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In this paper, we design a diagnostic technique for a partially observed labeled Petri net where the faults of the system are modeled by unobservable transitions. The fault detection and isolation uses an on-line count vector estimation associated with the firing of unobservable transitions exploiting the observation of firing occurrences of some observable transitions. The support of the approach is an algebraic description of the process under the form of a polyhedron developed on a receding horizon. We show that a diagnostic can be made despite that different transitions can share the same label and that the unobservable part of the Petri net can contain circuits.

Introduction

Fault diagnosis is the process of Fault Detection and Isolation (FDI) which can also include fault identification. Fault detection is a binary decision that decides whether the system is in normal or abnormal operation. Fault isolation consists in identifying the system component (plant equipment as a sensor or actuator, component malfunctioning, etc.) responsible for the occurrence of this fault. Fault identification consists in determining the amplitude and possible evolution of the faults over time.

This paper focuses on the diagnosis of a process whose state evolves at the occurrence of events. This process can be modeled as a discrete event system (DES). This class of models presents numerous applications as transport networks, computer systems, multimedia systems, food industry, and manufacturing systems. In the literature, we find two graphical and mathematical tools for modeling the DES which are the Finite State Automaton (FSA) and the Petri Net (PN). In this paper, we choose the PN model that can model the phenomena of synchronism, assembly and sharing of resources, thanks to its structure. For various economic and/or technical reasons, the presence of a sensor for each system variable is not always possible. As a result, the PN may contain transitions that model unobservable events in the system. Unobservable events can also model faults, disturbances, or noises that can affect the system. The relevant transitions are named unobservable transitions and the PN is then called a choucheneamira41@yahoo.fr partially observed PN.

In the litterature, the most known methods for PN diagnosis has been based on the faulty model for fault diagnosis [START_REF] Cabasino | Diagnosis using labeled Petri nets with silent or undistinguishable fault events[END_REF][START_REF] Wang | Diagnosis of Time Petri Nets Using Fault Diagnosis Graph[END_REF]. In fact, methods working with fault-model are well adapted for fault isolation. The techniques used for the diagnostis depend on the knowledge available on the system as well as on the detectable faults affecting the system [START_REF] Wu | Algebraic approaches for fault identification in discreteevent systems[END_REF], [START_REF] Benveniste | Diagnosis of asynchronous discreteevent systems: a net unfolding approach[END_REF]. For fault diagnosis, we can find event-based, state-based, and mixed-based faults. The event-based faults model the system faults into a set of transitions, and the occurrence of certain faults is equivalent to firing the associated transitions. The detection and isolation of faults are carried out based only on observed events. These event-based models have the advantage of detecting intermittent faults [START_REF] Genc | Distributed diagnosis of place-bordered Petri nets[END_REF] (Garcia et al., 2008) [START_REF] Ramirez-Trevino | Structural diagnosability of DES and design of reduced Petri net diagnosers[END_REF]. The state-based faults consider that the occurrence of a fault is equivalent to the change in the state of the PN deviating from its nominal behavior, which is expressed by losses or duplications of tokens. The disadvantage of the state-based faults' modulation is that it can not detect intermittent faults that are short events leading to unstable states [START_REF] Wu | Algebraic approaches for fault identification in discreteevent systems[END_REF] [START_REF] Benveniste | Diagnosis of asynchronous discreteevent systems: a net unfolding approach[END_REF]. The mixed-based faults modulation is a combination of the occurrence of fault events and the attainability of fault states [START_REF] Wu | Algebraic approaches for fault identification in discreteevent systems[END_REF].

In this paper, we are interested in the diagnosis of a partially observed Labeled PN (LPN). Assuming that the faults of the system are modeled by some unobservable transitions (event-based faults), we focus on the optimistic and pessimistic cases of the occurrences of faults, which allow the interpretation of fault detection and isolation. Our diagnosis approach is based on an observer that estimates the events that cannot be directly observed by an outside observer. Exploiting the observation of events available from the PN, the observer ideally makes an estimation of the events relevant to unobservable firing sequences that enable a sequence of observed transitions from a given initial marking. More practically, as the image of the sequence is a firing count vector that counts the number of each unobservable transition firing, an objective is to estimate the count vectors coherent with the observed events. A fault will be detected if the observer notices that all the possible unobservable firing sequences include a fault transition at least. Precisely, the count vector of fault transitions is always different from the null vector. Symmetrically, no fault will appear if the observer cannot generate a possible unobservable firing sequence including a fault transition.

