
HAL Id: hal-02535362
https://univ-angers.hal.science/hal-02535362

Preprint submitted on 7 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A C++ toolbox to handle series for
event-variant/time-variant (max,+) systems

Bertrand Cottenceau, Laurent Hardouin, Johannes Trunk

To cite this version:
Bertrand Cottenceau, Laurent Hardouin, Johannes Trunk. A C++ toolbox to handle series for event-
variant/time-variant (max,+) systems. 2020. �hal-02535362�

https://univ-angers.hal.science/hal-02535362
https://hal.archives-ouvertes.fr

(E V E N T | T I M E) - VA R I A N T O P E R AT O R S

B . C OT T E N C E AU , L . H A R D O U I N , J . T RU N K

A C++ toolbox to handle series for event-variant/time-variant (max,+) systems

LARIS, University of Angers

– April 2019 –

C O N T E N T S

1 I N T R O D U C T I O N 5
1.1 Discrete event systems 5

1.1.1 Sequences, counter, dater 5
1.1.2 Synchronization 7
1.1.3 Operators 8
1.1.4 Semiring of operators 10

1.2 Timed Event Graphs and operators 13
1.3 Weighted Timed Event Graphs and operators 16
1.4 Timed Event Graphs with periodic holding times 19

3

1 I N T R O D U C T I O N

ETVO ((Event|Time)-Variant Operators) is a C++ library to handle the behaviour of a class
of Discrete Event Systems (DES). This library contains a set of C++ classes to describe and
to compute the formal series involved in the description of Timed Event Graphs (series in
Max

in Jγ, δK), Weighted Timed Event Graphs (series in EJδK) and Timed Event Graphs with
periodic holding times (series in T JγK).

The variables of the formal series considered in this work can be assimilate to basic systems
called operators. An operator is a mapping able to transform a signal. In the context of DES, a
signal is for instance the list of events in a time axis.

A library called MinMaxGD already exists [6] to handle formal series in Max
in Jγ, δK. In Min-

MaxGD, series are well suited to describe time-invariant and event-invariant (min,+)/(max,+)
systems. ETVO encompasses the library MinMaxGD and extends its set of classes to manage
formal series for specific event-variant and time-variant systems. However, some similarities
remain. For instance, as in Max

in Jγ, δK, the formal series in EJδK and T JγK are still written in a
standard form with an ultimate periodic pattern

s = p⊕ q(γνδτ)∗.

This document gives an overview on DES considered and their modelling with ETVO library.
The reader can find complementary presentations in [4], [9], [11].

1.1 D I S C R E T E E V E N T S Y S T E M S

1.1.1 Sequences, counter, dater

We will first recall some features related to the modelling of Discrete Event Systems (DES).
A DES is a dynamic system which is driven by the occurrence of punctual phenomena called
events. An event reflects the moment when the system operates a state evolution. In a
manufacturing system modelled as a DES, the events are for instance: the arrival of a part in
a stock, the moment when a task is starting or ending, the moment when a resource is being

5

6 I N T R O D U C T I O N

seized or released etc. Considering a system as a DES means that its evolution is described by
a sequence of events along a time axis.

0 10 20

1
2
3
4
5

t0 10 20

b(t)
t

Figure 1: Sequence of events and counter function.

For instance in Fig.1, a sequence of events named b is given. Each occurrence of b is
depicted by a big dot. This sequence of events can be described by a set of pairs (bk, tk) where
k ∈ N, tk, bk ∈ Z, bk denotes the k-th occurrence of event b and tk its occurrence time. For
the sequence in Fig.1, the occurrences of b are given by

{b} = {(b0, 2), (b1, 6), (b2, 6), (b3, 11), (b4, 17), ...}.

The first occurrence of b is at date t = 2, then two simultaneous occurrences b appear at
t = 6, etc. A sequence of events can be infinite,

{a} = {(ak, 2k + 1)} = {(a0, 1), (a1, 3), (a2, 5), ...}k∈N

or finite
{b} = {(b0, 2), (b1, 6), (b2, 6), (b3, 11), (b4, 17), (b5,+∞)},

which means that the sixth occurrence of b never occurs.
There is two alternative representations of event sequences. The first one is given by a

counter function

[counter function] b(t) : Z→ Z, t 7→ the number of events b occurred before date t.

