C T I O N 5 1.1 Discrete event systems 5 1.1.1 Sequences, counter, dater 5 1.1.2 Synchronization 7 1.1.3 Operators 8 1.1.4 Semiring of operators 10 1.2 Timed Event Graphs and operators 13 1.3 Weighted Timed Event Graphs and operators 16 1.4 Timed Event Graphs with periodic holding times 19

I N T R O D U C T I O N

ETVO ((Event|Time)-Variant Operators) is a C++ library to handle the behaviour of a class of Discrete Event Systems (DES). This library contains a set of C++ classes to describe and to compute the formal series involved in the description of Timed Event Graphs (series in M ax in γ, δ), Weighted Timed Event Graphs (series in E δ) and Timed Event Graphs with periodic holding times (series in T γ).

The variables of the formal series considered in this work can be assimilate to basic systems called operators. An operator is a mapping able to transform a signal. In the context of DES, a signal is for instance the list of events in a time axis.

A library called MinMaxGD already exists [START_REF] Hardouin | Minmaxgd, a toolbox to handle periodic series in semiring minmax[END_REF] to handle formal series in M ax in γ, δ . In Min-MaxGD, series are well suited to describe time-invariant and event-invariant (min,+)/(max,+) systems. ETVO encompasses the library MinMaxGD and extends its set of classes to manage formal series for specific event-variant and time-variant systems. However, some similarities remain. For instance, as in M ax in γ, δ , the formal series in E δ and T γ are still written in a standard form with an ultimate periodic pattern s = p ⊕ q(γ ν δ τ) * .

This document gives an overview on DES considered and their modelling with ETVO library.

The reader can find complementary presentations in [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF], [START_REF] Trunk | Model decomposition of weightbalanced timed event graphs in dioids: Application to control synthesis[END_REF], [START_REF] Trunk | Model decomposition of timed event graphs under partial synchronization in dioids[END_REF].

D I S C R E T E E V E N T S Y S T E M S

Sequences, counter, dater

We will first recall some features related to the modelling of Discrete Event Systems (DES).

A DES is a dynamic system which is driven by the occurrence of punctual phenomena called events. An event reflects the moment when the system operates a state evolution. In a manufacturing system modelled as a DES, the events are for instance: the arrival of a part in a stock, the moment when a task is starting or ending, the moment when a resource is being seized or released etc. Considering a system as a DES means that its evolution is described by a sequence of events along a time axis. For the sequence {b} depicted in Fig. 1, the first values of b(k) are b(0) = 2, b(1) = 6, etc. Sequences of events, counter functions and dater functions all act as signals for DES since they encode the history of the occurrences of a given event. Therefore, the name 'signal' will be sometimes used in place of sequence, counter or dater.

Notation 1 (Sets of signals) We denote by Σ s : the set of event sequences

(1) Σ c : the set of counter functions

(2) Σ d : the set of dater functions

(3)

Synchronization

In the DES that we consider, the synchronization is clearly the prevailing phenomenon. The synchronization of two sequences of events (denoted by the ⊕ operator) is a sequence of events. The synchronization can be expressed as follows: {a}, {b} ∈ Σ s , then {c} = {a} ⊕ {b} means that each occurrence c k is as soon as possible after a k and b k . More explicitely, It is important to remark that the synchronization is an idempotent operation on signals : ∀a ∈ Σ, a ⊕ a = a.

{(c k , τ k)} = {(a k , t k)} ⊕ {(b k , t k)} = {(c k , max(t k , t k)}

Operators

In the ETVO library, the key feature is not really on the description of signals. The core of the library lies on the description of systems able to transform signals. A system which maps a signal to a signal is called an operator. For example in Fig. 3, the system S can be considered as an operator able to transform the sequence {a} = {(a 0 , 1), (a 1 , 5), (a 2 , 9)} into another sequence of events, namely {b} = {(b 0 , 3), (b 1 , 6), (b 2 , 6), (b 3 , 9)}. System S is an operator s.t. S{a} = {b}. Remark 1 It is important to note that changing the type of signal does not change the nature of the operator considered. Whether the signal is a sequence in Σ s or a counter function in Σ c , the operator remains the same. The presentation given hereafter is not too formal. We will therefore allow ourselves to keep the same notation for an operator even if, for reasons of simplification, the signals handled will not always be of the same type along the presentation.