The first work on the diagnosis of PNs is based on the control of the changes of the tokens in P-invariants of a generalized PN [START_REF] Portinale | Petri net reachability analysis meets model-based diagnostic problem solving[END_REF]. A fault is detected when a P-invariant do not keep their number of tokens. In [START_REF] Ramirez-Trevino | Structural diagnosability of DES and design of reduced Petri net diagnosers[END_REF], the difference of the marking of the actual behavior model and the estimated marking, called residue, provided enough information for the immediate isolation of faults. In [START_REF] Cabasino | Diagnosis using labeled Petri nets with silent or undistinguishable fault events[END_REF][START_REF] Ran | Fault Diagnosis for Discrete Event Systems Modeled By Bounded Petri Nets[END_REF], a diagnosis approach of partially observed LPN was based on the notion of basis markings which was a reduced set of actual markings coherent to an observed sequence. The faults were modeled by unobservable transitions and might also been modeled by undistinguishable observable transitions. If the LPN was bounded, the diagnosis approach was based on the Basis Reachability Graph (BRG) which can be computed off-line. An Extended BRG (EBRG) was constructed in [START_REF] Ran | Fault Diagnosis for Discrete Event Systems Modeled By Bounded Petri Nets[END_REF] which is a basis marking computed by assuming that all the system faults are observable. The EBRG has significantly fewer states than the reachability graph in most cases, but it still exponential with respect to the number of nodes. [START_REF] Wang | Diagnosis of Time Petri Nets Using Fault Diagnosis Graph[END_REF] used a Fault Diagnosis Graph (FDG) for fault diagnosis of partially observed Time PN (TPN) were the faults are modeled by unobservable transitions. The FDG was incrementally computed using the State Class Graph (SCG). Starting from the SCG, Basile et al. [START_REF] Basile | State estimation and fault diagnosis of labeled time petri net systems with unobservable transitions[END_REF] determine a new graph called the Modified SCG (MSCG), that visualize in a compact form the main information on all the possible evolutions of a given labeled TPN system initialized at a given marking. Given a timed observation, i.e., a sequence of observed labels with the corresponding time instants of observation, the fault diagnosis is based on the exploration of the MSCG and on the solution of some ILP problems to determine which states are consistent with the observation. If all the consistent state that is reachable at t = 0 via sequences containing some fault transitions, then a fault is detected. Lefebvre [START_REF] Lefebvre | On-line fault diagnosis with partially observed Petri nets[END_REF] used linear matrix inequalities to compute the firing sequences consistent with each elementary observation sequence for a partially observed PN diagnosis. A forward-backward algorithm was suggested, which analysed the sub-sequences of bounded lengths. A fault is detected if these estimated sub-sequences include fault transition. Sufficient conditions for detection and isolation were formulated as ILP problems. In [START_REF] Dotoli | On-line fault detection in discrete event systems by Petri nets and integer linear programming[END_REF], the diagnosis approach of partially observed LPN was based on the resolution of some ILP problems for each observed transition of the observed firing sequence. The initial marking update after each considered transition of the observed sequence was avoided. The system faults were modeled by some unobservable transitions. A fault is detected if it is includes in a subset of unobservable sequences coherent with the observation verifying an ILP problem. In [START_REF] Basile | An efficient approach for online diagnosis of discrete event systems[END_REF], authors proposed an approach of fault diagnosis of a partially observed PN requiring an on-line computation of the set of possible fault events explaining the last observed event. The on-line computation consisted in solving the ILP problems formulated on a net structure and based on g-markings. The resolution time of an ILP problem is in general case NP-hard. Therefore, the diagnosis procedure is time consuming. To reduce the temporal complexity, the fluidization technique was explored for fault diagnosis [START_REF] Mahulea | Fault diagnosis of discrete-event systems using continuous Petri nets[END_REF].The main idea of the fluidization of PNs is the relaxation of the transitions firings allowing them to fire in positive real amounts. The fluidization of a partially observed purely logic PN produces an untimed Continuous PN (CPN) with a set of markings that are consistent with a given observation which is convex. Using this convexity property, the diagnosis states are computed solving LP problems for the untimed CPNs. For fault detection, two LP problems were defined for each observed transition of the observed sequence and for each fault transition under the assumption that the unobservable subnet was acyclic. Moreover, the update of the initial marking after each observed transition of the observation was necessary. Therefore, this diagnostic approach is time and space consuming. In [START_REF] Hadjicostis | Monitoring discrete event systems using Petri net embeddings[END_REF], fault diagnosis is based on incorporating structured redundancy into a PN. Monitors were constructed, which operated concurrently with the original system and allowed detecting and identifying different types of faults by performing consistency checks between the state of the original PN and that of the monitor state. In [START_REF] Yang | Design and fault diagnosis of Petri net controllers for Petri nets with uncontrollable and unobservable transitions[END_REF], the authors were interested in diagnosing the faults of controller that was modeled by PN with uncontrollable and unobservable transitions. The inadmissible constraints with uncontrollable and unobservable transitions were transformed into admissible conditions in this method. Separate redundant PN controllers utilizing additional places, connections and tokens to impose invariant conditions enabled the systematic detection and identification of faults via the Hamming code. In [START_REF] Wu | Algebraic approaches for fault identification in discreteevent systems[END_REF], the authors devised an algebraic approach for partially observed PN diagnosis. Two types of faults to be diagnosed based on the observed marking at the end of a period were the transition faults and the place faults. For this purpose, a number of places were added to the PN model. The resulting model was a redundant PN that included 2q additional places and allowed the identification of 2q -1 transition faults and q place faults. The incorporated redundancy permitted fault diagnosis using algebraic decoding techniques. In terms of coding theory, the transition faults were measured in the form of the "Lee metric distance" and the place faults were measured in the form of the "Hamming metric distance". However, the computational Techniques in algebraic coding theory are both time and space consuming.