Fig.1 depicts the counter function b(t) associated to the occurrences of events b. Let us remark
that a counter function is naturally monotonic.

The other representation, symmetrical, is called dater function. Such a function is defined by

[dater function] b(k) : Z→ Z, k 7→ date of the k-th occurrence of event b.

1.1 D I S C R E T E E V E N T S Y S T E M S 7

For the sequence {b} depicted in Fig.1, the first values of b(k) are b(0) = 2, b(1) = 6, etc.
Sequences of events, counter functions and dater functions all act as signals for DES since

they encode the history of the occurrences of a given event. Therefore, the name ’signal’ will
be sometimes used in place of sequence, counter or dater.

Notation 1 (Sets of signals) We denote by

Σs : the set of event sequences (1)

Σc : the set of counter functions (2)

Σd : the set of dater functions (3)

1.1.2 Synchronization

In the DES that we consider, the synchronization is clearly the prevailing phenomenon. The
synchronization of two sequences of events (denoted by the ⊕ operator) is a sequence of events.
The synchronization can be expressed as follows: {a}, {b} ∈ Σs, then {c} = {a} ⊕ {b}
means that each occurrence ck is as soon as possible after ak and bk. More explicitely,

{(ck, τk)} = {(ak, tk)} ⊕ {(bk, t′k)} = {(ck, max(tk, t′k)}

For the sequences given in Fig.2, we have {a} = {(a0, 1), (a1, 7), (a2, 10), (a3, 10), (a4, 14)}
and {b} = {(b0, 2), (b1, 4), (b2, 8), (b3, 13)}, therefore the synchonization of {a} and {b} is
given by

{c} = {(c0, 2), (c1, 7), (c2, 10), (c3, 13)}.

Figure 2: Synchronization of two sequences {a} ⊕ {b}

8 I N T R O D U C T I O N

When the signals are described as counter or dater functions, the synchronization is expressed
as follows : a, b ∈ Σc

[counter], (a⊕ b)(t) = min(a(t), b(t))

For the dater description, a, b ∈ Σd,

[dater], (a⊕ b)(k) = max(a(k), b(k)).

It is important to remark that the synchronization is an idempotent operation on signals :
∀a ∈ Σ, a⊕ a = a.

1.1.3 Operators

In the ETVO library, the key feature is not really on the description of signals. The core of the
library lies on the description of systems able to transform signals. A system which maps a
signal to a signal is called an operator. For example in Fig.3, the system S can be considered
as an operator able to transform the sequence {a} = {(a0, 1), (a1, 5), (a2, 9)} into another
sequence of events, namely {b} = {(b0, 3), (b1, 6), (b2, 6), (b3, 9)}. System S is an operator
s.t. S{a} = {b}.

Figure 3: Operator S mapping {a} to {b} : {b} = S{a}

Remark 1 It is important to note that changing the type of signal does not change the nature
of the operator considered. Whether the signal is a sequence in Σs or a counter function in
Σc, the operator remains the same. The presentation given hereafter is not too formal. We
will therefore allow ourselves to keep the same notation for an operator even if, for reasons of
simplification, the signals handled will not always be of the same type along the presentation.

The ETVO library provides a set of basic operators, only 5 basic operators, that can be
composed to describe more complex systems. The most simple operators that are described in
ETVO are the time-shift and the event-shift operator.

1.1 D I S C R E T E E V E N T S Y S T E M S 9

The time-shift of τ time units is an operator denoted δτ. The δτ operator transforms a
sequence of events into a sequence where each events is time shifted. For {a}, {b} ∈ Σs,
δτ{a} = {b} is expressed as

δτ{(ak, tk)} = {(bk, tk + τ)}.

We give an example in Fig.4, δ3 operates a shift of 3 time units, say

δ3{(a0, 1), (a1, 5), (a2, 5), (a3, 9)} = {(b0, 4), (b1, 8), (b2, 8), (b3, 12)}.

