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Based on information theory, a number of entropy measures have been proposed since the 1990s
to assess systems’ irregularity, such as approximate entropy, sample entropy, permutation entropy,
intrinsic mode entropy, and dispersion entropy to cite only a few. Among them, sample entropy has
been used in a very large variety of disciplines for both univariate and multivariate data. However,
improvements to the sample entropy algorithm are still being proposed because sample entropy is
unstable for short time series, may be sensitive to parameter values, and can be too time-consuming
for long data.

At the same time, it is worth noting that sample entropy does not take into account the multiple
temporal scales inherent in complex systems. It is maximized for completely random processes
and is used only to quantify the irregularity of signals on a single scale. This is why analyses of
irregularity—with sample entropy or its derivatives—at multiple time scales have been proposed to
assess systems’ complexity.

This Special Issue invited contributions related to new and original research based on the use of
sample entropy or its derivatives. The papers published in this Special Issue can be divided into two
categories. First, some papers present new applications of sample entropy or its derivatives. Second,
some papers propose improvements to sample entropy or its derivatives.

In addition to these articles, Sun et al. [1] performed a systematic review to summarize the
complexity differences of important signals in patients with asthma. They obtained the overall trend of
entropy change in the physiological signals related to asthma, evaluated the potential of using entropy
of biological dynamics as new clinical indices, and discussed possible strategies for future research.
The authors mention that entropy of heart rate variability (HRV), airflow, center of pressure, and respiratory
system impedance are lower in patients than in healthy people, whereas the entropies of respiratory
sound, airway resistance, and reactance are higher in patients than in healthy people. This might be
explained by the unstableness of local respiratory tract and the increase in breathing difficulty.

1. Applications of Sample Entropy or Its Derivative

In the biomedical field, Liao et al. used multiscale entropy to study complexity of skin blood
flow in type 2 diabetic patients with peripheral neuropathy and in healthy controls [2]. Skin blood
flow was recorded at the first metatarsal head using laser Doppler flowmetry in response to locally
applied pressure and heating. Indeed, quantification of skin blood flow responses to loading pressure
and thermal stresses may be a reasonable way to assess the risk of diabetic foot ulcer. Multiscale
entropy was computed using a modified sample entropy algorithm. The results showed that during
reactive hyperemia and the biphasic response induced by local heating, the modified sample entropy
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in diabetics presents only small changes compared to baseline but undergoes significant changes in
controls. Moreover, during baseline and skin blood flow responses—except for the pressure loading
period—the modified sample entropy at small scales exhibits different transitions between the two
groups. The findings support the use of nonlinear measures of skin blood flow responses induced by
mechanical and thermal stresses to assess the risk of diabetic foot ulcer.

Simons et al. studied electroencephalogram (EEG) of Alzheimer’s disease (AD) and age-matched
control subjects [3]. For this purpose, they used fuzzy entropy. Their results showed that fuzzy entropy
is lower in Alzheimer’s patients than in control subjects for electrodes T6, P3, P4, O1, and O2. Moreover,
fuzzy entropy led to better results than approximate entropy or sample entropy when diagnostic
accuracy was computed with the receiver operating characteristic curves. However, the authors note
that the results are dependent on the input parameters used in the fuzzy entropy computation.

Ruiz-Gomez et al. aimed to detect AD and its prodromal form (i.e., mild cognitive impairment,
MCI) from healthy controls through an EEG-based methodology [4]. For this purpose, after a data
preprocessing step, the authors used a combination of spectral measures and nonlinear methods,
with both frequency (spectral features) and time domain (nonlinear features: Lempel–Ziv complexity,
central tendency measure, sample entropy, fuzzy entropy, and auto mutual information) analyses
applied to EEG recordings. Furthermore, to avoid redundant features sharing similar information,
an automatic feature selection stage based on the fast correlation-based filter (FCBF) was used. Finally,
different multiclass classifiers were tested: logistic discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and multilayer perceptron neural network (MLP). The results showed that both
AD and MCI elicit changes in the EEG background activity, including a slowing of EEG rhythms,
alterations in the frequency distribution of the power spectrum, a complexity loss, a regularity increase,
and a variability decrease. Spectral and nonlinear features allowed the brain abnormalities associated
with AD and MCI to be characterized. Moreover, the brain activity in AD patients is less complex,
more regular, and less variable than in MCI and healthy control subjects.

