
HAL Id: hal-02535458
https://univ-angers.hal.science/hal-02535458

Submitted on 7 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling manufacturing systems in a dioid framework
Laurent Hardouin, Thomas Brunsch, Jörg Raisch

To cite this version:
Laurent Hardouin, Thomas Brunsch, Jörg Raisch. Modeling manufacturing systems in a dioid frame-
work. Javier Campos, Carla Seatzu, Xiaolan Xie. Formal Methods in Manufacturing, CRC Press,
2017, 9781138074293. �hal-02535458�

https://univ-angers.hal.science/hal-02535458
https://hal.archives-ouvertes.fr

Chapter 1
Modeling manufacturing systems in a dioid
framework

Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Abstract Many manufacturing systems are subject to synchronization phenomena
but do not include choice. This class of manufacturing systems can be described
as timed event graphs, which have a linear representation in an algebraic structure
called dioids. Among the best known dioids is the max-plus algebra; there are, how-
ever, other dioids which, depending on the specific manufacturing system to be mod-
eled, may be preferable. This chapter introduces basic notions of dioid theory and
provides simple illustrative examples. Furthermore, the notion of standard dioids is
extended such that minimal and maximal operation times as well as minimal and
maximal numbers of parts being processed simultaneously can be modeled. Using
this extension it is possible to model manufacturing systems with nested schedules,
i.e., manufacturing processes in which parts may visit the same resource more than
once and in which some activities related to part k may be executed prior to activi-
ties related to part k−1 on the same resource. The resulting model of manufacturing
systems may then be used to synthesize various forms of feedback control.

Thomas Brunsch and Jörg Raisch
Technische Universität Berlin, Fachgebiet Regelungssysteme, Einsteinufer 17, 10587 Berlin, Ger-
many,
e-mail: {brunsch,raisch}@control.tu-berlin.de

Laurent Hardouin and Thomas Brunsch
Laboratoire d’Ingénierie des Systèmes Automatisés, Université d’Angers, 62 Avenue Notre-Dame
du Lac, 49000 Angers, France.
e-mail: {laurent.hardouin@istia.univ-angers.fr}

Jörg Raisch
Fachgruppe System- und Regelungstheorie, Max-Planck-Institut für Dynamik komplexer technis-
cher Systeme, Sandtorstr. 1, 39106 Magdeburg, Germany

1

2 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

1.1 Motivational Example

A small manufacturing process is considered, where two (different) parts A and B
are pre-processed on two individual resources RA and RB. Once the pre-processing
is done, a third resource RC assembles both parts to a final part C. Thus, resource
RC has to wait for resource RA and RB to finish their processing, i.e., the release of
part A and the release of part B have to be synchronized. In this process there are
no (logical) decisions to make, as resource RA can only process part A, resource RB
can only process part B and the assembly of both parts can only be conducted by
resource RC. Every process performed by the resources has a fixed processing time
tpi , in which one part i is produced. Furthermore, every resource has a specific ca-
pacity capRi , i.e., the number of parts that resource Ri can process simultaneously.
Last but not least there are fixed transportation times for the provision of raw ma-
terial for parts A and B, i.e., trawA and trawB , for the transfer of finished parts A and
B to resource RC, i.e., tA and tB, and for the transfer of part C (tC) to some kind of
storage for distribution or for further processing. The corresponding basic structure
of our small manufacturing system is given in Fig. 1.1.

RA
tpA
capRA

RC
tpC
capRC

RB

rawA

rawB

trawA

trawB

tB

tA

tC
C

A

BtpB
capRB

Fig. 1.1 Basic structure of a small manufacturing system considered in Chapter 1.

An important class of manufacturing systems can be modeled as Petri nets (for
details see Chapter ?? of this book or [26]). This is obviously also true for our
example system. In this chapter we focus on manufacturing systems that can be
modeled as timed event graphs, a sub-class of Petri nets. In the following, the basics
of this type of Petri nets is recalled. To do so we will adopt the notation for Petri
nets introduced in Chapter ??.

1 Modeling manufacturing systems in a dioid framework 3

1.2 Timed event graphs

A Petri net is called an event graph, if all arcs have the weight 1 and each place
has exactly one input and one output transition, i.e., |•pi| = |pi

•| = 1, ∀pi ∈ P,
with P being the (finite) set of places, and |•pi| and |pi

•| being the number of in-
put, respectively output, transitions of place pi. In general, (standard) Petri nets, and
consequently also event graphs, solely model the logical behavior of discrete-event
systems, i.e., the possible sequences of firings of transitions, but not the actual fir-
ing times. As event graphs are a specific type of Petri nets, this is of course also
true for event graphs. However, in many applications and especially in manufactur-
ing systems, the specific firing times, or the earliest possible firing times of transi-
tions are of particular interest. Therefore, standard (logical) event graphs have been
equipped with timing information. Time can either be associated with transitions
(representing transition delays) or with places (representing holding times). Equip-
ping an event graph with either transition delays or holding times provides a timed
event graph (TEG). In timed event graphs transition delays can always be converted
into holding times (by simply shifting each transition delay to all input places of
the corresponding transition). However, it is not possible to convert every TEG with
holding times into a TEG with transition delays. Therefore, we will only consider
timed event graphs with holding times.

pitr t j

vi

Fig. 1.2 Part of a timed event graph with holding times.

In a TEG with holding times, a token entering a place pi has to spend vi time
units before it can contribute to the firing of its output transition. The graphical
representation of a timed event graph with holding times is given in Fig. 1.2. The
earliest time instant when pi receives its kth token is denoted πi(k), and the resulting
earliest time instant that output transition t j can fire for the kth time is denoted τ j(k)
and can be determined by

τ j(k) = max
pi∈•t j

(πi(k)+ vi) , (1.1)

i.e., a transition can fire for the kth time as soon as all its input places have received
their kth token and the corresponding holding times have elapsed. Similarly, the
earliest time instants that a place pi receives its (k+m0

i)
th token can be determined

by the earliest firing instants of its input transition, i.e.,

πi(k+m0
i) = τr(k), tr ∈ •pi. (1.2)

4 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Since every place in a TEG has exactly one input transition, it is possible to replace
πi in (1.1) with (1.2). Thus, recursive equations for the (earliest) firing times of
transitions in TEG can be obtained.

Remark 1 (Earliest firing rule) As mentioned before, a transition enabled to fire
might not actually do so. As a matter of fact, it is not possible in TEG (or in Petri
nets, in general) to force a transition to fire. In this work, however, we use to earliest
firing rule, i.e., we assume that a transition fires as soon as it is enabled. This is
a very weak assumption, since by definition there are no conflicting transitions in
TEG.

Example 1 (Manufacturing system) Reconsidering the small manufacturing pro-
cess introduced as a motivational example, we will show how this system can be
modeled as a TEG. To do this, however, some additional information is necessary.
First of all, the user has to decide which events are important or essential to model
the system. For example, in some systems only the start and finish or release events
are important, while in other systems further (internal) events have to be considered
as well to represent the behavior of the manufacturing system.

Assuming that the start and finish events are sufficient to model the behavior of
the system we would obtain a TEG consisting of six transitions representing the
three start and three finish events. The corresponding part of the TEG representing
the processing of a single resource is given in Fig. 1.3. In this figure, ts

i and te
i model

tsi tei

vi

pi

Fig. 1.3 Timed event graph representing the operation of a single resource.

the start and finish events of resource Ri and vi is the (minimal) processing time for
part i.

Additionally, the capacity of each resource needs to be included in the TEG
model. This can be done by introducing an arc (with an additional place) from
transition te

i to ts
i . The number of tokens in this new place represents the capacity

of the corresponding resource. Two tokens for example would mean, that ts
i can fire

twice more than te
i , which means that at most two parts can be processed at the

same time. Note that this new place may also include a holding time, e.g., when a
resource needs to cool down in between the processing of two parts. Finally, the
user has to decide on the nature of different events. For example, there are input
events, which are events that can be prevented from occurring. This is often the case
for events representing the “feeding” of a resource with raw material or for start
events of resources. Output events are usually the events that mark the finish of a
final part or the finishing of an intermediate step. All other events are referred to

1 Modeling manufacturing systems in a dioid framework 5

as internal events. Similar to standard systems theory input, internal, and output
events are denoted ui, xi, and yi, respectively.

Assume the following parameters for the manufacturing system given in Fig. 1.1

trawA = trawB = 0, tA = tB = 1, tC = 0,
tpA = 10, tpB = 4, tpC = 3

capRA = 2, capRB = 1, capRC = 1

This means that raw material for RA and RB can be provided without time delay,
the transfer of parts A and B to RC takes 1 time unit, while the transfer of C to its
destination is not delayed. The processing times for parts A, B, and C are 10, 4,
and 3 time units, respectively, and while resource RA has a capacity of 2 the other
resources are of single capacity. The resulting timed event graph of this manufac-
turing system is given in Fig. 1.4. In this figure, x1 and x2 represent the start and

x1 x210

0

x4x3

x5 x6

u2

u3 y

0

3

4

0

u1

1

1

p3

p1

p2

p4

p5

p6

p7

p8

p9

p10

p11

p12

Fig. 1.4 Timed event graph of a simple manufacturing system.

finish events of resource RA, x3 and x4 represent the start and finish events of RB,
and x5 and x6 the start and finish events of RC.

Of particular interest is the dynamical evolution of the developed timed event
graph, i.e., the firing instants of transitions. Let xi(k) denote the earliest possible
time instant that transition xi fires for the kth time and πi(k) denotes the earliest
time that place pi receives its kth token, then we get

6 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

x1(k) = max(π1(k),π5(k)) (1.3)
x2(k) = π4(k)+10 (1.4)
x3(k) = max(π2(k),π7(k)) (1.5)
x4(k) = π6(k)+4 (1.6)
x5(k) = max(π3(k),π8(k)+1,π9(k)+1,π11(k)) (1.7)
x6(k) = π10(k)+3. (1.8)

With ui(k) denoting the earliest time instant of the kth firing of ui and taking the
initial marking m0 into account we get

π1(k+m0
1) = π1(k) = u1(k)

π2(k+m0
2) = π2(k) = u2(k)

π3(k+m0
3) = π3(k) = u3(k)

π4(k+m0
4) = π4(k) = x1(k)

π5(k+m0
5) = π5(k+2) = x2(k)

π6(k+m0
6) = π6(k) = x3(k)

π7(k+m0
7) = π7(k+1) = x4(k)

π8(k+m0
8) = π8(k) = x2(k)

π9(k+m0
9) = π9(k) = x4(k)

π10(k+m0
10) = π10(k) = x5(k)

π11(k+m0
11) = π11(k+1) = x6(k)

π12(k+m0
12) = π12(k) = x6(k).

Then we can replace πi(k) in the equations (1.3)–(1.8) and obtain the recursive
equations for the firing instants of transitions xi

x1(k) = max(u1(k),x2(k−2)) (1.9)
x2(k) = x1(k)+10 (1.10)
x3(k) = max(u2(k),x4(k−1)) (1.11)
x4(k) = x3(k)+4 (1.12)
x5(k) = max(u3(k),x2(k)+1,x4(k)+1,x6(k−1)) (1.13)
x6(k) = x5(k)+3. (1.14)

In the same manner the earliest time instant of the firing of the output y(k) can be
determined

y(k) = x6(k).

1 Modeling manufacturing systems in a dioid framework 7

Given a firing vector u(k) = [u1(k)u2(k)u3(k)]T and using equations (1.9)–(1.14)
the firing vector x(k) = [x1(k)x2(k)x3(k)x4(k)x5(k)x6(k)]T can be determined for
k = 1,2, Assuming that the input shall not slow down the system, e.g., an
unlimited number of raw parts are available at time 0, which is equivalent to
u(k) = [000]T ∀k ∈ N and setting xi(k) =−∞∀k ≤ 0 the firing vector results in




0
10
0
4
11
14




︸ ︷︷ ︸
x(1)

,




0
10
4
8

14
17




︸ ︷︷ ︸
x(2)

,




10
20
8

12
21
24




︸ ︷︷ ︸
x(3)

,




10
20
12
16
24
27




︸ ︷︷ ︸
x(4)

,




20
30
16
20
31
34




︸ ︷︷ ︸
x(5)

, . . .

Clearly, determining the firing instants using the recursive equations (1.9)–(1.14)
may be quite cumbersome. Taking a closer look at these equations, one realizes that
addition and the maximum operation are essential to determine the desired firing
times. Due to the maximum operation, the equations are non-linear in conventional
algebra, however, there is a mathematical structure called idempotent semirings (or
dioids) in which the recurrence relation of the firing instants have a linear represen-
tation.

1.3 Mathematical Background

This section provides the algebraic background necessary to obtain a linear repre-
sentation of the firing instants in a timed event graph. This section is rather technical
and does not claim to be a complete presentation. For a more exhaustive description
of the mathematical background, the interested reader is referred to [2].

1.3.1 Ordered sets

Before introducing the basic notion of idempotent semirings (or dioids), the funda-
mentals of ordered sets will be recalled.

Definition 1 (Order relation) A binary relation � on a set C is an order relation
if the following properties hold ∀a,b,c ∈ C

• reflexivity: a� a
• anti-symmetry: (a� b and b� a)⇒ a = b
• transitivity: (a� b and b� c)⇒ a� c

Definition 2 (Ordered set) A set C endowed with an order relation � is said to be
an ordered set and is denoted (C ,�). It is said to be a totally ordered set if any pair

8 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

of elements in C can be compared with respect to �, i.e., ∀a,b ∈ C one can either
write a� b or b� a. Otherwise (C ,�) is said to be partially ordered.

Example 2 (Ordered sets) A classical example of an ordered set is (Z,≤), i.e., the
set of (scalar) integers endowed with the classical “less or equal” order relation.
Clearly, (Z,≤) is totally ordered. The ordered set (Z2,≤), however, is only partially
ordered as it is not possible to compare any pair of vectors with integer entries. Note
that for two vectors x and y ∈Z2, x= [x1 x2]

T ≤ y= [y1 y2]
T if x1 ≤ y1 and x2 ≤ y2.

For example, the vectors [a,b]T and [b,a]T are not related when a 6= b.

Definition 3 (Bounds on ordered sets) Given a non-empty subset S ⊆ C of an
ordered set (C ,�), element a ∈ C is called lower bound of S if ∀b ∈S : a � b.
If S has a lower bound, its greatest lower bound (glb) is denoted

∧
S . Similarly,

an element c ∈ C is called upper bound of S if ∀b ∈S : b� c. If S has an upper
bound, its least upper bound (lub) is denoted

∨
S .