The ETVO library provides a set of basic operators, only 5 basic operators, that can be composed to describe more complex systems. The most simple operators that are described in ETVO are the time-shift and the event-shift operator.

The time-shift of τ time units is an operator denoted δ τ . The δ τ operator transforms a sequence of events into a sequence where each events is time shifted. For {a}, {b} ∈ Σ s , δ τ {a} = {b} is expressed as

δ τ {(a k , t k)} = {(b k , t k + τ)}.
We give an example in Fig. 4, δ 3 operates a shift of 3 time units, say

δ 3 {(a 0 , 1), (a 1 , 5), (a 2 , 5), (a 3 , 9)} = {(b 0 , 4), (b 1 , 8), (b 2 , 8), (b 3 , 12)}.
When expressed as a mapping on counter functions, the δ τ operator can be defined by :

∀a ∈ Σ c , ∀t, [δ τ a](t) = a(t -τ).
When expressed as a mapping on dater functions, the δ τ operator can be defined by : The event-shift of ν is another basic operator denoted γ ν . The γ ν operator produces a sequence of events where the event numbering is shifted. At any given time, the difference between the number of output and input events is fixed and equals to ν. Approximately, we have

∀a ∈ Σ d , ∀k, [δ τ a](k) = a(k) + τ.
γ ν {(a k , t k)} = {(b k+ν , t k)}.
Operator γ ν maps the event a k to b k+ν . In order to be consistent, even if the input sequence has no event, ν events are produced by the γ ν operator at date -∞.

Written differently, γ ν {(a 0 , +∞)} = {(b 0 , -∞), (b 1 , -∞), ..., (b ν-1 , -∞), (b ν , +∞)}.
For the example given in Fig. 4, the first two occurrences of b are at date -∞, γ 2 {(a 0 , 1), (a 1 , 5), (a 2 , 5), (a 3 , 9)} = {(b 0 , -∞), (b 1 , -∞), (b 2 , 1), (b 3 , 5), (b 4 , 5), (b 5 , 9)}.

Operator γ ν can be expressed as well as a mapping on counter or dater functions. When expressed as a mapping on counter functions:

∀a ∈ Σ c , [γ ν a](t) = a(t) + ν.
When expressed as a mapping on dater functions :

a ∈ Σ d , ∀a ∈ Σ d , [γ ν a](k) = a(k -ν).

Semiring of operators

All the basic operators handled in ETVO share the same property, they are all additive. For a, b being two signals, an operator S is said to be additive if

S(a ⊕ b) = Sa ⊕ Sb.
Clearly, operators γ ν and δ τ have this property. But we will introduce other basic operators satisfying this property as well. The set of additive operators can be endowed with an idempotent semiring structure as follows.

Notation 2 (Idempotent semiring of additive operators) The set O of additive operators, endowed with the sum and the product given below, is an idempotent semiring:

h 1 , h 2 ∈ O, x ∈ Σ c , h 1 ⊕ h 2 ∀x, (h 1 ⊕ h 2)(x) = h 1 x ⊕ h 2 x (4) h 1 .h 2 ∀x, (h 1 h 2)(x) = h 1 (h 2 x) (5)
In this semiring, the neutral element for the addition is an operator denoted ε and the neutral element for the product is the identity operator denoted e, ∀x ∈

Σ c , e(x) = x. The semiring O is not commutative, h 1 h 2 = h 2 h 1 .
Notation 3 (Semiring M ax in γ, δ) The set of operators obtained by composing γ ν , δ τ and ε is a subsemiring of O denoted M ax in γ, δ . The identity operator can be expressed e = γ 0 = δ 0 .