When expressed as a mapping on counter functions, the δτ operator can be defined by :

∀a ∈ Σc, ∀t, [δτa](t) = a(t− τ).

When expressed as a mapping on dater functions, the δτ operator can be defined by :

∀a ∈ Σd, ∀k, [δτa](k) = a(k) + τ.

Figure 4: Time-shift/Event-shift : {b} = δ3{a} and {c} = γ2{a}

The event-shift of ν is another basic operator denoted γν. The γν operator produces a
sequence of events where the event numbering is shifted. At any given time, the difference
between the number of output and input events is fixed and equals to ν. Approximately, we have
γν{(ak, tk)} = {(bk+ν, tk)}. Operator γν maps the event ak to bk+ν. In order to be consistent,
even if the input sequence has no event, ν events are produced by the γν operator at date −∞.
Written differently, γν{(a0,+∞)} = {(b0,−∞), (b1,−∞), ..., (bν−1,−∞), (bν,+∞)}.

10 I N T R O D U C T I O N

For the example given in Fig.4, the first two occurrences of b are at date −∞,

γ2{(a0, 1), (a1, 5), (a2, 5), (a3, 9)} = {(b0,−∞), (b1,−∞), (b2, 1), (b3, 5), (b4, 5), (b5, 9)}.

Operator γν can be expressed as well as a mapping on counter or dater functions. When
expressed as a mapping on counter functions:

∀a ∈ Σc, [γνa](t) = a(t) + ν.

When expressed as a mapping on dater functions : a ∈ Σd,

∀a ∈ Σd, [γνa](k) = a(k− ν).

1.1.4 Semiring of operators

All the basic operators handled in ETVO share the same property, they are all additive. For a, b
being two signals, an operator S is said to be additive if

S(a⊕ b) = Sa⊕ Sb.

Clearly, operators γν and δτ have this property. But we will introduce other basic operators
satisfying this property as well. The set of additive operators can be endowed with an idempotent
semiring structure as follows.

Notation 2 (Idempotent semiring of additive operators) The set O of additive operators,
endowed with the sum and the product given below, is an idempotent semiring: h1, h2 ∈ O,
x ∈ Σc,

h1 ⊕ h2 , ∀x, (h1 ⊕ h2)(x) = h1x⊕ h2x (4)

h1.h2 , ∀x, (h1h2)(x) = h1(h2x) (5)

In this semiring, the neutral element for the addition is an operator denoted ε and the neutral
element for the product is the identity operator denoted e, ∀x ∈ Σc, e(x) = x. The semiring O
is not commutative, h1h2 6= h2h1.

Notation 3 (Semiring Max
in Jγ, δK) The set of operators obtained by composing γν, δτ and ε is

a subsemiring of O denoted Max
in Jγ, δK. The identity operator can be expressed e = γ0 = δ0.

1.1 D I S C R E T E E V E N T S Y S T E M S 11

The semiring Max
in Jγ, δK was introduced in [3] and also detailed in [1]. It gives an algebraic

framework to formally handle DES. The next theorem recalls some well-known facts on
Max

in Jγ, δK that can lead to a computation toolbox. A software library, called MinMaxGD [6],
is available to handle rational computations in Max

in Jγ, δK.
The next theorem recalls some well-known equalities in Max

in Jγ, δK.

Theorem 1 In Max
in Jγ, δK, we have

γnδt = δtγn (6)

γnγn′ = γn+n′ (7)

δtδt′ = δt+t′ (8)

γn ⊕ γn′ = γmin(n,n′) (9)

δt ⊕ δt′ = δmax(t,t′) (10)

Because of (6), Max
in Jγ, δK is a commutative idempotent semiring.

In addition to γn and δt, ETVO library introduces two basic operators for event-variant
systems denoted µm (multiplier) and βb (batch). The µm operator multiplies events. Each input
event produces instantaneously m output events. For the example depicted in Fig.5, {a} ∈ Σs,
{b} = µ2{a},

µ2{(a0, 1), (a1, 4), (a2, 7), ...} = {(b0, 1), (b1, 1), (b2, 4), (b3, 4), (b4, 7), (b5, 7), ...}

Conversely, for the batch operator βb, b input events are needed to produce one output event.
We have, {a} ∈ Σs, {c} = β3{a},

β3{(a0, 1), (a1, 4), (a2, 7), ...} = {(c0, 7), (c1, 15), ...}.