In their work, Kumar et al. proposed a method for an automatic diagnosis of myocardial
infarction (MI) using ECG beat with a flexible analytic wavelet transform (FAWT) method [5]. For this
purpose, using lead-2 ECG signals, first, a preprocessing step was performed to remove the baseline
wandering and other noise present in the ECG signals. Then, ECG signals were segmented into
the beats. Furthermore, these beats were decomposed up to the 24th level of decomposition using
FAWT. Sample entropy was computed from each sub-band signal, which was reconstructed from the
corresponding coefficients of the FAWT-based decomposition. The computed features were subjected
to random forest (RF), J48 decision tree, back propagation neural network (BPNN), and least-squares
support vector machines (LS-SVM) classifiers to separate the ECG beats of MI and normal classes.
The authors found that lower frequency sub-band signals show higher sample entropy values for
normal ECG beats than MI ECG beats and that higher frequency sub-band signals extracted from
normal ECG beats have lower values of sample entropy. Finally, the method used by the authors
achieved 99.31% accuracy using LS-SVM classifier with radial basis function kernel.

Fazan et al.’s work is related to the analysis of the changes in physiological complexity entailed
by physical training [6]. This work was performed through the study of HRV time series recorded
in rats divided into two groups: rats that performed medium intensity training and a sedentary
group. HRV signals were recorded five days after the experimental protocol. The analysis of the HRV
time series was done with different algorithms: multiscale entropy, multiscale dispersion entropy,
and multiscale SDiffq. Multiscale SDiffq is a measure of entropic differences, and differences of
entropy between time series and its uncorrelated version, i.e., surrogate data, are used to represent the
complexity. From the latter, three quantities (q-attributes) were computed: SDiffqmax, qmax, and qzero
(SDiffqmax represents the maximum value for SDiffq in the range of q, whereas qmax and qzero
represent the q-value where SDiffq finds its maximum and zero values, respectively). The results
showed that the significant difference was only found between trained and sedentary rats in the mean
qmax at long time scales. Physical training therefore increased the system complexity. The authors also
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conclude that multiscale SDiffq is an alternative tool for characterizing the complexity of HRV time
series as it can add information in some situations where multiscale entropy is not accurate enough.

Shi et al. studied the within-subject changes of HRV during walking with a regular speed of
5 km/h on a treadmill (the Walk protocol) compared to those in a resting seated position (the Rest
protocol) [7]. The analysis of the time series was performed with eight different entropy measures:
approximate entropy, corrected approximate entropy, sample entropy, fuzzy entropy without removing
local trend, fuzzy entropy with local trend removal, permutation entropy, conditional entropy, and
distribution entropy. The authors also explored the potential effects of nonstationary linear or very
low-frequency trend. From their results, the authors note the importance of stating whether detrending
has been performed in studies and, if so, which process has been performed.

Bakhchina et al. were interested in the “mind–body” relationship and explored how the system
organization of behavior could be reflected in the irregularity of the heart rate, as measured by sample
entropy [8]. Thus, they proposed a model explaining HRV in relation to neuronal processes in the
brain. For this, they studied the sample entropy of the heart rate in different conditions. The results
revealed that irregularity of the heart rate reflect the properties of a set of functional systems subserving
current behavior, with higher irregularity corresponding to later-acquired and more complex behavior.
This showed that the dynamics of functional systems supporting current behavior is reflected not only
in activity of the brain but also in the activity of the rest of the body. The authors finally conclude
that sample entropy of the heart rate can be used as a new tool to study psychological processes and
organization of behavior.

Ye et al. proposed a method for the recognition of driving fatigue [9]. They used sample entropy
associated with kernel principal component analysis to recognize driving fatigue. The framework
was tested on EEG data. Using support vector machine for classification, a driving fatigue state
recognition model was constructed. The results were compared with the ones given by sample
entropy alone, fuzzy entropy, and combination entropy. The authors showed that their approach
significantly improved the classification recognition rate compared with the traditional sample entropy,
fuzzy entropy, and combination entropy. Moreover, fuzzy entropy and combination entropy associated
with kernel principal component analysis give worse results than those obtained with sample entropy
and kernel principal component analysis.

In another field of application, Lin et al. [10] proposed a structural health monitoring (SHM)
system based on multiscale cross-sample entropy (MSCE) to detect damage locations in multibay
three-dimensional structures. Through MSCE, the degree of dissimilarity between the response signals
of vertically adjacent floors was used to localize damage for each bay analysis. Moreover, a damage
index was proposed for rapidly and efficiently diagnosing the damaged floor, axis, and bay in the
structure. The work of the authors shows the feasibility and further potential of the proposed SHM
system for the detection and localization of damage in large and complex structures.