Definition 4 (Lattices) An ordered set (C ,�) is called sup-semi-lattice, if ∀a,b ∈
C there exists a∨ b. It is a complete sup-semi-lattice, if for every subset S ⊆ C
there exists a least upper bound, i.e.,

∨
S exists ∀S ⊆ C . Analogously, an ordered

set (C ,�) is called an inf-semi-lattice, if ∀a,b,∈C there exists a∧b, and it is called
complete inf-semi-lattice, if ∀S ⊆ C , there exists a least upper bound

∧
S . If an

ordered set (C ,�) forms a sup-semi-lattice as well as a inf-semi-lattice, it is called
a lattice and denoted (C ,∨,∧). In lattices the following properties hold ∀a,b ∈ C :

a� b⇔ a∨b = b⇔ a∧b = a.

A lattice is called a complete (or bounded) lattice if it is a complete sup-semi-lattice
as well as a complete inf-semi-lattice. The upper and lower bound of a complete
lattice are denoted > (top element) and ⊥ (bottom element), respectively.

Remark 2 The operations ∨ and ∧ of a lattice (C ,∨,∧) are associative, commuta-
tive, idempotent, and the absorption property, i.e., a∨(a∧b) = a and a∧(a∨b) = a,
∀a,b ∈ C , holds.

Definition 5 (Isotone mapping) A mapping f : C →D from an ordered set (C ,�)
to an ordered set (D ,�) is order-preserving or isotone if ∀a,b ∈ C

a� b⇒ f (a)� f (b).

Definition 6 (Semi-continuous mapping) A mapping f : C →D from a complete
lattice (C ,∨,∧) to a complete lattice (D ,∨,∧) is lower semi-continuous (l.s.c.) if
for any subset S ⊆ C

f

(
∨

a∈S
a

)
=
∨

a∈S
f (a).

Analogously, f : C →D is called upper semi-continuous (u.s.c.) if

1 Modeling manufacturing systems in a dioid framework 9

f

(
∧

a∈S
a

)
=
∧

a∈S
f (a), ∀S ⊆ C .

Definition 7 (Continuous mapping) A mapping f : C →D is said to be continu-
ous if it is lower semi-continuous as well as upper semi-continuous.

Remark 3 Given two complete lattices (C ,∨,∧) and (D ,∨,∧), it can easily be
shown that a l.s.c. mapping f : C →D is isotone by considering arbitrary a,b∈C .
If a � b, then a∨ b = b and since f is l.s.c., f (a∨ b) = f (a)∨ f (b) = f (b) and
therefore f (a)� f (b). Additionally, it can be shown that an u.s.c. mapping f : C →
D is also isotone. Considering two arbitrary elements a,b ∈ C with a� b one can
write a∧ b = a and since f is u.s.c., it is clear that f (a∧ b) = f (a)∧ f (b) = f (a)
and, consequently, f (a)� f (b).

1.3.2 Idempotent semirings

Definition 8 (Monoid) A monoid, (M , ·,e), is a set M endowed with an internal
binary operation ·, which is associative, and with an identity element e. If the in-
ternal law · is commutative, (M , ·,e) is said to be a commutative monoid. If the
internal law · is idempotent, i.e., a · a = a ∀a ∈M , the monoid is said to be idem-
potent.

Definition 9 (Dioid) An idempotent semiring (also called dioid) is a set D , en-
dowed with two internal operations denoted ⊕ (addition) and ⊗ (multiplication)
such that (D ,⊕,ε) constitutes an idempotent commutative monoid and (D ,⊗,e)
constitutes a monoid. Furthermore, multiplication is left- and right-distributive
with respect to addition, i.e., a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c =
(a⊗c)⊕ (b⊗c) ∀a,b,c ∈D , and ε is absorbing with respect to multiplication, i.e.,
a⊗ ε = ε⊗a = ε ∀a ∈D . The dioid is denoted (D ,⊕,⊗) and the neutral elements
of addition and multiplication are referred to as zero and unit element, respectively.
If multiplication is commutative, the corresponding dioid is said to be commutative.
If all elements of the dioid (except ε) have a multiplicative inverse, the idempotent
semiring forms an idempotent semifield.

Consequently, the internal laws of an idempotent semiring have the following
properties ∀a,b,c ∈D

• addition:

- associativity: (a⊕b)⊕ c = a⊕ (b⊕ c)
- commutativity: a⊕b = b⊕a
- idempotency: a⊕a = a
- neutral element: a⊕ ε = a

• multiplication:

10 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

- associativity: (a⊗b)⊗ c = a⊗ (b⊗ c)
- neutral element: a⊗ e = e⊗a = a

Remark 4 As in classical algebra, the multiplication sign ⊗ is often omitted when
unambiguous.

Example 3 (Max-plus algebra) Probably the most widely know idempotent semir-
ing is the so-called max-plus algebra. It is defined on the set Zmax = Z∪{−∞}.
Max-plus addition is defined as the classical maximum operation and max-plus
multiplication is the classical addition, i.e., a⊕ b := max(a,b) and a⊗ b := a+ b,
∀a,b ∈ Zmax. The zero and unit elements of max-plus algebra are ε = −∞ and
e = 0, respectively. Note that max-plus algebra may also be defined on the set
Rmax = R∪{−∞}.

Example 4 (Min-plus algebra) Another popular idempotent semiring is the min-
plus algebra. It is defined on the set Zmin = Z∪{+∞} (or Rmin = R∪{+∞}), and
its operations are defined as: a⊕ b = min(a,b) and a⊗ b = a+ b, ∀a,b ∈ Zmin
(resp. Rmin). The corresponding zero and unit elements are ε = +∞ and e = 0,
respectively.

Definition 10 (Sub-semiring) Given an idempotent semiring (D ,⊕,⊗), the alge-
braic structure (S ,⊕,⊗) is called sub-semiring of (D ,⊕,⊗), if

• S is a subset of D , i.e., S ⊆D;
• the zero and unit elements of (D ,⊕,⊗) are included in S , i.e., ε ∈S and e∈S ;
• S is closed for addition and multiplication, i.e., a⊕ b ∈ S and a⊗ b ∈ S ,
∀a,b ∈S .

Example 5 According to the definition of a sub-semiring, it is clear that (Zmax,⊕,⊗)
is a sub-semiring of (Rmax,⊕,⊗).

Remark 5 (Dioid of matrices) Just as in the classical algebra, the notion of dioids
can easily be extended to the matrix case. Addition and multiplication for the ma-
trices A,B ∈Dn×p and C ∈D p×m are defined by

[A⊕B]i j = [A]i j⊕ [B]i j ∀i = 1, . . . ,n; ∀ j = 1, . . . , p;

[A⊗C]i j =
p⊕

k=1

[A]ik⊗ [C]k j ∀i = 1, . . . ,n; ∀ j = 1, . . . ,m.

Example 6 (Matrix operations in max-plus algebra) Given three matrices with
entries in Zmax,

A=




1 4
5 3
ε 2


 , B =




3 3
2 4
7 1


 , and C =

[
e 4
1 3

]
,

we get

1 Modeling manufacturing systems in a dioid framework 11

A⊕B =




1 4
5 3
ε 2


⊕




3 3
2 4
7 1


=




3 4
5 4
7 2




A⊗C =




1 4
5 3
ε 2


⊗

[
e 4
1 3

]
=




5 7
5 9
3 5


 .

1.3.3 Natural order in idempotent semirings

Due to the idempotency property of addition in dioids, they can be naturally
equipped with an order:

a⊕b = b⇔ a� b.

It can be easily checked that � is indeed reflexive, anti-symmetric, and transitive.

Remark 6 Note that the natural order in dioids may be partial or total. E.g., max-
plus algebra defined on scalars is totally ordered, while matrices in max-plus alge-
bra are only partially ordered (see Ex. 6).

Definition 11 (Complete dioids) An idempotent semiring (D ,⊕,⊗) is said to be
complete if it is closed for infinite sums and if multiplication distributes over infinite
sums, i.e., ∀a ∈D and ∀S ⊆D

a⊗
(
⊕

b∈S
b

)
=
⊕

b∈S
a⊗b and

(
⊕

b∈S
b

)
⊗a =

⊕

b∈S
b⊗a.

Consequently, a complete dioid (D ,⊕,⊗) admits a greatest element, the so-called
top element, which corresponds to the sum of all elements in D , i.e., > =

⊕
a∈D a

and > ∈D .

Remark 7 With respect to lattice theory, a dioid (D ,⊕,⊗) constitutes an ordered
set (D ,�) with the structure of a sup-semi-lattice and with a⊕ b being the least
upper bound of a and b. A complete dioid has the structure of a complete sup-
semi-lattice with > =

∨
D =

⊕
a∈D a. Moreover, since every dioid admits ε ∈ D

as a greatest lower bound, i.e., ε =
∧

D , a complete dioid has the structure of a
complete lattice (D ,⊕,∧) with a⊕b = b⇔ a� b⇔ a∧b = a.

Example 7 (Max-plus algebra) The natural order in max-plus algebra (Zmax,⊕,⊗)
coincides with the order relation in classical algebra, e.g., 1 � 3 since 1⊕ 3 = 3.
(Zmax,⊕,⊗) does not constitute a complete dioid since

⊕
a∈Zmax a => /∈ Zmax, . If,

however, max-plus algebra is defined on Zmax = Zmax∪{+∞}= Z∪{−∞,+∞}, it
becomes a complete dioid and, consequently, (Zmax,⊕,∧) is a complete lattice.

Example 8 (Min-plus algebra) The natural order in min-plus algebra corresponds
to the “reverse” of the order relation in classical algebra, e.g., 3� 1 since 1⊕3= 1.

12 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Similar to max-plus algebra, min-plus algebra constitutes a complete dioid if it
is defined on Zmin = Zmin ∪ {−∞} = Z∪ {−∞,+∞} (with > = −∞) and, thus,
(Zmin,⊕,∧) has the structure of a complete lattice.

1.3.4 Mappings in idempotent semirings

Recall that a (complete) dioid is a (complete) lattice, with ⊕ playing the role of
∨. Therefore, a mapping f from a complete dioid (D ,⊕,⊗) to a complete dioid
(C ,⊕,⊗) is lower semi-continuous if ∀S ⊆D

f

(
⊕

a∈S
a

)
=
⊕

a∈S
f (a),

and upper semi-continuous if ∀S ⊆D

f

(
∧

a∈S
a

)
=
∧

a∈S
f (a).

Definition 12 (Homomorphism) A mapping f : D → C is a homomorphism if
∀a,b ∈D

f (a⊕b) = f (a)⊕ f (b) and f (ε) = ε

f (a⊗b) = f (a)⊗ f (b) and f (e) = e.

Definition 13 (Isomorphism) If the inverse of a homomorphism f is defined and is
itself a homomorphism the mapping f is called an isomorphism.

Definition 14 (Image of a mapping) The image of a mapping f : D → C is

Im f = {b ∈ C |b = f (a),a ∈D} .

Definition 15 (Identity mapping) A mapping f : D → D is called identity map-
ping and denoted IdD , if f (a) = a, ∀a ∈D .

Definition 16 (Closure mapping) A mapping f : D → D , is called closure map-
ping, if it is

• extensive, i.e., f (a)� a
• idempotent, i.e., f ◦ f = f
• isotone, i.e., a� b⇒ f (a)� f (b), ∀a,b ∈D .

Remark 8 For closure mappings, the following holds

x = f (x)⇔ x ∈ Im f .

1 Modeling manufacturing systems in a dioid framework 13

1.3.5 Residuation theory

Multiplication in idempotent semirings does not necessarily admit an inverse. How-
ever, a pseudo inversion of mappings defined over ordered sets is provided by the
so-called residuation theory [3, 4]. Since dioids are defined on (partially) ordered
sets, it is possible to use residuation theory to determine the greatest solution (with
respect to the natural order of the dioid) of inequality f (a) � b. Let (D ,⊕,⊗) and
(C ,⊕,⊗) be dioids, then:

Definition 17 (Residuated mapping) An isotone mapping f : D → C is said to be
residuated, if the inequality f (a)� b has a greatest solution in D for all b ∈ C .

Theorem 1 ([4]) An isotone mapping f : D → C is residuated if and only if there
exists a unique isotone mapping f] : C →D such that (f ◦ f])(b)� b, ∀b ∈ C and
(f] ◦ f)(a)� a, ∀a ∈D . Mapping f] is called the residual of f .

Theorem 2 ([2]) For a residuated mapping f : D → C , the following equalities
hold:

f ◦ f] ◦ f = f

f] ◦ f ◦ f] = f]

An illustration of these properties is given in Fig. 1.5.

x

y

f
(
f ♯(y)

)

f (x)

f ♯

f

f ♯

f ♯

f

f

f ♯ (f (x))

f ♯(y)

D C

Fig. 1.5 Properties of residuated mapping f : D→C and the corresponding mapping f] : C →D .

It can be shown that two very elementary mappings in a complete dioid (D ,⊕,⊗),
namely, the left and right multiplication by a constant, i.e.,

14 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

La : D →D

x 7→ a⊗ x

Ra : D →D

x 7→ x⊗a

are residuated mappings. The corresponding residual mappings are denoted:

L]
a(x) = a◦\x

R]
a(x) = x◦/a.

Consequently, a⊗ x� b has the greatest solution L]
a(b) = a◦\b =

⊕
x∈D {x|ax� b}.

Analogously, the greatest solution of x⊗a� b is R]
a(b) = b◦/a =

⊕
x∈D {x|xa� b}.

Specifically, inequalities ε ⊗ x � b and x⊗ ε � b have the greatest solution ε◦\b =
b◦/ε =>, and inequalities >⊗ x� b and x⊗>� b admit the greatest solutions

>◦\b = b◦/>=

{
> if b =>
ε else.

Residuation theory can also be used to find the greatest solutions of matrix
inequalities, where the order relation � is interpreted element-wise. Given matri-
ces A,D ∈ Dm×n, B ∈ Dm×p, and C ∈ Dn×p, the greatest solution of inequality
A⊗X �B is given by C =A◦\B and inequality X⊗C �B admits D =B◦/C
as its greatest solution. The entries of C and D are determined as follows [6]:

[C]i j =
m∧

k=1

(
[A]ki◦\[B]k j

)

[D]i j =
p∧

k=1

(
[B]ik◦/[C] jk

)
.