Operators µm and βb can be expressed as mapping on counter functions as follows: a ∈ Σc

∀a, [µma](t) = a(t)×m, [βba](t) = ba(t)/bc.

Finally, the ETVO library introduces a supplementary operator for time-variant systems
denoted ∆T. The ∆T operator is a synchronization on dates which are a multiple of T. For
instance, the ∆3 operator delays all the input events up to the next date in 3Z. All the output
events are then synchronized on dates in 3Z.

In the example given Fig.6, we have {b} = ∆3{a},

∆3{(a0, 1), (a1, 4), (a2, 6), (a3, 9), ...} = {(b0, 3), (b1, 6), (b2, 6), (b3, 9), ...}.

12 I N T R O D U C T I O N

Figure 5: Event Muliplier/Batch : {b} = µ2{a} and {c} = β3{a}

Figure 6: Date synchronization : {b} = ∆3{a}

The operator ∆T can be expressed as a mapping on dater functions as follows: a ∈ Σd,

∀a, [∆Ta](k) = da(k)/Te × T.

It is worth noticing that this operator can be interpreted as a time-variant time-shift operator.
For instance, the gap between a0 and b0 is 2 time units whereas the gap is 0 time unit between
a2 and b2.

In summary, the ETVO library introduces the 5 basic operators recalled below:

δτ : time-shift

γν : event-shift

µm : event-multiplier

βb : event-batch

∆T : date synchronization

1.2 T I M E D E V E N T G R A P H S A N D O P E R ATO R S 13

By considering only subsets of these operators, we obtain 3 different idempotent semirings,
which are subsemirings of O, that are usefull for DES modelling

Max
in Jγ, δK : semiring of sums and products in {ε, γν, δτ}

[event-variant] EJδK : semiring of weight-balanced sums and products in {ε, γν, δτ, µm, βb}
[time-variant] T JγK : semiring of sums and products in {ε, γν, δτ, ∆T}

The semiring Max
in Jγ, δK is detailed in [3], [1] and the MinMaxGD toolbox to handle peridoic

series is presented in [6]
The semiring EJδK is presented in [4],[5],[9],[10].
The semiring T JγK is introduced in [11].
All these algebraic structures are more detailed in the PhD thesis of Johannes Trunk.

Proposition 1 In semiring O, operators γn, δt, µm, βb, ∆T satisfy:

γ1δ1 = δ1γ1 γnγn′ = γn+n′ δtδt′ = δt+t′ (f 1)
γn ⊕ γn′ = γmin(n,n′) δt ⊕ δt′ = δmax(t,t′) (f 2)

µmδ1 = δ1µm βbδ1 = δ1βb βmµm = e (f 3)
∆Tγ1 = γ1∆T ∆TδT = δT∆T (f 4)

µmµm′ = µm×m′ βbβb′ = βb×b′ (f 5)
µmγ1 = γmµm γ1βb = βbγb (f 6)

1.2 T I M E D E V E N T G R A P H S A N D O P E R ATO R S

The formal series handled in ETVO are well suited to describe the behaviour of some subclasses
of timed Petri nets. First, we give here a very short description of Timed Event Graphs. This
graphical model is better explained in other references such as [1, chap.2],[2], [8, chap.7],[7].

A Timed Event Graph (TEG) is a timed Petri net - with P the set of places, T the set of
transitions and A ⊂ (P× T) ∪ (T× P) the set of edges - such that each place has exactly one
upstream and one downstream transition. A place pk ∈ P can have a positive holding time
value τ ∈N and an initial marking denoted M0(pk) ∈N. The holding time is the minimal
time a token needs to stay in a place before being able to cross a downstream transition.