The semiring M ax in γ, δ was introduced in [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF] and also detailed in [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]. It gives an algebraic framework to formally handle DES. The next theorem recalls some well-known facts on M ax in γ, δ that can lead to a computation toolbox. A software library, called MinMaxGD [START_REF] Hardouin | Minmaxgd, a toolbox to handle periodic series in semiring minmax[END_REF], is available to handle rational computations in M ax in γ, δ . The next theorem recalls some well-known equalities in M ax in γ, δ .

Theorem 1 In M ax in γ, δ , we have

γ n δ t = δ t γ n (6)
γ n γ n = γ n+n (7
)
δ t δ t = δ t+t (8)
γ n ⊕ γ n = γ min(n,n) (9
)
δ t ⊕ δ t = δ max(t,t) (10)
Because of (6), M ax in γ, δ is a commutative idempotent semiring.

In addition to γ n and δ t , ETVO library introduces two basic operators for event-variant systems denoted µ m (multiplier) and β b (batch). The µ m operator multiplies events. Each input event produces instantaneously m output events. For the example depicted in Fig. 5, {a} ∈ Σ s , {b} = µ 2 {a}, Operators µ m and β b can be expressed as mapping on counter functions as follows:

a ∈ Σ c ∀a, [µ m a](t) = a(t) × m, [β b a](t) = a(t)/b .
Finally, the ETVO library introduces a supplementary operator for time-variant systems denoted ∆ T . The ∆ T operator is a synchronization on dates which are a multiple of T. For instance, the ∆ 3 operator delays all the input events up to the next date in 3Z. All the output events are then synchronized on dates in 3Z.

In the example given Fig. 6, we have {b} = ∆ 3 {a}, The operator ∆ T can be expressed as a mapping on dater functions as follows:

a ∈ Σ d , ∀a, [∆ T a](k) = a(k)/T × T.
It is worth noticing that this operator can be interpreted as a time-variant time-shift operator. For instance, the gap between a 0 and b 0 is 2 time units whereas the gap is 0 time unit between a 2 and b 2 .

In summary, the ETVO library introduces the 5 basic operators recalled below:

δ τ : time-shift γ ν : event-shift µ m : event-multiplier β b : event-batch ∆ T : date synchronization
By considering only subsets of these operators, we obtain 3 different idempotent semirings, which are subsemirings of O, that are usefull for DES modelling M ax in γ, δ : semiring of sums and products in {ε, γ ν , δ τ } [event-variant] E δ : semiring of weight-balanced sums and products in {ε, γ ν , δ τ , µ m , β b } [time-variant] T γ : semiring of sums and products in {ε, γ ν , δ τ , ∆ T }

The semiring M ax in γ, δ is detailed in [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF], [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF] and the MinMaxGD toolbox to handle peridoic series is presented in [START_REF] Hardouin | Minmaxgd, a toolbox to handle periodic series in semiring minmax[END_REF] The semiring E δ is presented in [START_REF] Cottenceau | Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids[END_REF], [START_REF] Cottenceau | Weight-balanced timed event graphs to model periodic phenomena in manufacturing systems[END_REF], [START_REF] Trunk | Model decomposition of weightbalanced timed event graphs in dioids: Application to control synthesis[END_REF], [START_REF] Trunk | Output reference control for weight-balanced timed event graphs[END_REF].

The semiring T γ is introduced in [START_REF] Trunk | Model decomposition of timed event graphs under partial synchronization in dioids[END_REF]. All these algebraic structures are more detailed in the PhD thesis of Johannes Trunk.