Example 9 (Max-plus algebra) Considering the relation A⊗X �B with

A=




1 2
3 4
5 ε


 and B =




6
7
8




being matrices with entries in Zmax. As the max-plus multiplication corresponds
to the classical addition, its residual corresponds to the classical subtraction, i.e.,
1⊗ x� 4 admits the solution set X = {x|x� 1◦\4} with 1◦\4 = 4−1 = 3 being the
greatest solution of this set. Applying the rules of residuation in max-plus algebra
to the relation A⊗X �B results in:

A◦\B =

[
1◦\6∧3◦\7∧5◦\8
2◦\6∧4◦\7∧ ε◦\8

]
=

[
3
3

]
.

1 Modeling manufacturing systems in a dioid framework 15

Matrix A◦\B = [3 3]T is the greatest solution for X which ensures A⊗X �B.
Indeed,

A⊗ (A◦\B) =




1 2
3 4
5 ε


⊗

[
3
3

]
=




5
7
8


�




6
7
8


=B.

Remark 9 Note that residuation achieves equality in the case of scalar multiplica-
tion in max-plus algebra, while this is not true for the matrix case.

Below, some properties of the residuals L]
a and R]

a are given. To get a more ex-
haustive list of properties and the corresponding proofs the reader is invited to con-
sult [2, 8, 13].

a(a◦\x)� x (x◦/a)a� x (1.15)
a◦\(ax)� x (xa)◦/a� x (1.16)
a(a◦\(ax)) = ax ((xa)◦/a)a = xa (1.17)
a◦\(a(a◦\x)) = a◦\x ((x◦/a)a)◦/a = x◦/a (1.18)
a◦\(x∧ y) = a◦\x∧a◦\y (x∧ y)◦/a = x◦/a∧ y◦/a (1.19)
a◦\(x⊕ y)� (a◦\x)⊕ (a◦\y) (x⊕ y)◦/a� (x◦/a)⊕ (y◦/a) (1.20)
(a∧b)◦\x� (a◦\x)⊕ (b◦\x) x◦/(a∧b)� (x◦/a)⊕ (x◦/b) (1.21)
(a⊕b)◦\x = a◦\x∧b◦\x x◦/(a⊕b) = x◦/a∧ x◦/b (1.22)
(ab)◦\x = b◦\(a◦\x) x◦/(ba) = (x◦/a)◦/b (1.23)
(a◦\x)b� a◦\(xb) b(x◦/a)� (bx)◦/a (1.24)
b(a◦\x)� (a◦/b)◦\x (x◦/a)b� x◦/(b◦\a) (1.25)

Definition 18 (Canonical injection) An isotone mapping f : S → D with S a
sub-semiring of the dioid D and both S and D being complete, is called canonical
injection if

f (a) = a ∀a ∈S .

Theorem 3 (Projection [13]) According to the definition of a residuated mapping
(Def. 17), the canonical injection fS is a residuated mapping. The residual f]S is
a projector from the dioid D to its sub-dioid S and denoted PrS . The following
statements hold for PrS :

(i) PrS ◦PrS = PrS
(ii) PrS (b)� b ∀b ∈D

(iii) a ∈S ⇔ PrS (a) = a.

16 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

1.3.6 Fixed point equations

Theorem 4 (Fixpoint theorem [17, 29]) Every order preserving mapping of a com-
plete lattice (C ,�) into itself has at least one fixpoint. The set of fixpoints of such
a mapping forms a complete lattice with respect to the ordering of (C ,�). For-
mally, for an isotone mapping f : C → C with (C ,∨,∧) being a complete lattice
and Y = {x ∈ C | f (x) = x} being the set of fixed points of f , one can write

1.
∧

y∈Y
y ∈ Y , and

∧

y∈Y
y =

∧
{x ∈ C | f (x)� x} .

2.
∨

y∈Y
y ∈ Y , and

∨

y∈Y
y =

∨
{x ∈ C |x� f (x)} .

Theorem 5 (Smallest fixed point [2]) Let (D ,⊕,⊗) be a complete dioid, f : D →
D be a lower semi-continuous mapping in this dioid, and Y the set of fixed points
of f . The smallest fixed point of f is

∧

y∈Y
y = f ∗

(
∧

x∈D
x

)
= f ∗(ε)

with f ∗(x) =
+∞⊕

i=0

f i(x), f i+1 = f ◦ f i, and f 0 = IdD .

Theorem 6 (Greatest fixed point [2]) Let (D ,⊕,⊗) be a complete dioid, f : D →
D be an upper semi-continuous mapping in this dioid, and Y the set of fixed points
of f . The greatest fixed point of f is

⊕

y∈Y
y = f∗

(
⊕

x∈D
x

)
= f∗(>)

with f∗(x) =
+∞∧

i=0

f i(x).

Definition 19 (Kleene star) The Kleene star is a mapping denoted ∗. In a complete
dioid (D ,⊕,⊗), it is defined ∀a ∈D by:

a∗ =
∞⊕

i=0

ai with ai+1 = a⊗ai and a0 = e.

Remark 10 The Kleene star can also be applied to (square) matrices in the corre-
sponding complete dioid. For A ∈Dn×n it is defined by

1 Modeling manufacturing systems in a dioid framework 17

A∗ =
∞⊕

i=0

Ai with Ai+1 =A⊗Ai and A0 = I,

with I being the identity matrix of ⊗, i.e.,

[I]i j =

{
e if i = j
ε else.

Furthermore, for any partition of

A=

[
a11 a12
a21 a22

]
,

with a11 and a22 being square matrices, the following holds [2]:

A∗ =
[

a∗11⊕a∗11a12(a21a∗11a12⊕a22)
∗a21a∗11 a∗11a12(a21a∗11a12⊕a22)

∗

(a21a∗11a12⊕a22)
∗a21a∗11 (a21a∗11a12⊕a22)

∗

]
.

Example 10 (Solution of x = ax⊕b) According to Theorem 5, the least fixed point
of the lower semi-continuous mapping f : x 7→ ax⊕b in a complete dioid (D ,⊕,⊗)
is x = a∗b. This can be shown by computing f ∗, i.e.,

f 0(x) = x

f 1(x) = ax⊕b

f 2(x) = a(ax⊕b)⊕b = a2x⊕ab⊕b

f 3(x) = a2(ax⊕b)⊕ab⊕b = a3x⊕a2b⊕ab⊕b
...

f k(x) = ak−1(ax⊕b)⊕ak−2b⊕ . . .⊕ab⊕b

and according to the definition of f ∗:

f ∗(x) =
+∞⊕

i=0

f i(x)

= x⊕ax⊕a2x⊕a3x⊕ . . .⊕b⊕ab⊕a2b⊕a3b⊕ . . .

=
(
e⊕a⊕a2⊕a3⊕ . . .

)
x⊕
(
e⊕a⊕a2⊕a3⊕ . . .

)
b

= a∗x⊕a∗b.

Finally, the least fixed point of f : x 7→ ax⊕b is equal to f ∗(ε), i.e.,

f ∗(ε) = a∗ε⊕a∗b = a∗b.

This is also the least solution of inequality x� ax⊕b.

18 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Remark 11 The mapping LA∗ : x 7→A∗x in a complete dioid (D ,⊕,⊗) is a clo-
sure mapping (see Def. 16), i.e., according to Rem. 8 the equivalence x =A∗x⇔
x ∈ ImLA∗ holds.

The Kleene star in a complete dioid (D ,⊕,⊗) has the following properties
∀a,b ∈D :

(a∗)∗ = a∗

a(ba)∗ = (ab)∗ a

(a⊕b)∗ = (a∗b)∗ a∗ = b∗ (ab∗)∗ = (a⊕b)∗ a∗ = b∗ (a⊕b)∗

a∗a∗ = a∗

(ab∗)∗ = e⊕a(a⊕b)∗ .

For the proofs and a more extensive list of properties of the Kleene star, the reader
is invited to consult [8, 13]. Additionally, some nice properties of the Kleene star in
combination with the residual mappings of the left and right product can be derived:

a = a∗⇔ a = a◦\a a = a∗⇔ a = a◦/a (1.26)
a∗◦\x = a∗◦\(a∗◦\x) x◦/a∗ = (x◦/a∗)◦/a∗ (1.27)
a∗x = a∗◦\(a∗x) xa∗ = (xa∗)◦/a∗ (1.28)
a∗◦\x = a∗ (a∗◦\x) x◦/a∗ = (x◦/a∗)a∗. (1.29)

Moreover,

a◦\a = (a◦\a)∗ a◦/a = (a◦/a)∗ .

Furthermore, in [7] it has been shown that this property also holds for matrices
A ∈D p×n and A◦\A ∈Dn×n, i.e.,

A◦\A= (A◦\A)∗ .

Lemma 1 ([2]) Given a matrix A ∈ Dn×n and a matrix x ∈ Dn×p, the following
equivalences hold

x�A◦\x⇔ x�Ax⇔ x=A∗x⇔ x=A∗◦\x.

Lemma 2 ([23]) For two matrices A,B ∈ Dn×n with (Dn×n,⊕,⊗) being a com-
plete dioid, the following statements are equivalent:

A∗ �B∗⇔A∗B∗ =B∗A∗ =B∗◦\A∗ =A∗◦/B∗ =A∗.

Remark 12 Given two closure mappings LA∗ : x 7→ A∗x and LB∗ : x 7→ B∗x,
such that LA∗ � LB∗ , i.e., A∗ �B∗, the following equivalence holds:

LA∗ � LB∗ ⇔ LA∗ ◦LB∗ = LB∗ ◦LA∗ = LA∗ ⇔ ImLA∗ ⊂ ImLB∗ .

1 Modeling manufacturing systems in a dioid framework 19

1.3.7 Dual residuation

In Sec. 1.3.5 it has been shown how residuation theory can be applied to determine
the greatest solution of inequalities like f (a)� b. However, it is of course also pos-
sible to determine the least solution of inequalities such as f (a)� b. The definitions
for the so-called dual residuation are analogous to the definitions for the previously
introduced residuation.

Definition 20 (Dually residuated mapping) An isotone mapping f : D → C with
(D ,�) and (C ,�) being ordered sets, is said to be dually residuated, if inequality
f (a)� b has a least solution in D for all b ∈ C .

Theorem 7 ([2]) For an isotone mapping f : D → C from one complete dioid to
another complete dioid, the following statements are equivalent:

(i) f is dually residuated
(ii) f (>) => and f is upper semi-continuous

(iii) There exists an isotone lower semi-continuous mapping f [: C →D , such that:

(f ◦ f [)(b)� b

(f [◦ f)(a)� a.

Mapping f [is said to be the dual residual of f .

Theorem 8 ([23]) For a dually residuated mapping f : D→C the following equal-
ities hold:

f ◦ f [◦ f = f

f [◦ f ◦ f [= f [.

1.3.7.1 Dual multiplication

In this section we are interested in determining a “pseudo inverse” of a particular
operation denoted �, which is the so-called dual multiplication. This operation is
not included in the standard definition of idempotent semirings.

Definition 21 (Dual multiplication) For two matrices A ∈ D p×n and B ∈ Dn×q

in a complete dioid, the dual multiplication A�B is defined by

[A�B]i j =
n∧

k=1

[A]ik� [B]k j ∀i = 1, . . . , p; ∀ j = 1, . . . ,q

with the following convention in the scalar case:

a�b = a⊗b ∀a,b ∈D \>
x�>=>� x => ∀x ∈D .

20 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

In particular, this implies that ε�>=>, while ε⊗>= ε .

Definition 22 (Dual Kleene star) The dual Kleene star is a mapping denoted ∗. In
a complete dioid (D ,⊕,⊗), it is defined for A ∈Dn×n as:

A∗ =
∞∧

k=0

A�k,

where A�0 = I� and A�k =A�A�(k−1), with I� being the identity of the dual
multiplication, i.e.,

[
I�
]

i j =

{
e if i = j
> else.

Remark 13 Mapping ΛA∗ : x 7→A∗�x in a complete dioid (D ,⊕,⊗) is a closure
mapping (see Def. 16), i.e., according to Rem 8 the equivalence x=A∗�x⇔ x ∈
ImΛA∗ holds.

Definition 23 An element a ∈ D with (D ,⊕,⊗) being a complete dioid, admits a
left inverse (respectively a right inverse), if there exists an element b (respectively
c), such that b⊗a = e (a⊗ c = e, respectively).

Lemma 3 ([2]) Given a scalar a ∈ D , with (D ,⊕,⊗) being a complete dioid, ad-
mitting a left inverse b and a right inverse c, the following statement holds

b = c and both are denoted a−1.

Lemma 4 ([23]) Given a matrix A ∈D p×n and the set X of elements in Dn×q. If
every entry of A is admits an inverse or is equal to ε or >, the mapping ΛA : x 7→
A�x is upper semi-continuous, i.e.,

ΛA

(
∧

x∈X
x

)
=

∧

x∈X
ΛA(x).

Of particular interest is the dual left product, i.e., given two matrices A ∈Dn×n and
X ∈Dn×n and every entry in A is either ε or>, or admits an inverse, then mapping
ΛA : X 7→A�X is dually residuated and the dual residual is denoted:

Λ
[
A : X 7→A•\X

with

[A•\X]i j =
n⊕

k=1

(
[A]ki •\ [X]k j

)
=

n⊕

k=1

(
[A]−1

ki ⊗ [X]k j

)

under the conventions that

1 Modeling manufacturing systems in a dioid framework 21

ε•\ε = ε and >•\x = ε, ε•\x => ∀x.

Remark 14 An important thing to realize is that

a� b⇒ a•\x� b•\x ∀,a,b,x ∈D .

Furthermore, given that b admits an inverse and due to the associativity of multipli-
cation in dioids, the following statement is true

b•\(a⊗ c) = (b•\a)⊗ c.

This can easily be shown by rewriting the equation, i.e.,

b•\(a⊗ c) = b−1⊗ (a⊗ c) =
(
b−1⊗a

)
⊗ c.

Remark 15 Of course residuation theory can also be applied to determine the dual
residual of the mapping ΓA : X 7→X�A, with A,X ∈Dn×n. It is denoted

Γ
[
A : X 7→X•/A

with

[X•/A]i j =
n⊕

k=1

(
[X]ik •/ [A] jk

)
=

n⊕

k=1

(
[X]ik⊗ [A]−1

jk

)

with the conventions that

x•/>= ε, x•/ε =>,and ε•/ε = ε.