In this paper, the fault detection is based on the resolution of at most two LP problems for an observed sequence w. We assume that the incidence matrices and the initial marking (denoted M init in what follows) are known. The occurrences of observable transitions are non-simultaneous. We also assume the feasibility of the system and the presence of observations during the application of the estimation procedure. The same label can be associated with more than one observable transition and circuits can exist in the unobservable subnet.

The procedure of estimation is usually based on the sequential treatment of each transition produced by the observed sequence in an on-line procedure. The firing of a found unobservable sequence and the observed transition generates a set of new current markings used in the following step. The search procedure is repeated at the occurrence of each event. However, this procedure presents some drawbacks. As this technique needs to consider any starting marking in the estimation at each iteration, this procedure is time-consuming and the boundedness of spaces is problematic [START_REF] Ru | Bounds on the number of markings consistent with label observations in Petri nets[END_REF]. Another difficulty is to extend the obtained results (as an optimality) for one observed transition to a sequence of observed transitions even if some results exist for minimal solutions [START_REF] Li | Least-cost transition firing sequence estimation in labeled Petri nets with unobservable transitions[END_REF]. Therefore, we generalize this procedure by introducing in this paper an approach based on a new description of the problem, not for a unique observed transition but for a set of observed transitions which are possibly indistinguishable. Thus, the initial marking update after each considered transition of w is avoided. The estimation problem is algebraically described under the form of a polyhedron A.x ≤ b over Z with an unknown x which is developed on a receding horizon. This construction implies that the different possible current markings are not computed but are algebraically expressed in the polyhedron. To the best of our knowledge, the case of indistinguishable observable transitions has been considered by only few authors and the proposed procedure has been the only one that could consider the indistinguishable observable transitions under an algebraic point of view, which can express it clearly and allows its reuse in other fields. The hypothesis of acyclicity is not taken in this article, contrary to many papers in this topic, except [START_REF] Cabasino | Diagnosis using labeled Petri nets with silent or undistinguishable fault events[END_REF][START_REF] Dotoli | On-line fault detection in discrete event systems by Petri nets and integer linear programming[END_REF].

The paper is organized as follows. In section 2, we present the preliminary notions. In section 3, we build a polyhedron defined on a receding horizon, which describes the estimation problem under an algebraic point of view. In section 4, we introduce two criteria which permit the fault detection and isolation. The proposed approach is illustrated in section 5 by a pedagogical example containing a circuit and two transitions sharing the same label. In section 6, we consider the complexity. In section 7, a numerical comparison with the discrete approach based on "basis markings" is performed. In section 8, we end with a conclusion and some perspectives.