Proposition 1 In semiring O, operators γ n , δ t , µ m , β b , ∆ T satisfy:

γ 1 δ 1 = δ 1 γ 1 γ n γ n = γ n+n δ t δ t = δ t+t (f 1) γ n ⊕ γ n = γ min(n,n) δ t ⊕ δ t = δ max(t,t) (f 2) µ m δ 1 = δ 1 µ m β b δ 1 = δ 1 β b β m µ m = e (f 3) ∆ T γ 1 = γ 1 ∆ T ∆ T δ T = δ T ∆ T (f 4) µ m µ m = µ m×m β b β b = β b×b (f 5) µ m γ 1 = γ m µ m γ 1 β b = β b γ b (f 6)

T I M E D E V E N T G R A P H S A N D O P E R AT O R S

The formal series handled in ETVO are well suited to describe the behaviour of some subclasses of timed Petri nets. First, we give here a very short description of Timed Event Graphs. This graphical model is better explained in other references such as [1, chap.2], [START_REF] Cohen | Analisis y control de sistemas de eventos discretos: de redes de petri temporizadas al algebra[END_REF], [8, chap.7], [START_REF] Hardouin | Control and state estimation for max-plus linear systems[END_REF].

A Timed Event Graph (TEG) is a timed Petri net -with P the set of places, T the set of transitions and A ⊂ (P × T) ∪ (T × P) the set of edges -such that each place has exactly one upstream and one downstream transition. A place p k ∈ P can have a positive holding time value τ ∈ N and an initial marking denoted M 0 (p k) ∈ N. The holding time is the minimal time a token needs to stay in a place before being able to cross a downstream transition.

We denote by p • (resp. • p) the downstream (resp. upstream) transition of place p, and we denote by t • (resp. • t) the set of downstream (resp. upstream) places of transition t. When one considers only the earliest firing rule, a transition t j fires as soon as each place p l ∈ • t j contains at least 1 available token. Then one token is removed from each place p l , and one token is added to each place p k ∈ t • j . In fact, since the behaviour is at the earliest, all tokens that can contribute to the crossing of transitions are collected as soon as possible. Timed Event Graphs provide a graphical representation of different dynamical phenomena. For a TEG, signals (sequence, counters, daters) are attached to transitions. The marking of the net characterizes the state and a transition firing is an event since it corresponds to the state evolution. A transition with two upstream places describes the synchronization of events. A place with a holding time leads to a time-shift between the upstream and the downstream transitions. Finally, the initial marking acts as a shift in the event numbering.

Therefore, the structure of a TEG can be translated into a block-diagram where only γ ν and δ τ operators are used and the synchronization of signals is denoted by the ⊕ symbol. For TEGs, the semiring considered for the computation is M ax in γ, δ . From a practical point of view, this computation can be made by the MinMaxGD library. In Fig. 8, a TEG is depicted. Its decomposition in γ ν and δ τ operators is given as a blockdiagram. The input corresponds to the signal u and the output is given by the signal y. All the signals are related to each other by the next relations,

x 1 = u ⊕ γ 2 x 4 , x 2 = δ 2 x 1 , x 3 = x 2 , x 4 = δ 3 x 3 , y = x 2 ⊕ γ 1 x 4 .
We can describe this system in a matrix form where x = x 1 x 2 x 3 x 4 is a vector of signals,

x = Ax ⊕ Bu y = Cx with A =     ε ε ε γ 2 δ 2 ε ε ε ε e ε ε ε ε δ 3 ε     , B =     e ε ε ε     , C = ε e ε γ 1 .
The behaviour of this system can be described by a rational expression y = CA * Bu = (CB ⊕ CAB ⊕ CA 2 B...)u. In this case, the computation gives

y = (δ 2 ⊕ γ 1 δ 5)(γ 2 δ 5) * u.
The rational expression is an operator that describes how the input signal is transformed into the ouput signal by the system.By analogy with the classical system theory, this operator is the transfer function of the TEG. This computation can be obtained by the MinMaxGD library included in ETVO. For this short example, the C++ script is given below. // Simple C++ example to compute the transfer series of a TEG #include "etvo.h" using namespace std;

// namespace for cout object using namespace etvo; // namespace for ETVO classes int main() { // series corresponds to MinMaxGD series matrix<series> A(4,4), B(4, 1), C(1, 4); B(0,0)= gd(0,0); //g0.d0=e C(0,1)= gd(0,0); C(0,3)= gd(1,0); //g1.d0=g1 A(0,3)= gd(2,0); A(1,0)= gd(0,2); //g0.d2=d2 A(2,1)= gd(0,0); A(3,2)= gd(0,3); matrix<series> H = C * A.star() * B; cout << H(0,0) << endl; // output : (g0.d2+g1.d5).[g2.d5] * }