The dual left and right “division” have the following properties [23]:

a•\(x⊕ y) = a•\x⊕a•\y (x⊕ y)•/a = x•/a⊕ y•/a (1.30)
a•\(x∧ y)� a•\x∧a•\y (x∧ y)•/a� x•/a∧ y•/a (1.31)
(x⊕ y)•\a� x•\a∧ y•\a a•/(x⊕ y)� a•/x∧a•/y (1.32)
a� (a•\x)� x (x•/a)�a� x (1.33)
a•\(a� x)� x (x�a)•/a� x (1.34)
a� (a•\(a� x)) = a� x ((x�a)•/a)�a = x�a (1.35)
a•\(a� (a•\x)) = a•\x ((x•/a)�a)•/a = x•/a (1.36)
(a�b)•\x = b•\(a•\x) x•/(b�a) = (x•/a)•/b (1.37)
(a•\x)•/b = a•\(x•/b) b•\(x•/a) = (b•\x)•/a (1.38)

Lemma 5 ([5]) Similar to Lem. 1 it is possible to show that the following equiva-
lences hold for two matrices A ∈Dn×n and x ∈Dn×p

x�A�x⇔ x�A•\x⇔ x=A∗•\x⇔ x=A∗�x.

22 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Lemma 6 ([5]) Given three matrices A ∈ Dn×p, X ∈ D p×q, and B ∈ Dn×n. If
every entry of B is either ε or > or admits an inverse the following property holds

B•\(A⊗X) = (B•\A)⊗X. (1.39)

1.3.8 Idempotent semirings of formal power series

Definition 24 (Formal power series) A formal power series in p (commutative)
variables, denoted z1 to zp, with coefficients in a semiring D , is a mapping s defined
from Zp into D: ∀k = (k1, . . . ,kp) ∈ Zp, s(k) represents the coefficient of zk1

1 . . .zkp
p

and (k1, . . . ,kp) are the exponents. Another equivalent representation is

s(z1, . . . ,zp) =
⊕

k∈Zp

s(k)zk1
1 . . .zkp

p

Definition 25 (Support, degree, and valuation of a formal power series) The sup-
port of a formal power series is defined as

supp(s) =
{
(k1, . . . ,kp) ∈ Zp|s(k1, . . . ,kp) 6= ε

}
.

The degree deg(s) (respectively valuation val(s)) is the least upper bound (respec-
tively greatest lower bound) of supp(s) in the complete lattice (Zp

,⊕,∧), where
Z= Z∪{−∞,+∞}.

A series with a finite support is called a polynomial and a monomial if there is only
one element in the series.

Definition 26 (Idempotent semiring of series) The set of formal power series with
coefficients in an idempotent semiring D endowed with the following sum and
Cauchy product

s⊕ s′ :
(
s⊕ s′

)
(k) = s(k)⊕ s′(k)

s⊗ s′ :
(
s⊗ s′

)
(k) =

⊕

i+ j=k

s(i)⊗ s′(j),

is an idempotent semiring denoted D [[z1, . . . ,zp]]. If D is complete, D [[z1, . . . ,zp]] is
complete. The greatest lower bound of two series is given by

s∧ s′ :
(
s∧ s′

)
(k) = s(k)∧ s′(k).

Definition 27 (γ-transform) The γ-transform of a discrete signal s(k) with s : Z→
D and D = (Zmax,⊕,⊗) is defined by

s(γ) =
⊕

k∈Z
s(k)⊗ γ

k.

1 Modeling manufacturing systems in a dioid framework 23

Remark 16 The γ-transform is analogous to the z-transform in classical systems
theory, which allows to describe a discrete signal by a formal power series.

Remark 17 Since s(γ)⊗γ =
⊕

k∈Z s(k)⊗γk+1 =
⊕

k∈Z s(k−1)⊗γk, γ can be seen
as a backward shift operator.

Definition 28 (Idempotent semiring Zmax[[γ]]) The set of formal power series in
γ with exponents in Z and coefficients in Zmax is an idempotent semiring and is
denoted Zmax[[γ]]. The zero element is the series ε(γ) =

⊕
k∈Z εγk, where ε = −∞,

the zero element of (Zmax,⊕,⊗). The unit element is the formal series e(γ) = eγ0,
where e = 0 is the unit element of (Zmax,⊕,⊗). The sum and product in Zmax[[γ]] are
defined by

s1(γ)⊕ s2(γ) =
⊕

k∈Z
(s1(k)⊕ s2(k))γ

k

s1(γ)⊗ s2(γ) =
⊕

k1+k2=k

(s1(k1)⊗ s2(k2))γ
k.

Example 11 Given two formal power series in Zmax[[γ]], s1(γ) = 3γ2 and s2(γ) =
0γ1⊕2γ2, their sum and product are

s1(γ)⊕ s2(γ) = 3γ
2⊕0γ

1⊕2γ
2 = 0γ

1⊕ (3⊕2)γ
2 = 0γ

1⊕3γ
2

s1(γ)⊗ s2(γ) = 3γ
2⊗
(
0γ

1⊕2γ
2)= (3⊗0)γ

3⊕ (3⊗2)γ
4 = 3γ

3⊕5γ
4.

Remark 18 In general, we will only write the elements of a power series which
have a non-zero coefficient, e.g., s1(γ) = . . .⊕ εγ0⊕ εγ1⊕3γ2⊕ εγ3⊕ εγ4⊕ . . .=
3γ2.

Definition 29 (δ -transform) Analogously to the γ-transform, the δ -transform of a
discrete signal s(t) with s : Z→D and D = (Zmin,⊕,⊗) , i.e., min-plus algebra, is
defined by

s(δ) =
⊕

t∈Z
s(t)⊗δ

t .

Definition 30 (Idempotent semiring Zmin[[δ]]) The set of formal power series in δ

with exponents in Z and coefficients in Zmin has a dioid structure and is denoted
Zmin[[δ]]. The zero and unit element are ε(δ) =

⊕
t∈Z εδ t , with ε =+∞, and e(δ) =

eδ 0, with e = 0, respectively. Addition and multiplication in Zmin[[δ]] are defined by

s1(δ)⊕ s2(δ) =
⊕

t∈Z
(s1(t)⊕ s2(t))δ

t

s1(δ)⊗ s2(δ) =
⊕

t1+t2=t
(s1(t1)⊗ s2(t2))δ

t .

Example 12 Given two formal power series in Zmin[[δ]], s1(δ) = 2δ 3 and s2(δ) =
1δ 0⊕2δ 2, their sum and product are

24 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

s1(δ)⊕ s2(δ) = 2δ
3⊕1δ

0⊕2δ
2 = 1δ

0⊕2δ
2⊕2δ

3

s1(δ)⊗ s2(δ) = 2δ
3⊗
(
1δ

0⊕2δ
2)= (2⊗1)δ

3⊕ (2⊗2)δ
5 = 3δ

3⊕4δ
5.

Definition 31 (Idempotent semiring B[[γ,δ]]) The dioid of formal power series in
two variables γ and δ with Boolean coefficients, i.e., B = {ε,e}, and exponents in
Z is denoted B[[γ,δ]]. A series s ∈ B[[γ,δ]] is represented by

s(γ,δ) =
⊕

k,t∈Z
s(k, t)γk

δ
t ,

with s(k, t) ∈ B. B[[γ,δ]] is a complete and commutative dioid. The zero and unit
element are ε(γ,δ) =

⊕
k,t∈Z εγkδ t and e(γ,δ) = γ0δ 0, respectively.

Example 13 A series can graphically be represented in the Z2-plane, with the ex-
ponents of γ on the horizontal axis and the exponents of δ on the vertical axis, by
drawing a black dot for all elements with non-zero coefficient. One possible series
in B[[γ,δ]] is s(γ,δ) = γ1δ 0 ⊕ γ2δ 2 ⊕ γ2δ 3 ⊕ γ4δ 3. The corresponding graphical
representation of this series is given in Fig. 1.6.

1 2 3 4

1

2

3

4

γ0

δ

Fig. 1.6 Graphical representation of the series s(γ,δ) = γ1δ 0⊕ γ2δ 2⊕ γ2δ 3⊕ γ4δ 3 ∈ B[[γ,δ]].

1.3.8.1 Quotient dioids

Definition 32 (Congruence) Let ≡ denote an equivalence relation on a dioid
(D ,⊕,⊗). A congruence relation is an equivalence relation which satisfies

a≡ b⇒
{

a⊕ c≡ b⊕ c
a⊗ c≡ b⊗ c ∀a,b,c ∈D .

Given a dioid (D ,⊕,⊗) equipped with an equivalence relation ≡. The equivalence
class represented by an element a ∈D is denoted [a]≡, i.e.,

[a]≡ = {x ∈D |x≡ a} .

1 Modeling manufacturing systems in a dioid framework 25

The set of all equivalence classes is the quotient of the dioid (D ,⊕,⊗).

Lemma 7 (Quotient dioid [2]) The quotient of a dioid (D ,⊕,⊗) with respect to a
congruence relation ≡ is itself a dioid. It is called quotient dioid and is denoted
D/≡. For addition and multiplication the following properties hold

[a]≡⊕ [b]≡ = [a⊕b]≡
[a]≡⊗ [b]≡ = [a⊗b]≡ .

Definition 33 (Idempotent semiring M ax
in [[γ,δ]]) The quotient dioid of B[[γ,δ]] with

respect to the congruence relation in B[[γ,δ]]

a≡ b⇔ γ
∗ (

δ
−1)∗ a = γ

∗ (
δ
−1)∗ b,

is denoted M ax
in [[γ,δ]], i.e., M ax

in [[γ,δ]] = B[[γ,δ]]
/γ∗(δ−1)

∗ , where ∗ refers to the

Kleene star. M ax
in [[γ,δ]] constitutes a complete dioid and the zero and unit elements

are ε(γ,δ) =
⊕

k,t∈Z εγkδ t and e(γ,δ) = γ0δ 0, respectively.

Remark 19 In the following, the dioid M ax
in [[γ,δ]] will be used to describe how

often events can occur within a specific time. For example, the monomial γkδ t is to
be interpreted as: “The (k+1)-st occurrence of the event is at time t at the earliest.”

Graphically, a monomial γkδ t ∈M ax
in [[γ,δ]] cannot be represented as a point in

the Z2-plane (as it was the case for γkδ t ∈ B[[γ,δ]]). This is due to the fact that in
M ax

in [[γ,δ]], γkδ t ≡ γkδ t ⊗ γ∗
(
δ−1

)∗. Rewriting the right hand side of this equiva-
lence results in

γ
k
δ

t ≡ γ
k
δ

t

(
∞⊕

i=0

γ
i

)

︸ ︷︷ ︸
γ∗

(
∞⊕

j=0

(
δ
−1) j

)

︸ ︷︷ ︸
(δ−1)

∗

= γ
k
δ

t

(
∞⊕

i=0

γ
i

)(
∞⊕

j=0

δ
− j

)

=
∞⊕

i=0

∞⊕

j=0

γ
k+i

δ
t− j.

Consequently, the monomial γkδ t ∈M ax
in [[γ,δ]] represents the set {γnδ m ∈B[[γ,δ]]|n≥

k,m ≤ t}. Graphically speaking, every monomial γkδ t ∈M ax
in [[γ,δ]] represents all

points in the Z2-plane that are “south-east” of the point (k, t). Consequently, a poly-
nomial in M ax

in [[γ,δ]] is graphically represented as the union of south-east cones of
the single monomials composing the polynomial.

Example 14 A possible series in M ax
in [[γ,δ]] is s(γ,δ) = γ1δ 0⊕ γ2δ 2⊕ γ4δ 3. Its

corresponding graphical representation is given in Fig. 1.7.

26 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

1 2 3 4

1

2

3

4

γ

δ

0

−1

−2

Fig. 1.7 Graphical representation of the series s(γ,δ) = γ1δ 0⊕ γ2δ 2⊕ γ4δ 3 ∈M ax
in [[γ,δ]].

Remark 20 The graphical representation allows for a straightforward visualiza-
tion of the partial order � in M ax

in [[γ,δ]]. Namely, s1 � s2, if the graphical repre-
sentation of s1 is contained in the respective representation of s2. Consequently, the
zero element of M ax

in [[γ,δ]] needs to be the bottom right element and the top element
the top left element. Therefore (and for simplicity reasons), these elements are often
denoted ε = γ+∞δ−∞ and >= γ−∞δ+∞, respectively.

Remark 21 (Minimal representation) As mentioned before, two series s1 and s2
in M ax

in [[γ,δ]] belong to an equivalence class if s1 ⊗ γ∗
(
δ−1

)∗
= s2 ⊗ γ∗

(
δ−1

)∗.
Graphically speaking this means all series of an equivalence class “cover” the same
area in the Z2-plane. For example, the series

s1 = γ
1
δ

0⊕ γ
2
δ

2⊕ γ
4
δ

3

s2 = γ
1
δ

0⊕ γ
2
δ

2⊕ γ
3
δ

2⊕ γ
4
δ

3

s3 = γ
1
δ

0⊕ γ
2
δ

2⊕ γ
3
δ

2⊕ γ
4
δ

3⊕ γ
6
δ

1

are all equivalent with respect to the congruence relation γ∗
(
δ−1

)∗. However, se-
ries s1 is the so-called minimal representation, as its support consists of a minimal
number of elements. In the following the minimal representation is (always) used to
denote an equivalence class.

For monomials in M ax
in [[γ,δ]] the following rules apply for addition, multiplica-

tion and the greatest lower bound:

γ
k
δ

t ⊕ γ
l
δ

t = γ
min(k,l)

δ
t

γ
k
δ

t ⊕ γ
k
δ

τ = γ
k
δ

max(t,τ)

γ
k
δ

t ⊗ γ
l
δ

τ = γ
(k+l)

δ
(t+τ)

γ
k
δ

t ∧ γ
l
δ

τ = γ
max(k,l)

δ
min(t,τ).

Graphically, for monomials in M ax
in [[γ,δ]]

1 Modeling manufacturing systems in a dioid framework 27

• addition: γkδ t ⊕ γ lδ τ refers to the union of south-east cones of (k, t) and (l,τ)
• multiplication: γkδ t ⊗ γ lδ τ refers to a south-east cone of (k+ l, t + τ)
• greatest lower bound: γkδ t ∧ γ lδ τ refers to the intersection of the two south-east

cones of (k, t) and (l,τ), i.e., the south-east cone of (max(k, l),min(t,τ)).