Preliminary

The notation |Z| is the cardinality of set Z, and the notation A T corresponds to the transpose of the matrix A. The upper integer part and the lower integer part of α ∈ R denoted α and α , respectively. A Place/Transition (P/TR) net is the structure N = (P, T R, W + , W -), where P is a set of |P | places and T R is a set of |T R| transitions. The matrices W + and W -are respectively the |P | × |T R| post and pre-incidence matrices over N, where each row l ∈ {1, ..., |P |} specifies the weight of the incoming and outgoing arcs of the place p l ∈ P . The incidence matrix is W = W + -W -. The pre-set and post-set of the node z ∈ P T R are denoted by • z and z • , respectively.

A labeling function L : T R → AL ∪ {ε} assigns to each transition x i ∈ T R either a symbol from a given alphabet AL or the empty string ε. Without loss of generality, the mapping L is assumed to be surjective. In a partially observed LPN, we assume that the set of transitions T R can be partitioned as T R = T R obs T R un , where the set T R obs (respectively T R un ) is the set of observable transitions (respectively unobservable transitions) associated with a label of AL (respectively the empty string ε).

The unobservable induced subnet of the Petri net N is defined as the new net

N un = (P, T R un , W + un , W - un )
where W + un and W - un are the restrictions of W + and W - to P × T R un . Therefore,

W un = W + un -W - un .
The observed subnet of N is defined as the new net N obs = (P, T R obs , W + obs , W - obs ) where W + obs and W - obs are the restrictions of W + and W -to P × T R obs . A reorganization of the columns with regards to T R un and T R obs yields W = W un W obs . The notation (x un ) i expresses an unobservable transition, belonging to T R un , while an observable transition belonging to T R obs is denoted (x obs ) i .

The notation Θ * represents the set of firing sequences, denoted σ, consisting of transitions of the set Θ ⊂ T R. The vector σ (respectively x un ) of dimension |T R| (respectively |T R un |) expresses the firing vector or count vector of the sequence σ ∈ T R * (respectively x un ∈ T R * un ), where the i -th component σ i (respectively (x un ) i ) is the firing number of the i -th transition of T R, which is fired σ i times in the sequence σ (respectively (x un ) i ∈ T R un which is fired (x un ) i times in the sequence x un ). The same notation is taken for x obs of dimension |T R obs | . The reorganization of the components of σ yields σ = x un T x obs T T . The marking of the set of places P is a vector M ∈ N |P | that assigns to each place p i ∈ P a non-negative integer number of tokens M i , represented by black dots. The i -th component M i is also written as M (p i ). The marking M reached from the initial marking M init (which replaces the usual notation M 0 ) by firing the sequence σ can be calculated by the fundamental relation:

M = M init + W.σ. The transition x i ∈ T R which can be (x un ) i ∈ T R un or (x obs ) i ∈ T R obs is enabled at M if M ≥ W -(., x i )
and may be fired yielding the marking M = M + W (., x i ). We write M [σ to denote that the sequence of transitions σ is enabled at M , and we write M [σ M to denote that the firing of σ yields M .

We take

n = |T R un | , n = |T R obs |, n = |AL| and m = |P | .

Relaxed problem on a horizon

The problem considered in this part is as follows. Let us consider a LPN where the incidence matrix W and the initial marking M init are known. Given a sequence of labels of AL emitted by the firing of the observable transitions of T R obs , which are generated by the activity of the LPN, we want to algebraically describe the space of the count vectors that are coherent with the observations.

Polyhedron of LPN

We present here a linear algebraic approach based on the fundamental equation of marking and the conditions of firing transitions in a LPN. Assuming that the occurrences of observable transitions and the production of a relevant label are nonsimultaneous, we associate an iteration < i > to each occurrence of an observable transition. The k observations defines the horizon {1, . . . , k} where 1 and k corresponds the first and last observations, respectively. The firing of the observable transition (x obs ) j for j ∈ {1, . . . , |T R obs |} and the relevant count vector for each iteration i ∈ {1, ..., k} are respectively denoted (x obs ) <i> j and (x obs ) <i> j . The same notations are taken for the count vector of the unobservable transitions (x un ) j for j ∈ {1, . . . , |T R un |}, and the count vector of the observed labels is defined as follows: The vector y <i> of dimension |AL| describes the count vector of the observed labels for iteration < i > where the component associated to a unique label a ∈ AL is the number of appearances of this label generated by the observable transitions of the LPN expressed by the firings of the transition (x obs ) j . Thus, the following notations are relevant to the horizon {1, . . . , k} :