We denote by p• (resp. •p) the downstream (resp. upstream) transition of place p, and we
denote by t• (resp. •t) the set of downstream (resp. upstream) places of transition t. When
one considers only the earliest firing rule, a transition tj fires as soon as each place pl ∈ •tj

14 I N T R O D U C T I O N

contains at least 1 available token. Then one token is removed from each place pl, and one
token is added to each place pk ∈ t•j . In fact, since the behaviour is at the earliest, all tokens
that can contribute to the crossing of transitions are collected as soon as possible.

Figure 7: Elementary Timed Event Graphs

Timed Event Graphs provide a graphical representation of different dynamical phenomena.
For a TEG, signals (sequence, counters, daters) are attached to transitions. The marking of
the net characterizes the state and a transition firing is an event since it corresponds to the
state evolution. A transition with two upstream places describes the synchronization of events.
A place with a holding time leads to a time-shift between the upstream and the downstream
transitions. Finally, the initial marking acts as a shift in the event numbering.

Therefore, the structure of a TEG can be translated into a block-diagram where only γν

and δτ operators are used and the synchronization of signals is denoted by the ⊕ symbol. For
TEGs, the semiring considered for the computation is Max

in Jγ, δK. From a practical point of
view, this computation can be made by the MinMaxGD library.

1.2 T I M E D E V E N T G R A P H S A N D O P E R ATO R S 15

Figure 8: TEG decomposition in basic operators

In Fig.8, a TEG is depicted. Its decomposition in γν and δτ operators is given as a block-
diagram. The input corresponds to the signal u and the output is given by the signal y. All the
signals are related to each other by the next relations,

x1 = u⊕ γ2x4,
x2 = δ2x1,
x3 = x2,
x4 = δ3x3,
y = x2 ⊕ γ1x4.

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)′ is a vector of
signals, {

x = Ax⊕ Bu
y = Cx

with

A =

ε ε ε γ2

δ2 ε ε ε

ε e ε ε

ε ε δ3 ε

 , B =

e
ε

ε

ε

 , C =
(
ε e ε γ1) .

16 I N T R O D U C T I O N

The behaviour of this system can be described by a rational expression y = CA∗Bu =
(CB⊕ CAB⊕ CA2B...)u. In this case, the computation gives

y = (δ2 ⊕ γ1δ5)(γ2δ5)∗u.

The rational expression is an operator that describes how the input signal is transformed into
the ouput signal by the system.By analogy with the classical system theory, this operator is the
transfer function of the TEG.

This computation can be obtained by the MinMaxGD library included in ETVO. For this
short example, the C++ script is given below.
// Simple C++ example to compute the transfer series of a TEG
#include "etvo.h"
using namespace std; // namespace for cout object
using namespace etvo; // namespace for ETVO classes
int main()
{

// series corresponds to MinMaxGD series
matrix<series> A(4,4), B(4, 1), C(1, 4);
B(0,0)= gd(0,0); //g0.d0=e
C(0,1)= gd(0,0);
C(0,3)= gd(1,0); //g1.d0=g1
A(0,3)= gd(2,0);
A(1,0)= gd(0,2); //g0.d2=d2
A(2,1)= gd(0,0);
A(3,2)= gd(0,3);

matrix<series> H = C * A.star() * B;
cout << H(0,0) << endl;
// output : (g0.d2+g1.d5).[g2.d5]*

}

1.3 W E I G H T E D T I M E D E V E N T G R A P H S A N D O P E R -
ATO R S

A Weighted Timed Event Graph is a Timed Event Graph the edges of which have an integer
weight. For pk ∈ P a place, the edge ti → pk (resp. pk → to) is valued by a strictly
positive integer denoted ωi(pk) (resp. ωo(pk)) (the weights of the edges). In order to avoid
confusion with holding times, weights of edges are denoted between brackets, e.g. 〈2〉.

1.3 W E I G H T E D T I M E D E V E N T G R A P H S A N D O P E R ATO R S 17

Moreover, ti → pk → to defines an elementary path denoted πk the gain of which is given by
Γ(πk) , ωi(pk)/ωo(pk) ∈ Q.

The weights describe how many tokens are consumed/produced by each transition firing.
When one considers only the earliest firing rule, a transition tj fires as soon as each input place
pl of tj contains at least ωo(pl) available token(s). Then ωo(pl) token(s) is(are) removed from
each input place pl of tj, and ωi(pk) token(s) is(are) added to each output place pk of tj.