The graphical representation of these operations is given in Fig. 1.8.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

1 2 3 4

1

2

3

4

γ

δ

0

−1

−2

(a) γ1δ 2⊕ γ3δ 3
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

1 2 3 4

1

2

3

4

γ

δ

0

−1

−2

(b) γ1δ 1⊗ γ2δ 3 = γ3δ 4 �������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

1 2 3 4

1

2

3

4

γ

δ

0

−1

−2

(c) γ1δ 2∧ γ2δ 3 = γ2δ 2

Fig. 1.8 Graphical representation of operations in M ax
in [[γ,δ]].

Definition 34 (Causality of a series in M ax
in [[γ,δ]]) A series s∈M ax

in [[γ,δ]] is causal
if s = ε or if both valγ(s)≥ 0 and s� γvalγ (s)δ 0, where valγ(s) refers to the valuation
in γ of series s. Consequently, the exponents of all monomials composing a causal
series s are greater or equal to zero.

The set of causal elements of M ax
in [[γ,δ]] has a complete semiring structure and is

denoted M ax+
in [[γ,δ]]. Obviously, M ax+

in [[γ,δ]] is a complete sub-dioid of M ax
in [[γ,δ]].

Remark 22 (Causality of a matrix in M ax
in [[γ,δ]]) A matrix A with entries in M ax

in [[γ,δ]]
is causal, if all its entries are causal.

Definition 35 (Causal projection) The canonical injection ΠM ax+
in [[γ,δ]] : M ax+

in [[γ,δ]]→
M ax

in [[γ,δ]] is residuated and its residual is denoted Prcaus : M ax
in [[γ,δ]]→M ax+

in [[γ,δ]].
Formally, the series Prcaus(s) is the greatest causal series less or equal to series
s ∈M ax

in [[γ,δ]]. It can be computed by

Prcaus

(
⊕

k,t∈Z
s(k, t)γ

k
δ

t

)
=
⊕

k,t∈Z
s+(k, t)γk

δ
t

with

s+(k, t) =
{

s(k, t) if (k, t)≥ (0,0)
ε otherwise.

28 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Example 15 (Causal projection of a series) Given a non-causal series s= γ−4δ−1⊕
γ−2δ 2⊕ γ2δ 3⊕ γ4δ 4 ∈M ax

in [[γ,δ]]. Its causal projection scaus = Prcaus(s) = γ0δ 2⊕
γ2δ 3⊕ γ4δ 4 ∈M ax+

in [[γ,δ]]. Graphically, the minimal representation of the causal
projection of a series is the series that covers the same area in the first quadrant but
is devoid of any points in the other quadrants. In Fig. 1.9 the series s and its causal
projection Prcaus(s) are shown.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1 2 3 4

1

2

3

4

γ

δ

−1

−2

−4 −3 −2 −1

(a) s = γ−4δ−1⊕ γ−2δ 2⊕ γ2δ 3⊕ γ4δ 4 ���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

1 2 3 4

1

2

3

4

γ

δ

−1

−2

−4 −3 −2 −1

(b) Prcaus(s) = γ0δ 2⊕ γ2δ 3⊕ γ4δ 4

Fig. 1.9 Causal projection of a (non-causal) series s ∈M ax
in [[γ,δ]].

Definition 36 (Periodic series in M ax
in [[γ,δ]]) A series s ∈M ax

in [[γ,δ]] is said to be
periodic if it can be written as s = p⊕ q⊗ r∗, where p is a polynomial referring
to a transient phase, e.g., the start-up of the system, q is a polynomial representing
the periodical behavior, i.e., the pattern that will be repeated periodically, and r =
γν δ τ is a monomial describing the periodicity. Then the ratio ν/τ is the asymptotic
slope (or throughput) of the series, i.e., once the periodic regime is reached an event
occurs ν times every τ time units.

Example 16 (Periodic series in M ax
in [[γ,δ]]) Considering the series s ∈M ax

in [[γ,δ]]

s = e⊕ γδ
2⊕ γ

3
δ

3⊕ γ
4
δ

5⊕ γ
5
δ

6⊕ γ
6
δ

8⊕ γ
8
δ

9⊕ γ
9
δ

11⊕ γ
11

δ
12⊕ γ

12
δ

14⊕ . . .

This series is a periodic series and can be written

s = e⊕ γδ
2⊕ γ

3
δ

3⊕ γ
4
δ

5
︸ ︷︷ ︸

p

⊕
(

γ
5
δ

6⊕ γ
6
δ

8
)

︸ ︷︷ ︸
q

(
γ

3
δ

3)∗
︸ ︷︷ ︸

r∗

.

The graphical representation of this series is given in Fig. 1.10.

Definition 37 (Realizability of a series in M ax
in [[γ,δ]]) A series s ∈ M ax

in [[γ,δ]] is
said to be realizable if there exist two square (n×n) matrices A1,A2 with Boolean

1 Modeling manufacturing systems in a dioid framework 29

����
����
����

����
����
����

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����
�����
�����
�����

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

12

11

10

9

8

7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8 9 10 11

ν

τ

δ

γ

Fig. 1.10 Graphical representation of a periodic series in M ax
in [[γ,δ]].

entries and two (1×n) respectively (n×1) matrices C and B with Boolean entries
such that s =C (γA1⊕δA2)

∗B.

Remark 23 (Realizability of a matrix in M ax
in [[γ,δ]]) A matrix A ∈M ax

in [[γ,δ]] is
said to be realizable if all its entries are realizable.

Theorem 9 (Causality, Periodicity, Realizability [2]) Given a series s∈M ax
in [[γ,δ]],

the following statements are equivalent:

• s is causal and periodic
• s is realizable.

1.4 Dioid model of timed event graphs

Recall our example of a manufacturing system introduced in Sec. 1.1. The corre-
sponding TEG modeling this system is given in Fig. 1.4, and the recursive equa-
tions for the earliest possible firing instants have been determined in (1.9)–(1.14).
Rewriting these equations in max-plus algebra, i.e., in the dioid (Zmax,⊕,⊗), we
get

x1(k) = u1(k)⊕ x2(k−2)
x2(k) = 10x1(k)

x3(k) = u2(k)⊕ x4(k−1)
x4(k) = 4x3(k)

x5(k) = u3(k)⊕1x2(k)⊕1x4(k)⊕ x6(k−1)
x6(k) = 3x5(k)

and the output y(k) ∈ Zmax is

30 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

y(k) = x6(k).

This can be rewritten in matrix-vector form with x(k)= [x1(k)x2(k)x3(k)x4(k)x5(k)x6(k)]T

and u(k) = [u1(k)u2(k)u3(k)]T

x(k) =A0x(k)⊕A1x(k−1)⊕A2x(k−2)⊕Bu(k) (1.40)
y(k) =Cx(k) (1.41)

with

A0 =




ε ε ε ε ε ε

10 ε ε ε ε ε

ε ε ε ε ε ε

ε ε 4 ε ε ε

ε 1 ε 1 ε ε

ε ε ε ε 3 ε



, A1 =




ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε e ε ε

ε ε ε ε ε ε

ε ε ε ε ε e
ε ε ε ε ε ε



, A2 =




ε e ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε




B =




e ε ε

ε ε ε

ε e ε

ε ε ε

ε ε e
ε ε ε



, and C =

[
ε ε ε ε ε e

]
.

Clearly, the obtained equations are linear with respect to max-plus algebra. How-
ever, the linear system equations are implicit, i.e., x(k) = f (x(k), . . .). But, recalling
the fixpoint theorem (see Theorem 5), it is possible to obtain the smallest fixed point
of an implicit equation by using the Kleene star (see Def. 19 and Ex. 10). Formally,
the smallest fixed point of x = ax⊕b is x = a∗b with a∗ being the Kleene star of a.
Applying this to our example results in

x(k) =A∗0 (A1x(k−1)⊕A2x(k−2)⊕Bu(k))

=A∗0A1x(k−1)⊕A∗0A2x(k−2)⊕A∗0Bu(k)

y(k) =Cx(k),

with

1 Modeling manufacturing systems in a dioid framework 31

A∗0 =




e ε ε ε ε ε

10 e ε ε ε ε

ε ε e ε ε ε

ε ε 4 e ε ε

11 1 5 1 e ε

14 4 8 4 3 e



, A∗0A1 =




ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε e ε ε

ε ε ε 4 ε ε

ε ε ε 5 ε e
ε ε ε 8 ε 3



, A∗0A2 =




ε e ε ε ε ε

ε 10 ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε 11 ε ε ε ε

ε 14 ε ε ε ε




A∗0B =




e ε ε

10 ε ε

ε e ε

ε 4 ε

11 5 e
14 8 3



.

Thus, we obtained a linear explicit recurrence relation of second order for the earli-
est firing times of the involved transitions. By suitably augmenting the vector x, e.g.,
x̃(k) = [x(k)T x(k−1)T]T , it is possible to obtain a first order recurrence relation.
Formally we get

x̃(k) =
[
A∗0A1 A∗0A2
I E

]

︸ ︷︷ ︸
Ã

x̃(k−1)⊕
[
A∗0B

E

]

︸ ︷︷ ︸
B̃

u(k)

y(k) =
[
C E

]
︸ ︷︷ ︸

C̃

x̃(k)

with

Ã=




ε ε ε ε ε ε ε e ε ε ε ε

ε ε ε ε ε ε ε 10 ε ε ε ε

ε ε ε e ε ε ε ε ε ε ε ε

ε ε ε 4 ε ε ε ε ε ε ε ε

ε ε ε 5 ε e ε 11 ε ε ε ε

ε ε ε 8 ε 3 ε 14 ε ε ε ε

e ε ε ε ε ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε ε ε ε

ε ε e ε ε ε ε ε ε ε ε ε

ε ε ε e ε ε ε ε ε ε ε ε

ε ε ε ε e ε ε ε ε ε ε ε

ε ε ε ε ε e ε ε ε ε ε ε




, B̃ =




e ε ε

10 ε ε

ε e ε

ε 4 ε

11 5 e
14 8 3
ε ε ε

ε ε ε

ε ε ε

ε ε ε

ε ε ε

ε ε ε




,

C̃ =
[

ε ε ε ε ε e ε ε ε ε ε ε
]
.

Remark 24 In general, the firing times of transition t j in a TEG can be determined
in max-plus algebra by

32 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

t j(k) =
⊕

pi∈•t j

vi⊗ t(•pi)(k−m0
i),

where t(•pi)(k) is the time instant that the input transition of pi fires for the kth time,
i.e., tr(k) with tr ∈ •pi.

Generally, it is possible to convert any timed event graph (as defined in this chap-
ter) into a linear system in max-plus algebra. In such a max-plus algebraic system
the variable xi(k) refers to the earliest possible time instant that transition xi fires for
the kth time. Therefore, x(k) is also called dater function, as it determines a specific
time (or date) for the firing of all transitions in the TEG. Another possible way to
describe timed event graphs is through so called counter functions denoted x(t).
These counter function determine the maximal number of firings of transitions up
to time t, i.e., xi(t) refers to the maximal number of firings of transition xi up to time
t. Converting a timed event graph into a linear system of counter functions implies
modeling the TEG as a min-plus linear system [2].

Example 17 (Timed event graphs and min-plus algebra) To obtain a linear min-
plus algebraic model of the TEG of our manufacturing example shown in Fig. 1.4,
we have to determine the maximal number of firings of each transition. At time t
transition x1 can fire two times more often than transition x2 has fired at time t
(there are two tokens in place p5 which has a holding time of 0) and as often as u1
has fired at time t. Formally, this can be written in (Zmin,⊕,⊗)

x1(t) = 2x2(t)⊕u1(t).

Transition x2 can fire at time t at most as often as transition x1 has fired at time
t−10 (there are zero tokens in place p4 which has a holding time of 10 time units).
Thus, we get

x2(t) = x1(t−10).

Similarly, we get for all other transitions

x3(t) = 1x4(t)⊕u2(t)

x4(t) = x3(t−4)
x5(t) = x2(t−1)⊕ x4(t−1)⊕1x6(t)⊕u3(t)

x6(t) = x5(t−3)
y(t) = x6(t)

In matrix-vector form with x(t) = [x1(t)x2(t)x3(t)x4(t)x5(t)x6(t)]T and u(t) =
[u1(t)u2(t)u3(t)]T this yields

1 Modeling manufacturing systems in a dioid framework 33

x(t) =A0x(t)⊕A1x(t−1)⊕A3x(t−3)⊕ . . .

. . .⊕A4x(t−4)⊕A10x(t−10)⊕Bu(t)
(1.42)

y(t) =Cx(t). (1.43)

Using the Kleene star in min-plus algebra, this can be rewritten in explicit form, i.e.,

x(t) =A∗0 (A1x(t−1)⊕A3x(t−3)⊕A4x(t−4)⊕A10x(t−10)⊕Bu(t))

y(t) =Cx(t),

and, as in the max-plus case, a first order recurrence relation x̃(t) = Ãx̃(t −
1)⊕ B̃u(t),y(t) = C̃x̃(t) can be obtained by suitably augmenting the vector
x(t). However, for this specific system a possible augmented vector is x̃(t) =[
x(t)T x(t−1)T x(t−2)T . . . x(t−8)T x(t−9)T

]T ∈ Z60
min, which is a significant

dimensional increase. Consequently, the corresponding matrix Ã would be a 60×
60 matrix with entries in Zmin, B̃ would be a 60×3 matrix and C̃ would be 1×60.

Obviously, modeling a TEG as given in Fig. 1.4 as a first order recurrence re-
lation in min-plus algebra is not convenient. Modeling the system as a first order
recurrence relation in max-plus algebra may also not be convenient. It may then
be preferable, to use other idempotent semirings such as the dioids Zmax[[γ]] or
Zmin[[δ]] to provide an algebraic relation. The system equation in the dioids Zmax[[γ]]
or Zmin[[δ]] can be achieved by applying the γ-transform (see Def. 27) or δ -transform
(see Def. 29), respectively.