In a completely different context, Yin et al. analyzed the complexity of carbon market and an
illustration was performed on pilot carbon markets in China [11]. Because of the short length of the
time series used, the analysis was done through the use of the modified multiscale entropy proposed
by Wu et al. in 2013. The results showed an overall low complexity in those carbon markets, far smaller
than that in the European carbon market. Furthermore, the complexity of the carbon market (except
Chongqing) was found higher in small time scales than in large scales. Moreover, complexity level in
most pilot markets increased as the markets developed, showing an improvement in market efficiency.

2. Improvements of Sample Entropy or Its Derivatives

Sample entropy has the drawback of necessitating a long computational time. This is why Manis
et al. presented three algorithms to compute sample entropy quickly [12]. The first algorithm is an
extension of the kd-trees algorithm, customized for sample entropy. The second one is an extension of
an algorithm initially proposed for approximate entropy—the bucket-assisted algorithm—customized
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for sample entropy. The last one is the most rapid for specific values of m, r, time series length,
and signal characteristics.

Looney et al. proposed an analysis dealing with multivariate sample entropy [13]. The authors
first revisited the embedding of multivariate delay vectors. They also proposed a new multivariate
sample entropy algorithm. Their results showed the improved performance of this new algorithm over
existing work for synthetic data and for classifying wake and sleep states from real-world physiological
data. Moreover, they showed that synchronized regularity dynamics are uniquely identified via the
new multivariate sample entropy analysis.

Chen et al. proposed the hierarchical cosine similarity entropy (HCSE) to overcome some
limitations of the multiscale sample entropy, such as undefined entropy value for short time series [14].
HCSE takes both lower and higher frequency components into consideration. The algorithm proposed
by the authors is composed of three steps. First, the hierarchical decomposition is used to decompose
the time series under study into subsequences. Second, the sample entropy is modified using Shannon
entropy rather than conditional entropy. Moreover, angular distance is used instead of Chebyshev
distance. Third, the complexity of each subsequence is quantified by the modified sample entropy.
An application of HCSE is shown first on synthetic signals and then on the classification accuracy
of real ship-radiated noise, which is the main signal source of passive sonar for underwater target
detection and recognition. The results show the superiority of the new algorithm over traditional
multiscale entropy.

Azami et al. proposed to assess the impact of coarse-graining in multiscale entropy estimations
based on both sample entropy and dispersion entropy [15]. Thus, the computation of multiscale
entropy relies on two steps: (i) a coarse-graining approach, which is a combination of moving average
filter and downsampling process; (ii) computation of the sample entropy for each scale factor, i.e.,
for each coarse-grained time series. A low-pass Butterworth filter was proposed as an alternative to
moving average. Thus, the authors compared existing and newly proposed coarse-graining approaches
for univariate multiscale entropy estimation. Among others, their results show that the downsampling
may lead to increased or decreased values of entropy depending on the sampling frequency of the time
series. The authors also concluded that downsampling within the coarse-graining procedure may not be
needed to quantify the complexity of signals, especially for short ones. Moreover, the authors showed
that dispersion entropy leads to more stable results than sample entropy in the estimations based on
coefficient of variation values and ensures that the entropy values are defined at all temporal scales.

Fuzzy entropy is a derivative of sample entropy that has shown to give better results than sample
entropy in some situations; fuzzy entropy presents a stronger relative consistency and shows less
dependence on data length than sample entropy. However, fuzzy entropy still has some drawbacks as
it depends on the number of samples in the data under study: The shorter the signal, the lower is the
precision of the fuzzy entropy values. This is why Girault et al. proposed a new fuzzy entropy measure
that presents better precision than the standard fuzzy entropy [16]. This is performed by increasing the
number of samples used in the computation of the entropy measure without changing the length of
the time series. For this purpose, the constraint of the mean value in the comparison of the patterns is
removed. Moreover, not only translated patterns, but reflected, inversed, and glide-reflected patterns
are also considered. The new measure (so-called centered and averaged fuzzy entropy) was applied to
synthetic and biomedical signals (fetal heart rate time series). The results showed that the centered
and averaged fuzzy entropy leads to more precise results than the standard fuzzy entropy does.

Acknowledgments: I express my thanks to the authors of the above contributions and to the journal Entropy and
MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.