Fig.9 illustrates the effect of weights as basic operators. A weight on the output edge of a
transition describes a multiplication of events. The µm operator can model this pehnomenon.
Conversely, a weight on the input edge of a transition describes a batch operation which is
modeled by a βb operator.

Figure 9: Elementary Weighted Timed Event Graphs

In Fig.10, a Weighted TEG is depicted. Its decomposition in basic operators is given as a
block-diagram. All the relation between signals are expressed below :

x1 = β2u⊕ β3γ5µ2x4

x2 = δ2µ3x1

x3 = x2

x4 = β2δ5x3

y = β2x2 ⊕ γ1x4

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)
,{

x = Ax⊕ Bu
y = Cx

18 I N T R O D U C T I O N

Figure 10: WB-TEG decomposition in basic operators

with

A =

ε ε ε β3γ5µ2

δ2µ3 ε ε ε

ε e ε ε

ε ε β2δ5 ε

 , B =

β2
ε

ε

ε

 , C =
(
ε β2 ε γ1)

The behaviour of this system can be described by a rational expression y = CA∗Buu. For this
example, the computation withthe ETVO library gives

y =
(
(µ3β4γ2 ⊕ γ1µ3β4)δ

2 ⊕ (γ1µ3β4γ2 ⊕ γ2µ3β4)δ
7
)
(γ2δ7)∗

For this short example, the C++ script is given below.
// Simple C++ example to compute the transfer series of a WB-TEG
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{

1.4 T I M E D E V E N T G R A P H S W I T H P E R I O D I C H O L D I N G T I M E S 19

matrix<seriesEd> A(4,4), B(4,1), C(1,4);
B(0, 0) = eb(2); //b2
C(0, 1) = eb(2);
C(0, 3) = eg(1); //g1
A(0, 3) = eb(3)*eg(5)*em(2); //b3.g5.m2
A(1, 0) = em(3)*ed(2); //m3.d2
A(2, 1) = eg(0); //g0=e
A(3, 2) = eb(2)*ed(5); //b2.d5
matrix<seriesEd> H=C*A.star()*B;
H(0, 0).toRight();
cout << H(0,0) << endl;

//output=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
}

1.4 T I M E D E V E N T G R A P H S W I T H P E R I O D I C H O L D -
I N G T I M E S

ETVO can handle a basic time-variant operator denoted ∆T. The ∆T operator is a synchro-
nization on dates in TZ. With this operator, we can model delays changing as time changes.
For instance, the ∆3 operator can be considered as a delay δτ the value of which is time-
variant. The ∆3 operator adds no delay for input events occuring at dates in 3Z. For instance,
∆3{(a0, 0), (a1, 6)} = {(b0, 0), (b1, 6)}. For an input event occuring at dates in 3Z + 1, the
delay is 2 time units : ∆3{(a0, 1), (a1, 1), (a2, 4)} = {(b0, 3), (b1, 3), (b2, 6)}. And the delay
is only 1 time unit for input events occuring at dates in 3Z + 2. We summarize this with the
notation ∆3 = δ〈0,2,1〉. The time-variant delays thus obtained are necessarily with a periodic
sequence of values.

By considering DES with this kind of time-variant delays, we can model Timed Event Graphs
with periodic holding times. This class of models is called Periodic Time-variant Event Graphs
(PTEGs) in the thesis of J.Trunk. Each periodic time-variant delay can be obtained as a finite
composition of fixed delays δτ and ∆T operators.

In Fig.11, a PTEG is depicted as well as its decomposition in time-variant operators. As said
before, δ〈0,2,1〉 = ∆3. For the others time-variant holding times, we have the equivalence:

δ〈1,0〉 = δ1∆2δ−1

δ〈2,3,2〉 = δ2∆3δ−2 ⊕ δ1∆3

20 I N T R O D U C T I O N

Figure 11: PTEG decomposition into operators

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)′ ,{
x = Ax⊕ Bu
y = Cx

with

A =

ε ε ε γ2

δ1 ε ε ε

ε e ε ε

ε ε δ〈2,3,2〉 ε

 , B =

∆3
ε

ε

ε

 , C =
(
ε δ〈1,0〉 ε γ1

)
.