Example 18 (Timed event graphs and the dioid Zmax[[γ]]) To obtain a linear al-
gebraic relation in Zmax[[γ]] representing the dynamical behavior of the TEG dis-
played in Fig. 1.4, the γ-transform is applied to (1.40). This results in

x(γ) =A0x(γ)A1γx(γ)⊕A2γ
2x(γ)⊕Bu(γ)

=
(
A0⊕ γA1⊕ γ

2A2
)

︸ ︷︷ ︸
A(γ)

x(γ)⊕Bu(γ)

=




ε γ2 ε ε ε ε

10 ε ε ε ε ε

ε ε ε γ ε ε

ε ε 4 ε ε ε

ε 1 ε 1 ε γ

ε ε ε ε 3 ε



x(γ)⊕




e ε ε

ε ε ε

ε e ε

ε ε ε

ε ε e
ε ε ε



u(γ)

y(γ) =Cx(γ)

=
[

ε ε ε ε ε e
]
x(γ).

Example 19 (Timed event graphs and dioid Zmin[[δ]]) Applying the δ -transform
to (1.42) one obtains a linear algebraic system in Zmin[[δ]] representing the dynam-
ical behavior of the TEG shown in Fig. 1.4, i.e.,

34 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

x(δ) =A0x(δ)⊕A1δx(δ)⊕A3δ
3x(δ)⊕A4δ

4x(δ)⊕A10δ
10x(δ)⊕Bu(δ)

=
(
A0⊕δA1⊕δ

3A3⊕δ
4A4⊕δ

10A10
)

︸ ︷︷ ︸
A(δ)

x(δ)⊕Bu(δ)

=




ε 2 ε ε ε ε

δ 10 ε ε ε ε ε

ε ε ε 1 ε ε

ε ε δ 4 ε ε ε

ε δ ε δ ε 1
ε ε ε ε δ 3 ε



x(δ)⊕




e ε ε

ε ε ε

ε e ε

ε ε ε

ε ε e
ε ε ε



u(δ)

y(δ) =Cx(δ)

=
[

ε ε ε ε ε e
]
x(δ).

Comparing the linear representations in the dioids Zmax[[γ]] and Zmin[[δ]] of the
TEG shown in Fig. 1.4, it is easy to recognize their correlation. While the coeffi-
cients of the elements in matrix A(γ) in Zmax[[γ]] represent the holding times and
the exponents of γ represent the number of tokens in the corresponding places, it
is reversed in matrix A(δ) in Zmin[[δ]]. However, it is important to note, that the
definitions of ⊕ and ⊗ differ in Zmax[[γ]] from the definitions of these operations in
Zmin[[δ]].

To put it in a nutshell, it is possible to model the dynamic behavior of a timed
event graph as a max-plus linear system as well as a min-plus linear system. It is
also possible to achieve linear algebraic models of TEG in the dioids Zmax[[γ]] and
Zmin[[δ]]. Which dioid is used to model the dynamic behavior of a specific TEG
depends on the system to be modeled itself but also on the biases of the user who
wants to describe the system. The first issue becomes clear, when we consider a
system which works with a specific sampling time. In this case a model in min-plus
algebra or in Zmin[[δ]] may be very convenient, since the occurrence of events, i.e.,
the firing of transitions, can be recognized at every sampling step. For event driven
systems, however, a model in max-plus algebra or Zmax[[γ]] may fit better than a
system in min-plus algebra.

Nonetheless, in our opinion, the most convenient idempotent semiring to model
(almost) any TEG in an efficient way is the dioid M ax

in [[γ,δ]] (see Def. 33), which
is a two dimensional dioid in γ and δ with Boolean coefficients and integer expo-
nents. M ax

in [[γ,δ]] can be seen as a combination of the dioid Zmax[[γ]] and Zmin[[δ]].
Models in M ax

in [[γ,δ]] are equally suitable for systems with a fixed sampling time
and event driven systems. Therefore, in the remainder of this chapter timed event
graphs will be described in the idempotent semiring M ax

in [[γ,δ]]. Consequently, all
dioid operations and system descriptions are meant to be in M ax

in [[γ,δ]] unless stated
otherwise.

Example 20 (Timed event graphs and the dioid M ax
in [[γ,δ]]) The linear represen-

tation of the TEG given in Fig. 1.4 in the dioid M ax
in [[γ,δ]] is

1 Modeling manufacturing systems in a dioid framework 35

x(γ,δ) =A(γ,δ)x(γ,δ)⊕Bu(γ,δ)

=




ε γ2 ε ε ε ε

δ 10 ε ε ε ε ε

ε ε ε γ ε ε

ε ε δ 4 ε ε ε

ε δ ε δ ε γ

ε ε ε ε δ 3 ε



x(γ,δ)⊕




e ε ε

ε ε ε

ε e ε

ε ε ε

ε ε e
ε ε ε



u(γ,δ)

y(γ,δ) =Cx(γ,δ)

=
[

ε ε ε ε ε e
]
x(γ,δ).

Remark 25 (Software) There are several software packages available to handle
linear system in a dioid settings, e.g., the max-plus algebra toolbox for ScicosLab
www.scicoslab.org, or the C++ library MinMaxGD to manipulate periodic
series in M ax

in [[γ,δ]] [11].

1.5 Modeling Manufacturing Systems with Dioids

1.5.1 Input-output behavior of manufacturing systems

In the previous sections, it has been shown, how certain manufacturing systems can
be modeled as a timed event graph and how this TEG can then be transformed into a
linear system in M ax

in [[γ,δ]]. The obtained system has a structure that is well known
from linear system theory, i.e.,

x=Ax⊕Bu

y =Cx.

As M ax
in [[γ,δ]] is a complete dioid, using the Kleene star, this system can be rewritten

x=Ax⊕Bu

=A∗Bu

y =Cx

and replacing x in the output equation one obtains

y =CA∗Bu.

The resulting matrix H =CA∗B is called transfer matrix (or transfer relation) of
the system as it represents its input-output relation.

Example 21 (Simple manufacturing system (cont.)) The input-output behavior of
our running example (see Fig. 1.4) can easily be determined using appropriate soft-

36 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

ware packages (see Rem. 25). To do so, one first has to compute the Kleene star of
system matrix A,

A∗ =




(
γ2δ 10

)∗
γ2
(
γ2δ 10

)∗
ε ε ε ε

δ 10
(
γ2δ 10

)∗ (
γ2δ 10

)∗
ε ε ε ε

ε ε
(
γδ 4
)∗

γ
(
γδ 4
)∗

ε ε

ε ε δ 4
(
γδ 4
)∗ (

γδ 4
)∗

ε ε(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗ (
δ ⊕ γδ 4

)(
γ2δ 10

)∗
δ 5
(
γδ 4
)∗

δ
(
γδ 4
)∗ (

γδ 3
)∗

γ
(
γδ 3
)∗

(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗ (
δ 4⊕ γδ 7

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 4
(
γδ 4
)∗

δ 3
(
γδ 3
)∗ (

γδ 3
)∗


 .

Taking a look at matrix A∗, the general structure of the modeled system can be
recognized. The top left (2×2)-block represents resource RA, the next (2×2)-block
on the diagonal represents resource RB. Both are independent of the operation of
other resources. Resource 3, which is represented by the bottom-right (2×2)-block,
depends on the operation of both resources RA and RB, and therefore, the bottom-
left (2× 4)-block is non-zero. Furthermore, it can be seen, that the resources have
different throughputs. While resource RA can process up to 2 parts every 10 time
units, resource RB can process 1 part every 4 time units. The fastest machine is
resource RC with up to 1 part every 3 time units, however, as mentioned before,
this resource is constrained by the operation of RA and RB and consequently, its
throughput is constrained by the throughput of RA and RB as well. This specific
structure is also visible in matrix A∗B

x=A∗Bu

=




(
γ2δ 10

)∗
ε ε

δ 10
(
γ2δ 10

)∗
ε ε

ε
(
γδ 4
)∗

ε

ε δ 4
(
γδ 4
)∗

ε(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗
δ 5
(
γδ 4
)∗ (

γδ 3
)∗

(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 3
(
γδ 3
)∗



u.

Finally, the transfer relation of this system is

y =CA∗Bu

= [
(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 3
(
γδ 3
)∗]u.

Now, given a specific input vector u it is possible to determine the time instants
that the final products (part C) are assembled and released from the system. Assum-
ing for example, that unlimited raw parts are available at any time, i.e., ui = e.
Recall that the unit element in M ax

in [[γ,δ]] represents an equivalence class, i.e.,
e = γ0δ 0 = γ0δ 0⊕ γ1δ 0⊕ γ2δ 0⊕ This basically means, that the input transi-
tions fire infinitely often at time 0 and, therefore, do not constrain the manufacturing
system. Consequently, considering the input ui = e for all inputs results in the fastest
possible output. For our example, we get

y = [
(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 3
(
γδ 3
)∗]e

=
(
δ

14⊕ γδ
17)(

γ
2
δ

10)∗ .

1 Modeling manufacturing systems in a dioid framework 37

Thus, the first part is finished (at the earliest) at time t = 14, the second part can be
finished at time t = 17, the third part at time t = 24, the forth part at time t = 27
and so on. The overall throughput of the system is 2 parts every 10 time units, which
represents the throughput of resource RA. Accordingly, resource RA is the bottleneck
of the system, i.e., the slowest resource. If the user wants to speed up the system,
he or she has to increase the throughput of resource RA first, e.g., by increasing the
capacity of the resource.

Of course, it is also (easily) possible to determine the state evolution of the system
in case of an unconstraining input, i.e.,

x=A∗Be

=




(
γ2δ 10

)∗
δ 10
(
γ2δ 10

)∗
(
γδ 4
)∗

δ 4
(
γδ 4
)∗

(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗
(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗



.

This state evolution reveals that resource RA has a throughput of 2 parts every 10
time units, resource RB has a throughput of 1 part every 4 time units, and resource
RC, which has an internal throughput of 1 part every 3 time units, “inherits” the
smaller throughput of resource RA, which has to provide parts for resource RC.

Remark 26 (Control theory for linear systems in a dioid setting) The state evo-
lution determined in Ex. 21 includes different throughputs for the different resources.
In particular, resource RB is working faster than the other two resources. As a con-
sequence, there will be an accumulation of parts B, which have to wait to be further
processed by resource RC. In terms of timed event graphs, there will be an accumu-
lation of tokens in the place between x4 and x5. For example, if all resources work
as fast as possible, i.e., all transitions fire as early as possible, at time t=100 there
will be 7 parts B waiting for processing by RC (25 parts B have been finished, and
the processing of 18 parts C has been started), at time t=1000 the number of parts
B waiting between resource RB and RC adds up to 52 (250 parts B have been re-
leased but only 198 of them have been further processed by RC). This is certainly not
desired as these parts B have to be stored until they are needed for the processing
of part C. To avoid this and to reduce storing capacity, one often imposes a just-
in-time policy, i.e., the production of intermediate parts is started such that these
parts are finished just in time for subsequent processing steps. If the system should
work at maximum speed, just-in-time means that every process should be started as
late as possible without reducing the (fastest) throughput of the overall system. For
Ex. 21 the just-in-time input, i.e., the largest u with respect to the order relation of
M ax

in [[γ,δ]] that does not delay the output, is relatively easy to determine, i.e.,

u jit =



(
e⊕ γδ 3

)(
γ2δ 10

)∗
(
δ 5⊕ γδ 9

)(
γ2δ 10

)∗
(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗


 .

38 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

However, for more complex systems, the optimal input with respect to the just-in-
time policy may not be as obvious. Furthermore, it is desirable to determine u jit in
a feedback fashion to allow it to react to possible unforeseen delays that may occur
during the operation of the manufacturing system. To solve these issues, residuation
theory (see Def. 17) can be employed. Using residuation theory, one can easily
compute the optimal just-in-time input for a given output. Moreover, on the basis
of residuation, an extensive control theory, including input filtering, state feedback
control, output control, disturbance decoupling, and model predictive control has
been developed. For more information on the control theory in dioids, the interested
reader is referred to the numerous publications in this field, e.g., [9, 10, 12, 15, 16,
19, 21, 22, 28].

Timed event graphs and their linear representation in dioids are suitable tools for
the efficient modeling of certain manufacturing systems subject to delay and syn-
chronization phenomena. However, some systems may exhibit specific features that
cannot be readily included in a standard TEG model. For example, the processing
of a part on a resource may have to be performed within a time interval, also called
time window. Thus, with respect to TEG, there exists not only a minimal time a to-
ken has to spend in a place but also an upper bound for the time, by which the token
has to be removed from the place by its output transition. Similarly, while it is pos-
sible to model the maximal number of tokens in a part of the TEG, e.g., the maximal
number of parts being processed at the same time in a resource, it is not possible to
model a minimal number of tokens that have to be present in this part of the TEG.
Such properties arise naturally if one requires the input transitions of certain places
to fire a specific number of times more often than the corresponding output transi-
tions. Constraints on the minimal number of tokens frequently occur, for example,
in resource allocation problems which are quite common in manufacturing system.
They are also common in high-throughput screening (HTS), which has become an
important technology to rapidly test thousands of bio-chemical substances [14, 27]
and is mostly used in pharmaceutical industries for a first screening in the process
of drug discovery.

While the issue of timed event graphs with time window constraints or similar
temporal constraints has been handled in several publications, e.g., [1, 18, 20, 23],
the latter issue concerning a minimal number of tokens in a place has, to our knowl-
edge, not yet been addressed. In the following, we will show one possible way to
include time window constraints as well as constraints on the minimal number of
tokens in timed event graphs and their corresponding linear representation in dioids.

1.5.2 Modeling time window constraints

Example 22 (Manufacturing systems with time window constraints) Consider a
(part of a) manufacturing system which, similar to the system in Ex. 21, combines
two intermediate products to a final product. However, once intermediate product
1 has been finished it has to rest for at least 3 but not more than 5 time units be-

1 Modeling manufacturing systems in a dioid framework 39

fore it can be further processed. Similarly, intermediate product 2 has to rest for at
least 1 but not more than 4 time units after it has been finished. Thus, there are time
windows for the resting periods of both intermediate products. The corresponding
part of the timed event graph is given in Fig. 1.11. In this figure, the brackets at the
places represent the time window with its lower and upper bound. For this TEG it is

[1,4]

[3,5]

x1

x2

x3

Fig. 1.11 Part of a timed event graph with time window constraints.

quite simple to determine the dependencies in M ax
in [[γ,δ]]. The lower bounds of the

time window are modeled as for standard TEG, i.e.,

x3 � δ
3x1

x3 � δx2.