Entropy 2018, 20, 794 5 of 5

References

1. Sun, S.; Jin, Y.; Chen, C.; Sun, B.; Cao, Z.; Lo, I.L.; Zhao, Q.; Zheng, J.; Shi, Y.; Zhang, X.D. Entropy
Change of Biological Dynamics in Asthmatic Patients and Its Diagnostic Value in Individualized Treatment:
A Systematic Review. Entropy 2018, 20, 402. [CrossRef]

2. Liao, F.; Cheing, G.L.Y.; Ren, W.; Jain, S.; Jan, Y.-K. Application of Multiscale Entropy in Assessing Plantar
Skin Blood Flow Dynamics in Diabetics with Peripheral Neuropathy. Entropy 2018, 20, 127. [CrossRef]

3. Simons, S.; Espino, P.; Abásolo, D. Fuzzy Entropy Analysis of the Electroencephalogram in Patients with
Alzheimer’s Disease: Is the Method Superior to Sample Entropy? Entropy 2018, 20, 21. [CrossRef]

4. Ruiz-Gómez, S.J.; Gómez, C.; Poza, J.; Gutiérrez-Tobal, G.C.; Tola-Arribas, M.A.; Cano, M.; Hornero, R.
Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer’s Disease and Mild Cognitive
Impairment. Entropy 2018, 20, 35. [CrossRef]

5. Kumar, M.; Pachori, R.B.; Acharya, U.R. Automated Diagnosis of Myocardial Infarction ECG Signals Using
Sample Entropy in Flexible Analytic Wavelet Transform Framework. Entropy 2017, 19, 488. [CrossRef]

6. Fazan, F.S.; Brognara, F.; Fazan Junior, R.; Murta Junior, L.O.; Virgilio Silva, L.E. Changes in the Complexity
of Heart Rate Variability with Exercise Training Measured by Multiscale Entropy-Based Measurements.
Entropy 2018, 20, 47. [CrossRef]

7. Shi, B.; Zhang, Y.; Yuan, C.; Wang, S.; Li, P. Entropy Analysis of Short-Term Heartbeat Interval Time Series
during Regular Walking. Entropy 2017, 19, 568. [CrossRef]

8. Bakhchina, A.V.; Arutyunova, K.R.; Sozinov, A.A.; Demidovsky, A.V.; Alexandrov, Y.I. Sample Entropy of
the Heart Rate Reflects Properties of the System Organization of Behaviour. Entropy 2018, 20, 449. [CrossRef]

9. Ye, B.; Qiu, T.; Bai, X.; Liu, P. Research on Recognition Method of Driving Fatigue State Based on Sample
Entropy and Kernel Principal Component Analysis. Entropy 2018, 20, 701. [CrossRef]

10. Lin, T.-K.; Laínez, A.G. Entropy-Based Structural Health Monitoring System for Damage Detection in
Multi-Bay Three-Dimensional Structures. Entropy 2018, 20, 49.

11. Yin, J.; Su, C.; Zhang, Y.; Fan, X. Complexity Analysis of Carbon Market Using the Modified Multi-Scale
Entropy. Entropy 2018, 20, 434. [CrossRef]

12. Manis, G.; Aktaruzzaman, M.; Sassi, R. Low Computational Cost for Sample Entropy. Entropy 2018, 20, 61.
[CrossRef]

13. Looney, D.; Adjei, T.; Mandic, D.P. A Novel Multivariate Sample Entropy Algorithm for Modeling Time
Series Synchronization. Entropy 2018, 20, 82. [CrossRef]

14. Chen, Z.; Li, Y.; Liang, H.; Yu, J. Hierarchical Cosine Similarity Entropy for Feature Extraction of
Ship-Radiated Noise. Entropy 2018, 20, 425. [CrossRef]

15. Azami, H.; Escudero, J. Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion
Entropy. Entropy 2018, 20, 138. [CrossRef]

16. Girault, J.-M.; Humeau-Heurtier, A. Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy
Precision. Entropy 2018, 20, 287. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e20060402
http://dx.doi.org/10.3390/e20020127
http://dx.doi.org/10.3390/e20010021
http://dx.doi.org/10.3390/e20010035
http://dx.doi.org/10.3390/e19090488
http://dx.doi.org/10.3390/e20010047
http://dx.doi.org/10.3390/e19100568
http://dx.doi.org/10.3390/e20060449
http://dx.doi.org/10.3390/e20090701
http://dx.doi.org/10.3390/e20060434
http://dx.doi.org/10.3390/e20010061
http://dx.doi.org/10.3390/e20020082
http://dx.doi.org/10.3390/e20060425
http://dx.doi.org/10.3390/e20020138
http://dx.doi.org/10.3390/e20040287
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Applications of Sample Entropy or Its Derivative 
	Improvements of Sample Entropy or Its Derivatives 
	References