W E I G H T E D T I M E D E V E N T G R A P H S A N D O P E R -AT O R S

A Weighted Timed Event Graph is a Timed Event Graph the edges of which have an integer weight. For p k ∈ P a place, the edge t i → p k (resp. p k → t o) is valued by a strictly positive integer denoted ω i (p k) (resp. ω o (p k)) (the weights of the edges). In order to avoid confusion with holding times, weights of edges are denoted between brackets, e.g. 2 .

Moreover, t i → p k → t o defines an elementary path denoted π k the gain of which is given by

Γ(π k) ω i (p k)/ω o (p k) ∈ Q.
The weights describe how many tokens are consumed/produced by each transition firing. When one considers only the earliest firing rule, a transition t j fires as soon as each input place p l of t j contains at least ω o (p l) available token(s). Then ω o (p l) token(s) is(are) removed from each input place p l of t j , and ω i (p k) token(s) is(are) added to each output place p k of t j . Fig. 9 illustrates the effect of weights as basic operators. A weight on the output edge of a transition describes a multiplication of events. The µ m operator can model this pehnomenon. Conversely, a weight on the input edge of a transition describes a batch operation which is modeled by a β b operator.

x 1 = β 2 u ⊕ β 3 γ 5 µ 2 x 4 x 2 = δ 2 µ 3 x 1 x 3 = x 2 x 4 = β 2 δ 5 x 3 y = β 2 x 2 ⊕ γ 1 x 4
We can describe this system in a matrix form where

x = x 1 x 2 x 3 x 4 , x = Ax ⊕ Bu y = Cx
=     ε ε ε β 3 γ 5 µ 2 δ 2 µ 3 ε ε ε ε e ε ε ε ε β 2 δ 5 ε     , B =     β 2 ε ε ε     , C = ε β 2 ε γ 1
The behaviour of this system can be described by a rational expression y = CA * Buu. For this example, the computation withthe ETVO library gives

y = (µ 3 β 4 γ 2 ⊕ γ 1 µ 3 β 4)δ 2 ⊕ (γ 1 µ 3 β 4 γ 2 ⊕ γ 2 µ 3 β 4)δ 7 (γ 2 δ 7) *
For this short example, the C++ script is given below.

T I M E D E V E N T G R A P H S W I T H P E R I O D I C H O L D -I N G T I M E S

ETVO can handle a basic time-variant operator denoted ∆ T . The ∆ T operator is a synchronization on dates in TZ. With this operator, we can model delays changing as time changes. For instance, the ∆ 3 operator can be considered as a delay δ τ the value of which is timevariant. The ∆ 3 operator adds no delay for input events occuring at dates in 3Z. For instance, ∆ 3 {(a 0 , 0), (a 1 , 6)} = {(b 0 , 0), (b 1 , 6)}. For an input event occuring at dates in 3Z + 1, the delay is 2 time units : ∆ 3 {(a 0 , 1), (a 1 , 1), (a 2 , 4)} = {(b 0 , 3), (b 1 , 3), (b 2 , 6)}. And the delay is only 1 time unit for input events occuring at dates in 3Z + 2. We summarize this with the notation ∆ 3 = δ 0,2,1 . The time-variant delays thus obtained are necessarily with a periodic sequence of values.

By considering DES with this kind of time-variant delays, we can model Timed Event Graphs with periodic holding times. This class of models is called Periodic Time-variant Event Graphs (PTEGs) in the thesis of J.Trunk. Each periodic time-variant delay can be obtained as a finite composition of fixed delays δ τ and ∆ T operators.