x un = (x un <1> ) T (x un <2> ) T (x un <3> ) T . . . (x un <k> ) T T , x obs = (x obs <1> ) T (x obs <2> ) T (x obs <3> ) T . . . (x obs <k> ) T T and y = (y <1> ) T (y <2> ) T (y <3> ) T . . . (y <k> ) T T .
The dimensions of x un , x obs and y are k.n, k.n and k.n , respectively. We have (x obs ) <i> j and (y) <i> j ∈ {0, 1} as we consider a unique firing of an observable transition for each step < i > by assumption. We take later M <1> = M init . Definition 3.1. When the estimate of the firing count vector x un associated to the unobservable transitions corresponds to a sequence that can be followed by the LPN, this count vector will be named "explanation vector ". The sets of all possible explanation vectors for the starting marking M <1> and the observation y are denoted E(y).

The set of explanation vectors exists as we assume that the LPN is live on the horizon {1, . . . , k}. Let us consider an iteration < i >. The algebraic formulation of a possible explanation vector is made using the above reasoning for a given marking M <i> and the unique observation (x obs ) <i> j with an iteration < i >. As M <i> [x <i> un M , the marking M satisfies the following equation:

M = M <i> + W un • x un <i> (1)
In addition, the transition (x obs ) <i> j is enabled for M . As M [(x obs ) <i> j , we can write the following inequality:

M ≥ W - obs .x obs <i> (2)
where x obs <i> = 0, except a unique entry (x obs ) <i> j

. By replacing M by its expression (1), we obtain:

-W un .x un <i> + W - obs .x obs <i> ≤ M <i> (3)
for i ≥ 1, with the constraint of non-negativity x un <i> , x obs <i> ≥ 0 .

Let us develop the relations on the horizon {2, . . . , k}. The firing of a found unobservable sequence and of the observed transition generates a new current marking used in the following step. Formally, M [(x obs ) <i> j M <i+1> . Hence, M <i> = M <i-1> + W un .x un <i-1> + W obs .x obs <i-1> and more generally, as

M <i> = M <1> + W un . i-1 j=1
x un <j> + W obs .

i-1 j=1

x obs <j> for i ≥ 2, we obtain:

-W un i . j=1 x un <j> -W obs . i-1 j=1 x obs <j> + W - obs .x obs <i> ≤ M <1> (4)
The consideration of (3) for i = 1 and (4) for i ≥ 2 leads to the following system:

A.x un + B.x obs ≤ b with x un , x obs ≥ 0 (5)
where

A=       -W un 0 0 0 -W un -W un 0 0 -W un -W un -W un 0 . . . . . . . . . . . . . . . -W un -W un -W un . . . -W un       , B =       W - obs 0 0 . . . 0 -W obs W - obs 0 . . . 0 -W obs -W obs W - obs . . . 0 . . . . . . . . . . . . . . . -W obs -W obs -W obs . . . W - obs       and b =        M <1> M <1> M <1> . . . M <1>        .
The dimension of the matrices A and B and the vector b are (k.m×k.n) , (k.m×k.n ) and (k.m×1), respectively. The matrices A and B depend on the structure of the LPN, whereas the vector b depends on the initial marking. Remark: Note that A, B, b, x un and x obs depend on the horizon {1, . . . , k}. If the horizon is reduced to {1, 1}, we obtain the well-known inequality (3).

Indistinguishable events

The first non-determinism is produced by the fact that the label ε is associated with all the unobservable transitions of T R un . The second non-determinism is as follows. Let us consider the case where the mapping L is not injective. The same label of the alphabet AL can be associated with more than one observable transition. Consequently, several observable transitions may share the same label a ∈ AL, which leads to an ambiguity in the data as we cannot deduce the effective transition. Accordingly, the emission of the label is said to be ambiguous as it does not permit distinguishing associated transitions. Let Ω a ⊂ T R obs be a set of observable transitions for the label a. Formally,

Ω a = {(x obs ) j ∈ T R obs | L((x obs ) j ) = a} .
We can deduce a connection between (x obs ) <i> j for (x obs ) j ∈ Ω a and (y a ) <i> for each observation, which is

(x obs ) j ∈Ω a (x obs ) <i> j = (y a ) <i> with (x obs ) <i> j , (y a ) <1> ∈ {0, 1}.
As we assume that there is a unique firing of a transition (x obs ) j which occurs at each iteration, the case (x obs ) <i> j = 1 implies (y a ) <i> = 1. Conversely, (y a ) <i> = 1 implies the existence of a transition (x obs ) <i> j . Therefore, after building the relevant matrix C ≥ 0 with the appropriate components 0 or 1, we can write: C.x obs <i> = y <i> for i ∈ {1, . . . , k}, where the dimensions of C are (n xn ), and we obtain:

C.x obs = y (6) with C =       C 0 0 . . . 0 0 C 0 . . . 0 0 0 C . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . C       .
The dimension of C is (k.n xk.n ). Accordingly, C.x obs = y is equivalent to C.x obs ≤ y and -C.x obs ≤ -y and the relaxation of (x obs ) <i> j ∈ {0, 1} leads to 0 ≤ x obs ≤ u, where u is the unitary vector of the dimension of x obs .

Final polyhedron

Finally, the final system used in this paper is as follows:

A.x ≤ b with x ≥ 0 (7) with A =     I 0 C 0 -C 0 B A     , x = x obs x un and b =     u y -y b     .
The Remark Generally, the integer solution of matrix inequality (7) describes a set that includes the set of explanation vectors. Indeed, the existence of non-negative integer solutions of fundamental inequality (7) is not sufficient to determine the true explanation vectors that express valid firing sequences [START_REF] Kostin | Reachability analysis in T-invariant-less Petri nets[END_REF]. For the PN with acyclic T R uninduced subnets, the solution set of matrix inequality (7) in Z k.(n+n ) is coincident with the set of explanation vectors.

We denote S R (y) = {x ∈ R k.(n+n ) |A.x ≤ b, x ≥ 0} the space of admissible solutions over R and we denote S Z (y) = S R (y) ∩ Z k.(n+n ) the space of admissible solutions over Z. Accordingly, the solutions of the obtained algebraic model (7) over R or N always includes the set of explanation vectors E(y). Therefore, the solutions of S R (y) and S N (y) are named candidate solutions or candidate vectors over R and N, respectively. This inclusion can possibly be strict as the firing conditions of the unobservable transitions are neglected in this part. As a result, we have:

S R (y) ⊇ S N (y) ⊇ E(y) (8)
which defines the context of this paper. Considering x un , x obs in the integers, this system can be solved by standard solvers of integer linear programming if we add a criterion. However, this resolution is exponential in the worst case, and we can prefer the relaxation of system (7) where efficient algorithms of linear programming, such as the Simplex algorithm, the Karmarkar's algorithm and the Khashiyan's algorithm, can be applied.

Analyzing the relaxation of ( 7), the objective is now to determine the optimal candidate solution in S R for a linear criterion dedicated to the diagnostic problem. We show that a diagnostic can be made despite the relaxation over R by determining a lower bound and an upper one (if it is possible) for fault occurrences.

Diagnosis of a partially observable LPN

We assume that the faults occurring in the process are modeled by unobservable transitions and the notation T R f represents the relevant set. The set of unobservable transitions describing a normal behavior is denoted T R n . Therefore, T R f ⊂ T R un = and

T R un = T R n ∪ T R f (9) with T R = T R obs ∪ T R un .

Fault detection

The process contains a fault if there is at least the firing of one fault transition for the observed word w. This means that the firing sum of the fault transitions is greater than or equal to 1 for the k observed transitions of w. Let us define the relevant criterion c det .x where the row-vector c det is the concatenation of the submatrix of k.n zeros and the submatrix c <1> c <2> c <3> . . . c <k> relevant to T R obs and T R un , respectively. The components (c <i> ) j for any fault transition j ∈ T R f ⊂ T R un are equal to 1 for any i = 1, ..., k, while the other ones are null. As a result, c <1> = c <2> = ... = c <k> . Thereby, we can consider the following J - det criterion:

J - det = min(c det .x) s.t. A.x ≤ b with x ≥ 0 (10)
By solving the optimization problem (10) in Z, the computed criterion J - det is a lower bound of the number of detected faults. These detected faults can be the repetition of the firing of the same fault transition. Symmetrically, the fault can be transient. Particularly, we have:

• If min Z (c det .x) ≥ 1,
then at least a fault is detected on the horizon. Symmetrically, we can define another J + det criterion giving the maximum number by replacing the expression "min" by "max" above.