The behaviour of this system can be described by a rational expression y = Gu = CA∗Bu.
For this example, the computation with the ETVO library gives

y = δ〈1,4,3,2,3,2〉γ0 ⊕ (δ〈4,6,5〉γ1 ⊕ δ〈5,8,7,6,7,6〉γ2)(δ3γ2)∗u.

For this short example, the C++ script is given below.

// Simple C++ example to compute the transfer series of a PTEG

1.4 T I M E D E V E N T G R A P H S W I T H P E R I O D I C H O L D I N G T I M E S 21

#include "etvo.h"
using namespace std;
using namespace etvo;
int main(){

matrix<seriesTg> A(4, 4), B(4, 1), C(1, 4);
B(0, 0) = tD(3); //D3
C(0, 1) = td({1,0}); //d<1,0>
C(0, 3) = tg(1); //g1
A(0, 3) = tg(2);
A(1, 0) = td(1); //d1
A(2, 1) = tg(0);
A(3, 2) = td({2,3,2});
matrix<seriesTg> G=C*A.star()*B;
G(0,0).toRight();
cout << G(0,0).toStringAsDeltaVar() << endl;

//output=((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2]*
}

B I B L I O G R A P H Y

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and Linearity: An
Algebra for Discrete Event Systems. John Wiley and Sons, New York, 1992.

[2] G. Cohen. Analisis y control de sistemas de eventos discretos: de redes de petri tempo-
rizadas al algebra, 2001.

[3] G. Cohen, P. Moller, J.P. Quadrat, and M. Viot. Algebraic Tools for the Performance
Evaluation of Discrete Event Systems. IEEE Proceedings: Special issue on Discrete
Event Systems, 77(1):39–58, January 1989.

[4] B. Cottenceau, L. Hardouin, and J.-L. Boimond. Modeling and Control of Weight-
Balanced Timed Event Graphs in Dioids. IEEE Trans. on Autom. Cont., vol. 59:1219–
1231, May 2014.

[5] Bertrand Cottenceau, Laurent Hardouin, and Johannes Trunk. Weight-balanced timed
event graphs to model periodic phenomena in manufacturing systems. IEEE Transactions
on Automation Science and Engineering, 14(4):1731–1742, 2017.

[6] L. Hardouin, B. Cottenceau, and M.Lhommeau. Minmaxgd, a toolbox to handle periodic
series in semiring minmax[[g,d]]., 2013.

[7] Laurent Hardouin, Bertrand Cottenceau, Ying Shang, Jörg Raisch, et al. Control and
state estimation for max-plus linear systems. Foundations and Trends R© in Systems and
Control, 6(1):1–116, 2018.

[8] B. Heidergott, G.J. Olsder, and J.van der Woude. Max Plus at Work - Modelling and
Analysis of Synchronized Systems - A Course on Max-Plus Algebra and Its Applications.
Princeton University Press, Princeton, 2006.

[9] J. Trunk, B. Cottenceau, L. Hardouin, and J. Raisch. Model decomposition of weight-
balanced timed event graphs in dioids: Application to control synthesis. In IFAC World
Congress, Toulouse, France, 2017.

23

24 B I B L I O G R A P H Y

[10] Johannes Trunk, Bertrand Cottenceau, Laurent Hardouin, and Jörg Raisch. Output
reference control for weight-balanced timed event graphs. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 4839–4846. IEEE, 2017.

[11] Johannes Trunk, Bertrand Cottenceau, Laurent Hardouin, and Jörg Raisch. Model
decomposition of timed event graphs under partial synchronization in dioids. IFAC-
PapersOnLine, 51(7):198–205, 2018.

	Introduction
	Discrete event systems
	Sequences, counter, dater
	Synchronization
	Operators
	Semiring of operators

	Timed Event Graphs and operators
	Weighted Timed Event Graphs and operators
	Timed Event Graphs with periodic holding times