In Fig. 11, a PTEG is depicted as well as its decomposition in time-variant operators. As said before, δ 0,2,1 = ∆ 3 . For the others time-variant holding times, we have the equivalence: We can describe this system in a matrix form where x = x 1 x 2 x 3 x 4 ,

δ 1,0 = δ 1 ∆ 2 δ -1 δ 2,3,2 = δ 2 ∆ 3 δ -2 ⊕ δ 1 ∆ 3
x = Ax ⊕ Bu y = Cx with A =     ε ε ε γ 2 δ 1 ε ε ε ε e ε ε ε ε δ 2,3,2 ε     , B =     ∆ 3 ε ε ε     , C = ε δ 1,0 ε γ 1 .
The behaviour of this system can be described by a rational expression y = Gu = CA * Bu.

For this example, the computation with the ETVO library gives y = δ 1,4,3,2,3,2 γ 0 ⊕ (δ 4,6,5 γ 1 ⊕ δ 5,8,7,6,7,6 γ 2)(δ 3 γ 2) * u.

For this short example, the C++ script is given below.

Figure 1 :

 1 Figure 1: Sequence of events and counter function.

Fig. 1

 1 Fig.1 depicts the counter function b(t) associated to the occurrences of events b. Let us remark that a counter function is naturally monotonic. The other representation, symmetrical, is called dater function. Such a function is defined by [dater function] b(k) : Z → Z, k → date of the k-th occurrence of event b.

For the sequences given in Fig. 2 ,

 2 we have {a} = {(a 0 , 1), (a 1 , 7), (a 2 , 10), (a 3 , 10), (a 4 , 14)} and {b} = {(b 0 , 2), (b 1 , 4), (b 2 , 8), (b 3 , 13)}, therefore the synchonization of {a} and {b} is given by {c} = {(c 0 , 2), (c 1 , 7), (c 2 , 10), (c 3 , 13)}.

Figure 2 :

 2 Figure 2: Synchronization of two sequences {a} ⊕ {b}

Figure 3 :

 3 Figure 3: Operator S mapping {a} to {b} : {b} = S{a}

Figure 4 :

 4 Figure 4: Time-shift/Event-shift : {b} = δ 3 {a} and {c} = γ 2 {a}

µ 2 {

 2 (a 0 , 1), (a 1 , 4), (a 2 , 7), ...} = {(b 0 , 1), (b 1 , 1), (b 2 , 4), (b 3 , 4), (b 4 , 7), (b 5 , 7), ...} Conversely, for the batch operator β b , b input events are needed to produce one output event.We have, {a} ∈ Σ s , {c} = β 3 {a}, β 3 {(a 0 , 1), (a 1 , 4), (a 2 , 7), ...} = {(c 0 , 7), (c 1 , 15), ...}.

∆ 3 {

 3 (a 0 , 1), (a 1 , 4), (a 2 , 6), (a 3 , 9), ...} = {(b 0 , 3), (b 1 , 6), (b 2 , 6), (b 3 , 9), ...}.

Figure 5 :Figure 6 :

 56 Figure 5: Event Muliplier/Batch : {b} = µ 2 {a} and {c} = β 3 {a}

Figure 7 :

 7 Figure 7: Elementary Timed Event Graphs

Figure 8 :

 8 Figure 8: TEG decomposition in basic operators

Figure 9 :

 9 Figure 9: Elementary Weighted Timed Event Graphs

Figure 10 :

 10 Figure 10: WB-TEG decomposition in basic operators

Figure 11 :

 11 Figure 11: PTEG decomposition into operators

/

 / Simple C++ example to compute the transfer series of a PTEG #include "etvo.h" using namespace std; using namespace etvo; int main(){ matrix<seriesTg> A(4, 4), B(4, 1), C(1, 4); B(0, 0) = tD(3); //D3 C(0, 1) = td({1,0}); //d<1,0> C(0, 3) = tg(1); //g1 A(0, 3) = tg(2); A(1, 0) = td(1); //d1 A(2, 1) = tg(0); A(3, 2) = td({2,3,2}); matrix<seriesTg> G=C * A.star() * B; G(0,0).toRight(); cout << G(0,0).toStringAsDeltaVar() << endl; //output=((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2] * }