This means that x3 can fire as soon as 3 time units have passed after the firing of
x1 and 1 time unit needs to have passed after the firing of x2. Consequently the two
dependencies can be merged to

x3 � δ
3x1⊕δx2. (1.44)

The upper bounds of the time window are modeled similarly. Transition x3 has to
fire at the latest 5 time units after the firing of x1 and not later than 4 time units after
the firing of x2. In M ax

in [[γ,δ]] this can be written

x3 � δ
5x1

x3 � δ
4x2.

These two constraints can be merged to

x3 � δ
5x1∧δ

4x2. (1.45)

40 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Note that the dependencies of the lower bounds are merged by ⊕ into their great-
est lower bounds, and the upper bounds are merged into their least upper bound.
Equations (1.44) and (1.45) can be written in matrix vector form

x�




ε ε ε

ε ε ε

δ 3 δ ε


⊗x (1.46)

x�



> > >
> > >
δ 5 δ 4 >


�x. (1.47)

It is important to note that the dependencies of the upper time window constraints
are written in terms of the dual multiplication (see Def. 21 for details) and that the
zero element of this operation is >.

In the previous example there are two different kinds of constraints on the sys-
tem and it is not ad hoc possible to determine a linear model in M ax

in [[γ,δ]]. In the
following we will show how (under some conditions) such a linear model can be
achieved. Our approach is based on the method introduced in [24, 25, 23].

Formally, the internal behavior of the system is defined by two types of con-
straints, i.e.,

x�A⊗x (1.48)

x�A�x (1.49)

where the entries of A represent the lower time bounds imposed by a standard timed
event graph and the entries of A represent the upper bounds of the time windows
and the minimal number of tokens between two transitions. According to Lemma 1
and 5, any solution of the above inequalities also satisfies

x=A∗⊗x

x=A∗�x.

The aim is to find an x that fulfills both constraints, which means that we have to
guarantee that x is in the image of LA∗ and in the image of ΛA∗ (see Rem. 11 and
Rem. 13). Formally,

A∗⊗x= x=A∗�x⇔ x ∈ ImLA∗ ∩ ImΛA∗ . (1.50)

It can be shown [5] that, if every entry of A∗ is either ε , > or admits a mul-
tiplicative inverse, the map P : x 7→

(
A∗•\A∗

)∗ ◦\x is a projector in ImLA∗ ∩
ImΛA∗ . Hence, if this condition holds, x ∈ ImLA∗ ∩ ImΛA∗ is equivalent to x =(
A∗•\A∗

)∗ ◦\x. This, according to Lemma 1, is equivalent to

1 Modeling manufacturing systems in a dioid framework 41

x= (A∗•\A∗)∗︸ ︷︷ ︸
A
∗

⊗x.

Consequently, if the invertibility condition for the entries of A∗ holds, the matrix
A
∗ captures the constraints (1.48) and (1.49) and therefore represents time window

constraints.

Example 23 (Simple manufacturing system with time window constraints) Re-
consider the simple manufacturing system of Ex. 21 with an additional time window
constraint between transition x4 and x5, such that x5 has to fire at the latest 2 time
units after x4 has fired. The corresponding (extended) TEG is given in Fig. 1.12. As

x1 x210

0

x4x3

x5 x6

u2

u3 y

0

3

4

0

u1

1

[1,2]

Fig. 1.12 Simple manufacturing system with time window constraints.

nothing has changed except for the upper bound for the time between the firing of x4
and x5 the matrix A∗ given in Ex. 21 is equivalent to matrix A∗ of the system with
time window constraints given in Fig. 1.12. The only additional constraint is

x5 � δ
2� x4,

i.e., transition x5 shall fire (for the kth time) at the latest two time units after transtion
x4 has fired for the kth time. Consequently, matrix A has a single entry not equal to
>, i.e.,

[
A
]

54 = δ 2. The resulting A
∗

capturing all constraints is

A
∗
= (A∗•\A∗)∗

=




(
γ2δ10

)∗
γ2
(

γ2δ10
)∗

ε ε ε ε

δ10
(

γ2δ10
)∗ (

γ2δ10
)∗

ε ε ε ε(
γδ9 ⊕ γ2δ13

)(
γ2δ10

)∗ (
γδ−1 ⊕ γ2δ3

)(
γ2δ10

)∗ (
γδ4

)∗
γ

(
γδ4

)∗ (
γδ−2

)(
γδ4

)∗ (
γ2δ−2

)(
γδ4

)∗
(

δ9 ⊕ γδ13
)(

γ2δ10
)∗ (

δ−1 ⊕ γδ3
)(

γ2δ10
)∗

δ4
(

γδ4
)∗ (

γδ4
)∗

δ−2
(

γδ4
)∗

γδ−2
(

γδ4
)∗

(
δ11 ⊕ γδ14

)(
γ2δ10

)∗ (
δ ⊕ γδ4

)(
γ2δ10

)∗
δ5
(

γδ4
)∗

δ

(
γδ4

)∗
e⊕
(

γδ3
)(

γδ4
)∗

γ⊕
(

γ2δ3
)(

γδ4
)∗

(
δ14 ⊕ γδ17

)(
γ2δ10

)∗ (
δ4 ⊕ γδ7

)(
γ2δ10

)∗
δ8
(

γδ4
)∗

δ4
(

γδ4
)∗

δ3 ⊕
(

γδ6
)(

γδ4
)∗

e⊕ γδ3 ⊕
(

γ2δ6
)(

γδ4
)∗


 .

42 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

Then the system state x can be computed by

x=A
∗
Bu

=




(
γ2δ 10

)∗
ε ε

δ 10
(
γ2δ 10

)∗
ε ε(

γδ 9⊕ γ2δ 13
)(

γ2δ 10
)∗ (

γδ 4
)∗

γδ−2
(
γδ 4
)∗

(
δ 9⊕ γδ 13

)(
γ2δ 10

)∗
δ 4
(
γδ 4
)∗

δ−2
(
γδ 4
)∗

(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗
δ 5
(
γδ 4
)∗ e⊕

(
γδ 3
)(

γδ 4
)∗

(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 3⊕
(
γδ 6
)(

γδ 4
)∗



u,

which is not causal with respect to Def. 34. The corresponding causal projection of
the transfer relation is

x= Prcaus(A
∗
B)u

=




(
γ2δ 10

)∗
ε ε

δ 10
(
γ2δ 10

)∗
ε ε(

γδ 9⊕ γ2δ 13
)(

γ2δ 10
)∗ (

γδ 4
)∗

γ2δ 2
(
γδ 4
)∗

(
δ 9⊕ γδ 13

)(
γ2δ 10

)∗
δ 4
(
γδ 4
)∗

γδ 2
(
γδ 4
)∗

(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗
δ 5
(
γδ 4
)∗ e⊕

(
γδ 3
)(

γδ 4
)∗

(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗
δ 8
(
γδ 4
)∗

δ 3⊕
(
γδ 6
)(

γδ 4
)∗



u,

and the earliest possible firing of all internal transitions is

x= Prcaus(A
∗
B)e

=




(
γ2δ 10

)∗
δ 10
(
γ2δ 10

)∗
(
γδ 9⊕ γ2δ 13

)(
γ2δ 10

)∗
(
δ 9⊕ γδ 13

)(
γ2δ 10

)∗
(
δ 11⊕ γδ 14

)(
γ2δ 10

)∗
(
δ 14⊕ γδ 17

)(
γ2δ 10

)∗



.

Looking at the earliest possible firings of internal transitions, it becomes clear that
the time window constraint affects the operation of resource RB (represented by
transitions x3 and x4). Since the start of processing part C may not be more than
2 time units after part B is finished, the production of B is slowed down to the
production rate of resource RC, which is constrained by the throughput of resource
RA, the bottleneck of the system. Consequently, the earliest possible and admissible
firing of every transition has the same throughput of 2 parts every 10 time units.
Furthermore, the transfer relation of the system also changes, i.e.,

y =CA
∗
Bu

= [
(
δ 14⊕ γδ 17

)(
γ2δ10

)∗
δ 8
(
γδ 4
)∗

δ 3⊕
(
γδ 6
)(

γδ 4
)∗]u

While the firing of internal transitions and the transfer relation change due to
the additional time window constraint, the fastest throughput of the overall system
remains the same, i.e.,

1 Modeling manufacturing systems in a dioid framework 43

y =CA
∗
Be

=
(
δ

14⊕ γδ
17)(

γ
2
δ

10)∗ .

This is due to the fact that the introduced time window does not affect the overall
throughput of the system, but rather imposes an addition constraint on its internal
behavior.

1.5.3 Modeling reentrant operations

The previous example described a system with time window constraints. In the fol-
lowing example, a system is described in which a minimal number of tokens is
required in certain places, e.g., to increase the throughput of the system.

Example 24 (Nested schedules in manufacturing systems) Consider a simple manu-
facturing system which consists of a single resource with a capacity of 1. However,
this resource has to perform two processing steps on every part. The minimal times
for these two processing steps, also called activities, are 2 time units and 1 time
unit, respectively. In between these two activities the part is moved to a buffer of
appropriate size and has to rest there for at least 2 time units. Using this setup,
parts should be produced in an efficient way. A rather naive approach would be to
start producing one part after the other. The corresponding TEG of this approach
is given in Fig. 1.13. In this figure, the input represents the provision with raw ma-

x2 x3 x4 yx1u

act1 act2

2

0

0

0

1 00 2

Fig. 1.13 TEG of the simple manufacturing system (Ex. 24).

terial, the output y refers to the finishing of a part and x1 and x2 (resp. x3 and x4)
model the start and finish events of activity one (resp. activity two). The activities
are indicated by dashed boxes and the buffer is represented by the place in between
the two activities. The capacity of the single resource is modeled by the three initial
tokens shown in Fig. 1.13. Since the resource has a single capacity, act1 cannot start
earlier than the same activity of the previous part has been finished. Likewise, act2
cannot start until the preceding act2 has been finished and act1 can only start if the
previous part has been finished processing in act2. In other words, at any time there
is at most one part processed in act1, there is also at most one part processed in

44 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

act2, and finally, at any time there is at most one part processed in the system. In
fact, modeling the “capacity” of an activity is not necessary in this setting, however,
later on (in a different setting, i.e., in operations with nested schedules) this may be
crucial for the correct modeling of the system’s behavior. The linear representation
of the TEG given in Fig. 1.13 in M ax

in [[γ,δ]] results in

x=




ε γ ε γ

δ 2 ε ε ε

ε δ 2 ε γ

ε ε δ ε




︸ ︷︷ ︸
A

x⊕




e
ε

ε

ε




︸ ︷︷ ︸
B

u

y =
[

ε ε ε e
]

︸ ︷︷ ︸
C

x.

The smallest solution of the implicit equation is

x=A∗Bu

=




(
γδ 5
)∗

γδ 3
(
γδ 5
)∗

γδ
(
γδ 5
)∗

γ
(
γδ 5
)∗

δ 2
(
γδ 5
)∗ (

γδ 5
)∗

γδ 3
(
γδ 5
)∗

γδ 2
(
γδ 5
)∗

δ 4
(
γδ 5
)∗

δ 2
(
γδ 5
)∗ (

γδ 5
)∗

γδ 4
(
γδ 5
)∗

δ 5
(
γδ 5
)∗

δ 3
(
γδ 5
)∗

δ
(
γδ 5
)∗ (

γδ 5
)∗







e
ε

ε

ε


u

=




(
γδ 5
)∗

δ 2
(
γδ 5
)∗

δ 4
(
γδ 5
)∗

δ 5
(
γδ 5
)∗


u,

and the corresponding input-output behavior of the system is

y =Cx=CA∗Bu

= δ
5
(

γδ
5
)∗

u.

Looking at the transfer relation one can easily see that 5 time units after the in-
put has fired for the first time, the first part is finished. Furthermore, the maximal
throughput of the system is 1 part every 5 time units. Often the operation of a man-
ufacturing system is visualized by a so called Gantt chart. The Gantt chart of this
example is given in Fig. 14(a). Looking at the Gantt chart of the example it is ob-
vious, that the capacity utilization of the single resource R1 is rather low. More
precisely, between the execution of act1 and act2 of a part the resource is idle. To
increase the efficiency of the manufacturing system, the user may want to try to re-
duce this idle time by choosing a different schedule. For example, the idle time of
the resource when producing part k may be used to execute act1 of the next part,
i.e., part k+ 1, and consequently act2 of part k will be executed between act1 and
act2 of part k + 1. Such a schedule is said to be nested as (at least) one activity

1 Modeling manufacturing systems in a dioid framework 45

���
���
���
���

���
���
���
���

��
��
��
��

����
����
����
����

��
��
��
��

k k+1 k+2part

R1

act1 act2 act1 act2 act1 act2

time

(a) Gantt chart of a simple schedule.

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

��
��
��
��

���
���
���
���

�����
�����
�����
�����

����
����
����
����

��
��
��
��

k+2k+1kpart k−1 k+3 k+4

R1

act1 act1 act1act2 act2 act2act2act2 act1 act1

time

(b) Gantt chart of a nested schedule.

Fig. 1.14 Gantt chart of possible schedules of the manufacturing system.

of a future part (e.g., part k+ 1) is executed in between activities of part k. In our
example, however, this is only possible if the resting time between act1 and act2 is
extended by 1 time unit (to be able to squeeze in the additional activities), which is
of course possible as the two time units resting time represent a minimal time. The
corresponding Gantt chart of this nested schedule is given in Fig. 14(b). From this,
it can be seen that the total processing time of a single part is elongated from 5 to 6
time units, but the throughput of the system is increased to 1 part every 3 time units.
To study this formally, the nested schedule is modeled as a TEG and represented as
a linear system in the dioid M ax

in [[γ,δ]]. To do this, one has to find the dependencies
for the firing of transitions in the system. First of all, it is clear that the (minimal)
timing information for the production of a single part remains unchanged, i.e.,

x2 � δ
2x1 processing time of act1

x3 � δ
2x2 resting time between act1 and act2

x4 � δx3 processing time of act2.

Furthermore, as the capacity of the resource does not change, an activity for part k
can still only start if the same activity for part k−1 has been finished, i.e., one gets

x1 � γx2

x3 � γx4.

