ker C is denoted [s] C , i.e.,[s] C = {s ∈ S p | s ≡ s(mod ker C)} ⊂ S p .

	Remark 2: Lemma 2 ([7], [8]): For matrices A ∈ S n×p , B ∈ S n×m the following statements are equivalent:
	1. ImB ⊂ ImA;	
	2. B = A(A• \B).	
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  Considering a state-feedback control law u K = P opt (v⊕Kx), the greatest state-feedback matrix K ∈ (Z max [[γ]]) p×n , denoted by K opt , ensuring y = CA * BP opt (KA * BP opt

	Proposition 5:	
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  [START_REF] Brunsch | Modeling and control of high-throughput screening systems[END_REF], there is a cyclic component with one token and 4 time delays for a new transition ξ 3 and the output y 1 has two tokens before going through the transition ξ 3 . L opt+ (1, 2) = 3γ 2 (4γ) 4 . L opt+ (3, 1) = (4γ) * implies that there is a cyclic component with one token and 4 time delays for a new transition ξ 5 . L opt+ (3, 2) = 3(4γ) * implies that y 2 is delayed for 3 time units before going through the transition ξ 5 . L opt+ (4, 2) = (4γ) * implies that y 2 implies that there is a cyclic component with one token and 3 time delays for a new transition ξ 6 . The observer-based state feedback matrix K opt+ and the prefilter P opt can be explained similarly as above.
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* implies that the output y 2 is delayed for 3 time units and has two tokens before going through the transition ξ 3 . L opt+ (2, 2) = γ(3γ) * implies that there is a cyclic component with one token and 3 time delays for a new transition ξ 4 and the output y 2 has one token before going through the transition ξ

  1 (t -2) ⊕ 2x 3 (t) ⊕ u 1 (t -1) ⊕ ξ 3 (t), x2 (t) = 1x 2 (t -3) ⊕ u 2 (t -3) ⊕ ξ 4 (t),Then, the event domain representation for the observer-based control law u Kopt+ = P opt (v ⊕ K opt+ x) is obtained as follows:(t) = 1ξ 7 (t -4) ⊕ 1x 1 (t -3) ⊕ x2 (t -4) ⊕ 1x 3 (t -2) ⊕ x4 (t -1), ξ 8 (t) = 1ξ 8 (t -3) ⊕ 1x 2 (t) ⊕ 2x 4 (t) P opt (v ⊕ K opt+ x) : (t) = 1ξ 1 (t -4) ⊕ ξ 7 (t) ⊕ ξ 8 (t -7) ⊕ v 1 (t) ⊕ v 2 (t -7), ξ 2 (t) = 1ξ 2 (t -3) ⊕ ξ 8 (t) ⊕ v 2 (t),and u 1 (t) = ξ 1 (t), and u 2 (t) = ξ 2 (t). By Proposition 8, the observer-based control law u Kopt+ = P opt (v ⊕ K opt+ x) is greater than the output feedback control law u F opt+ = P opt (v ⊕ F opt+ y), for any external input v. This result can be verified in this example, because

		
	K opt+ x :	    ξ 7 
		  ξ 1
		 
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x3 (t) = 1x 3 (t -4) ⊕ x1 (t -1) ⊕ x2 (t -6) ⊕ ξ 5 (t), x4 (t) = x2 (t -3) ⊕ ξ 6 (t).

Disturbances are uncontrollable and a priori unknown, then the simulator does not take them into account.

Unlike in the conventional linear system theory, this assumption means that the fastest behavior of the system is assumed to be known and that the disturbances can only delay its behavior.February 22, 2016 DRAFT

February 22, 2016 DRAFT

#include "..\include\lminmaxgd.h" using namespace std; #endif ///////////////////////////////////////////////////////////////////// / * Example : Observer basesd controller and comparison with output feedbnack Example taken from paper [START_REF] Baccelli | Synchronisation and Linearity: An Algebra for Discrete Event Systems[END_REF] "Observer-based Controllers for (Max-Plus)-Linear Systems"