J + det = max(c det .x) s.t. A.x ≤ b with x ≥ 0 (11)
A simpler way to express the results and to apply the solvers of linear programming is to keep the operator min but to replace c det by -c det in the expressions. Thus, the results are similar after replacing "majorant" by "minorant" and "upper bound" by "lower bound". The interpretation is that the maximum number of detected faults cannot be greater than the obtained value max Z (c det .x) of J + det solving (11) in Z. Particularly, we have:

• If max Z (c det .x) = 0, then no fault is detected.
Note that the aforementioned interpretations based on sufficient conditions do not need an additional assumption as the acyclicity of the unobservable induced subnet.

Proposition 4.1. For an LPN with a cyclic unobservable induced subnet, if an obtained vector is not an explanation vector, then the possible explanation vectors can only give the same value or a greater value than min Proof. (1) We consider the following two cost functions: ) , we have c det .x ≥ f -and in particular f - cyc ≥ f -. The case f - cyc different from f -is possible as we have the condition Π(σ) = x.

f -= {min(c det .x) | A.x ≤ b, x ≥ 0 , x ∈ Z k.(n+n ) } f - cyc = {min(c det .x) | A.x ≤ b, x ≥ 0 , x ∈ Z k.(n+n ) and ∃σ ∈ T R * un such thatΠ(σ) = x} ∀x such that A.x ≤ b, x ≥ 0 , x ∈ Z k.(n+n
(2) We consider the next two cost functions:

f + = {max(c det .x) | A.x ≤ b, x ≥ 0 , x ∈ Z k.(n+n ) } f + cyc = {max(c det .x) | A.x ≤ b, x ≥ 0 , x ∈ Z k.(n+n ) and ∃σ ∈ T R * un tel queΠ(σ) = x} ∀x such that A.x ≤ b, x ≥ 0, x ∈ Z k.(n+n ) , we have c det .x ≤ f + , particularly f + cyc ≤ f + .
Naturally, the on-line interpretations of the above procedure tends to be more accurate if the computed count vector always describes a possible sequence (we can take the assumption of the acyclicity of the unobservable induced subnet), as it leads to the reduction in the space S Z (y) = E(y). This remark also holds for the next part.

Remark. If min The same reasoning holds if we relax the minimization and the maximization problems over R. We can easily show that:

(1) min

R (c det .x) ≤ min R (c det .x) ≤ min Z (c det .x) (2) max R (c det .x) ≥ max R (c det .x) ≥ max Z (c det .x) (12)
In fact,

(1) Let us consider:

f - R = {min R (c det .x) | A.x ≤ b with x ≥ 0, x ∈ R k.(n+n ) } f - Z = {min Z (c det .x) | A.x ≤ b with x ≥ 0, x ∈ Z k.(n+n ) } (13) ∀x ∈ R k.(n+n ) such that A.x ≤ b, x ≥ 0, we have c det .x ≥ f - R , especially min Z c det .x ≥ f - R . Therefore, min R (c det .x) ≤ min Z (c det .x).
We can also write that min

R (c det .x) ≤ min R (c det .x) ≤ min Z (c det .x)
(2) Let us consider:

f + R = {max R (c det .x) | A.x ≤ b with x ≥ 0, x ∈ R k.(n+n ) } f + Z = {max Z (c det .x) | A.x ≤ b with x ≥ 0, x ∈ Z k.(n+n ) } (14) ∀x ∈ R k.(n+n ) such that A.x ≤ b, x ≤ 0, we have c det .x ≤ f + R , in particular max Z c det .x ≤ f + R . Therefore, max R (c det .x) ≥ max Z (c det .x). We can also write that max R (c det .x) ≥ max R (c det .x) ≥ max Z (c det .x).
According to the two previous results, the decision of fault detection is taken by the following proposition: Remark If max(c det .x) = +∞, the interpretation given by points 1 and 3 of the previous proposition can still be hold.

Fault isolation

In this section, we design a method for isolating a unique fault associated with a fault transition (x f ) j . The criterion c loc,j .x enables the isolation, where the rowvector c loc,j is the concatenation of a submatrix of k.n zeros relevant to T R obs and the submatrix = c <1> c <2> c <3> . . . c <k> which is defined as follows. The relevant components (c <i> ) j are equal to 1 for any i = 1, ..., k, while the other ones are null. Hence, c <i> = 0 except (c <i> ) j = 1 for a given fault transition j and any i = 1, ..., k .