Thus, to this point nothing has changed with respect to the dependencies of the
simple schedule. What changes is the number of parts present in the system at the
same time. Even though resource R1 is still of single capacity, there are always
two parts in the system (one being processed in act1 or act2 and the other one

46 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

resting). Thus, the dependencies of different activities executed on different parts to
be processed change. Looking at the Gantt chart of the nested schedule, one can
easily determine, that act1 of part k has to be finished before act2 of part k−1 can
start. Similarly, act1 of part k + 1 cannot start until act2 of part k− 1 has been
finished. Formally, this means

x2 � γ
1x3 (1.51)

x1 � γ
2x4. (1.52)

The first of these two inequalities warrants particular attention as it is the only
constraint where the time of the occurrence of an event for a part is less or equal
to the time of the occurrence of an event related to a previous part. With respect to
timed event graphs, this means that at any time, the number of firings of transition
x2 should be at least one more than the number of firings of x3, i.e., there should
always be a minimum of one token in the place between x2 and x3, if the number of
initial tokens is zero.

Remark 27 Note that the requirement x2 � γ1x3 could of course also be written as
x3 � γ−1x2. This, however, would lead to an acausal system model in M ax

in [[γ,δ]], as
at least one entry in the system matrices would have a negative exponent in γ .

Clearly, the constraints (1.51) and (1.52) are very similar to the constraints of a
time window. In fact, with respect to the event variable γ , the constraints on the min-
imal and maximal number of tokens can be handled analogously to the constraints
on δ of time window constraints.

Example 25 (Nested schedules in manufacturing systems (cont.)) Reconsider the
manufacturing system with a nested schedule from Ex. 24. Similar to time window
constraints, it is possible to model this system in M ax

in [[γ,δ]] by

x�A⊗x

x�A�x

where the matrices A and A are

A=




ε γ ε γ2

δ 2 ε ε ε

ε δ 2 ε γ

ε ε δ ε


 , A=




> > > >
> > γ >
> > > >
> > > >


 .

As

A∗ =




e > > >
> e γ >
> > e >
> > > e




1 Modeling manufacturing systems in a dioid framework 47

contains only monomials, i.e., elements that are either ε , > or have a multiplicative
inverse, the resulting matrix A

∗
capturing all constraints is

A
∗
= (A∗•\A∗)∗

=




(γδ 3)∗ γδ (γδ 3)∗ γ2δ (γδ 3)∗ γ2(γδ 3)∗

δ 2(γδ 3)∗ (γδ 3)∗ γ2δ 3(γδ 3)∗ γ2δ 2(γδ 3)∗

γ−1δ 2(γδ 3)∗ γ−1(γδ 3)∗ (γδ 3)∗ γδ 2(γδ 3)∗

γ−1δ 3(γδ 3)∗ γ−1δ (γδ 3)∗ δ (γδ 3)∗ (γδ 3)∗


 .

Then, the complete system representation (with input and output elements) results
in

x=A
∗
x⊕Bu =

(
A
∗)∗

Bu =A
∗
Bu

=




(γδ 3)∗

δ 2(γδ 3)∗

γ−1δ 2(γδ 3)∗

γ−1δ 3(γδ 3)∗


u

y =Cx=CA
∗
Bu

= γ
−1

δ
3(γδ

3)∗u.

Obviously, the obtained transfer relation is not causal. Applying the causal projec-
tion Prcaus results in

y = δ
6(γδ

3)∗u,

which is equivalent to the system behavior given in the Gantt chart of the nested
schedule (Fig. 14(b)) of Ex. 24.

Obviously, by considering constraints on the minimal number of tokens in places,
it is possible to model nested schedules of manufacturing systems. Such nested
schedules may have a higher throughput and, therefore, may be more efficent than
simple schedules which can be modeled without additional constraints in standard
dioids.

1.5.4 Checking constraint feasibility

One remaining question is, what happens when the user makes a mistake and mod-
els an unfeasible constraint, e.g., when the upper bound of a time window constraint
is smaller than the lower bound. Formally, this would mean that there are two con-
straints

48 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

x j � δ
txi

x j � δ
txi

with t > t. The corresponding TEG is given in Fig. 1.15. The resulting system model

[t, t] x jxi

Fig. 1.15 Simple TEG with unfeasible time window constraints, i.e., t > t.

of this small TEG with unfeasible time window constraints is

A
∗
= (A∗•\A∗)∗

=

([
e >
δ t e

]
•\
[

e ε

δ t e

])∗

with x = [xi x j]
T . According to Lem. 4 the elements of matrix A = (A∗•\A∗) can

be computed by

[
A
]

i j =
n⊕

k=1

([
A∗
]−1

ki ⊗ [A∗]k j

)
.

Thus,
[
A
]

11 = e⊗ e⊕δ
−t ⊗δ

t

= δ
(t−t)

[
A
]

12 = e⊗ ε⊕δ
−t ⊗ e

= δ
−t

[
A
]

21 = ε⊗ e⊕ e⊗δ
t

= δ
t

[
A
]

22 = ε⊗ ε⊕ e⊗ e

= e.

Finally, the Kleene star of matrix A has to be determined, e.g., by the algorithm
given in Rem. 10. One central element in this algorithm is the term (a21a∗11a12⊕
a22)

∗, which for matrix

A=

[
δ (t−t) δ−t

δ t e

]
=

[
a11 a12
a21 a22

]

1 Modeling manufacturing systems in a dioid framework 49

can be computed as

(a21a∗11a12⊕a22)
∗ =

(
δ

t(δ (t−t))∗δ−t ⊕ e
)∗

.

Since t− t > 0 the term (δ (t−t))∗ = δ ∞. Consequently, one obtains

(a21a∗11a12⊕a22)
∗ =

(
δ

t
δ

∞
δ

t ⊕ e
)∗

=
(

δ
(t+∞−t)⊕ e

)∗

= (δ ∞⊕ e)∗

= (δ ∞)∗

= δ
∞

Using this result to compute the elements of matrix A
∗ one obtains

A
∗
=

[
δ ∞ δ ∞

δ ∞ δ ∞

]

This result means, the only way to guarantee that the time window constraints are
not violated is to never start the system, i.e., all events fire the first time at the earliest
at time t = ∞.

Hence, if the user makes a mistake and asks for unfeasible constraints, the re-
sulting linear model in M ax

in [[γ,δ]] will “tell” the user to check his or her constraints
once more.

Remark 28 (Unfeasible constraints with respect to the number of tokens) A sim-
ilar effect can be observed if the user asks for unfeasible constraints with respect to
the number of tokens. If the user models, for example,

xi � γ
k
δ

τ x j

xi � γ
kx j,

i.e., at any time t transition xi may fire at most k times more often than x j has fired
at time t − τ and xi shall fire at least k times more often than x j at time t. The
corresponding system matrix A=A∗•\A∗ is

A=

[
e γ kδ τ

γ−k γ (k−k)δ τ

]
,

and with k− k < 0 and τ > 0 and applying the Kleene star, one obtains

A
∗
=

[
γ−∞δ ∞ γ−∞δ ∞

γ−∞δ ∞ γ−∞δ ∞

]
=

[
> >
> >

]

50 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

which again means that the constraints can only be met, if the system never starts at
all.

Remark 29 Of course, a TEG may have time window constraints as well as con-
straints on the number of tokens. However, it is not possible to have a time window
constraint as well as a constraint on the minimal and maximal number of tokens
for the simple TEG shown in Fig. 1.15. Consider, for example, the time window
constraints

x j � δ
txi (1.53)

x j � δ
txi, (1.54)

with t ≤ t and the constraints on the number of firings, e.g.,

xi � γ
k
δ

τ x j (1.55)

xi � γ
kx j, (1.56)

with k ≥ k and τ > 0. Clearly, the constraints (1.53) and (1.54) by themselves as
well as the constraints (1.55) and (1.56) by themselves are feasible, combining these
constraints, however, results in matrix

A=A∗•\A∗

=

[
> >
> >

]
.

Consequently, our approach cannot be applied as the resulting matrix A indicates
that the constraints can only be met if the system is prevented to fire at all.

1.6 Conclusions

In this chapter we have shown that timed event graphs are a suitable tool for the
modeling of manufacturing systems characterized by synchronization and delay
phenomena but devoid of choices. Furthermore, timed event graphs have a linear
representation in an algebraic structure called idempotent semirings. We have intro-
duced several such idempotent semirings, e.g., max-plus algebra, min-plus algebra,
and M ax

in [[γ,δ]], and demonstrated with several examples their usefulness. As many
manufacturing systems and their operation are subject to additional constraints, the
standard notion of linear systems in dioids has been extended. Using our approach
it is possible to model minimal and maximal operation times, i.e., time window
constraints, as well as minimal and maximal numbers of work in progress, e.g., in
systems operating with a nested schedule. Last but not least, we have shown, that the
approach is relatively robust to mistakes in the modeling procedure. More precisely,

1 Modeling manufacturing systems in a dioid framework 51

if unfeasible constraints are requested, the resulting system will indicate that some
transitions are blocked from the beginning.

The obtained linear representation of the manufacturing system may be used to
synthesize various forms of (feedback) control in the dioid framework. For a broad
overview on this issue the interested reader is referred to [15] (see also Remark 26).

52 Thomas Brunsch, Laurent Hardouin, and Jörg Raisch

References

1. A. M. Atto, C. Martinez, and S. Amari. Control of discrete event systems with respect to strict
duration: Supervision of an idustrial manufacturing plant. Computers & Industrial Engineer-
ing, 61(4):1149–1159, 2011.

2. F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity – An
Algebra for Discrete Event Systems. Wiley, web edition, 2001.

3. T. S. Blyth. Lattices and ordered algebraic structures. Springer Verlag, 2005.
4. T. S. Blyth and M. F. Janowitz. Residuation Theory. Pergamon press, 1972.
5. T. Brunsch, L. Hardouin, C. A. Maia, and J. Raisch. Duality and interval analysis over idem-

potent semirings. Linear Algebra and its Applications, 437(10):2436–2454, November 2012.
6. G. Cohen. Residuation and applications. In Algèbres Max-Plus et applications en informatique

et automatique : Ecole d’informatique théorique, Noirmoutier, 1998. INRIA.
7. G. Cohen, S. Gaubert, R. Nikoukhah, and J.-P. Quadrat. Second order theory of min-linear

systems and its application to discrete event systems. In Proceedings of the 30th CDC, 1991.
8. B. Cottenceau. Contribution à la commande des systèmes à événements discrets : synthèse

de correcteurs pour les graphs d’événements temporisés dans les dioïdes. PhD thesis, LISA -
Université d’Angers, 1999.

9. B. Cottenceau, L. Hardouin, J.-L. Boimond, and J.-L. Ferrier. Synthesis of greatest linear feed-
back for timed event graphs in dioid. IEEE Transactions on Automatic Control, 44(6):1258–
1262, 1999.

10. B. Cottenceau, L. Hardouin, J.-L. Boimond, and J.-L. Ferrier. Model reference control for
timed event graphs in dioids. Automatica, 37(9):1451–1458, September 2001.

11. B. Cottenceau, L. Hardouin, M. Lhommeau, and J.-L. Boimond. Data processing tool for
calculation in dioid. In Proc. 5th International Workshop on Discrete Event Systems, Ghent,
Belgium, 2000.

12. B. Cottenceau, M. Lhommeau, L. Hardouin, and J.-L. Boimond. On timed event graph stabi-
lization by output feedback in dioid. Kybernetika, 39(2):165–176, 2003.

13. S. Gaubert. Théorie des systèmes linéaires dans les dioïdes. PhD thesis, INRIA - Ecole des
Mines de Paris, 1992.

14. D. Harding, M. Banks, S. Fogarty, and A. Binnie. Development of an automated high-
throughput screening systems: a case history. Drug Discovery Today, 2(9):385–390, Septem-
ber 1997.

15. L. Hardouin, O. Boutin, B. Cottenceau, T. Brunsch, and J. Raisch. Discrete-event systems in
a dioid framework: Control theory. In Carla Seatzu, Manuel Silva, and Jan H. van Schup-
pen, editors, Control of Discrete-Event Systems, volume 433 of Lecture Notes in Control and
Information Sciences, chapter 22, pages 451–469. Springer Berlin / Heidelberg, 2013.

16. L. Hardouin, E. Menguy, J.-L. Boimond, and J.-L. Ferrier. Discrete event systems control in
dioids algebra. Journal Européen des Systèmes Automatisés, 31(3):433–452, 1997.

17. R. Kumar and V. Garg. Modelling and control of logical discrete event systems. Kluwer
Academic Publishers, 1995.

18. T.-E. Lee and S.-H. Park. An extended event graph with negative places and tokens for time
window constraints. IEEE Transactions on Automation Science and Engineering, 2(4):319–
332, October 2005.

19. M. Lhommeau, L. Hardouin, and B. Cottenceau. Disturbance decoupling of timed event
graphs by output feedback controller. In Workshop on Discrete Event Systems (WODES’2002),
Zaragoza, Spain, October 2002.

20. C. A. Maia, C. R. Andrade, and L. Hardouin. On the control of max-plus linear system subject
to state restriction. Automatica, 47(5):988–992, 2011.

21. C.-A. Maia, L. Hardouin, R. Santos-Mendes, and B. Cottenceau. Optimal closed-loop control
of timed event graphs in dioids. IEEE Transactions on Automatic Control, 49(12):2284–2287,
December 2003.

22. E. Menguy, J.-L. Boimond, L. Hardouin, and J.-L. Ferrier. Just in time control of timed event
graphs: update of referecence input, presence of uncontrollable input. IEEE Transactions on
Automatic Control, 45(11):2155–2159, 2000.

1 Modeling manufacturing systems in a dioid framework 53

23. I. Ouerghi. Etude de systèmes (max,+)-linéaires soumis à des contraintes, application à la
commande des graphes d’événements P-temporal. PhD thesis, LISA - Université d’Angers,
2006.

24. I. Ouerghi and L. Hardouin. Control synthesis for p-temporal event graphs. In Workshop on
Discrete Event Systems (WODES’06), Ann Arbor, MI, USA, July 2006.

25. I. Ouerghi and L. Hardouin. A precompensator synthesis for p-temporal event graphs. In
Positive Systems : Theory and Applications (POSTA’2006), Grenoble, France, 2006.

26. J.-M. Proth and X.-L. Xie. Petri nets: A tool for design and management of manufacturing
systems. John Wiley & Sons, 1996.

27. M. V. Rogers. High-throughput screening. Drug Discovery Today, 2(11):503–504, November
1997.

28. B. De Schutter and T. J. J. van den Boom. Model predictive control for max-plus linear discrete
event systems. Automatica, 37(7):1049–1056, 2001.

29. G. Szász. Introduction to lattice theory. Academic Press New York and London, 1963.