Following the same reasoning as the detection approach for fault isolation, we define two diagnostic indicators, J - loc ((x f ) j ) and J + loc ((x f ) j ), associated with the fault transition (x f ) j and verifying (7):

J - loc ((x f ) j ) = min(c loc,j .x) s.t. A.x ≤ b with x ≥ 0 J + loc ((x f ) j ) = max(c loc,j .x) s.t. A.x ≤ b with x ≥ 0 (15)
Fault (x f ) j will occur if it is fired at least once for the observed word w. This means that the firing sum of the fault transition (x f ) j is greater than or equal to 1 for the k observed transitions of w.

By solving the two optimizations problems (15) in Z, we distinguish that the fault (x f ) j is detected on the horizon if min Z (c loc,j .x) ≥ 1, and that (x f ) j surely does not occur if max Z (c loc,j .x) = 0.

In a similar way as for detection and by replacing c det by c loc,j for each fault transition (x f ) j , we can demonstrate that the relaxation of the minimization and maximization problems over R give the following results: min

R (c loc,j .x) ≤ min R (c loc,j .x) ≤ min Z (c loc,j .x) (16) max R (c loc,j .x) ≥ max R (c loc,j .x) ≥ max Z (c loc,j .x) (17)
Therefore, we consider the following proposition for the fault isolation by problem relaxation:

Proposition 4.3. Consider an LPN with T R = T R obs T R un descriped as (5). Let (x f ) j ∈ T R f be a fault transition such that T R f ⊂ T R un . Therefore, • If min R (c loc,j .x) ≥ 1 and max R (c loc,j .x) is finite, then the fault (x f ) j presents
an occurrence number between min R (c loc,j .x) and max R (c loc,j .x) .

• If max R (c loc,j .x) = 0, then the fault (x f ) j occurs.

• If min R (c loc,j .x) = 0 and max R (c loc,j .x) = +∞, then the available pieces of information do not lead to a conclusion on the presence of the fault (x f ) j .

Proof. As aforementioned, the same results can be written by taking the integer bounds given in inequalities ( 16) and ( 17).

Example with unobservable circuit and indistinguishable events

Let us consider the LPN of figure 1 containing an unobservable circuit and presenting the case of indistinguishable transitions. The chain going from transition x 3 to place p 2 describes the official behavior of the process, whereas the remaining part represents the unauthorized exploitation. Place p 2 represents the stock of parts in a manufacturing system and its marking is the number of parts. The firing of transition x 3 models the authorized input of a part and x 6 represents the legal input in the stock. However, an illegal use of the parts is expressed by the remaining subnet. The firing of transition x 5 models the illegal output of a part, while place p 1 represents its copy leading to the manufacturing of a new part but with a lower quality. Then transition x 4 describes that all the initial and new parts are stocked in place p 2 , so the firings of x 4 and x 5 describe faulty situations. The supervisor system can observe the output of parts expressed by x 1 but cannot distinguish between the legal input and the unauthorized input of parts, and an image of these transitions is provided by transitions x 3 and x 4 , respectively.

Let The incidence matrices W un and W - obs relevant to T R un and T R obs are as follows:

T R un = {x 4 , x 5 , x 6 } and T R obs = {x 1 , x 2 , x 3 } . The alphabet AL is {a, b}. Label b is associated with the transition x 3 (Ω b = {x 3 }), and the transitions of Ω a = {x 1 , x 2 } share the same label a. Hence, n = |T R un | = 3 , n = |T R obs | = 3, n = |AL| = 2 , m = |P | = 5 and C = 1 1 0 0 0 1 . The set of fault transitions T R f ⊂ T R un is {x 4 , x 5 } .
W un =       -2 1 0 1 -1 1 0 0 -1 0 1 0 1 0 0       , W obs =       0 0 0 0 0 0 0 0 1 -1 0 0 0 -1 0       and W - obs =       0 0 0 0 0 0 0 0 0 1 0 0 0 1 0       .
Simulation. The initial marking M is null. Remember that M i = M (p i ) is the starting marking of place p i . The observations are defined by the sequence of label ba, which means that we have the firing of transition x 3 followed by the firing of x 1 or x 2 . A realistic sequence yielding these observed transitions is x 3 x 6 x 5 x 1 but x 6 and x 5 are not observed and x 1 is observed through the ambiguous label a. So, the relevant horizon is {1, 2} and h = 2. We have y = (y <1> ) T (y <2> ) T T with (y <1> ) T = 0 1 and (y <2> ) T 1 0 and the vectors to be estimated are x un = (x un <1> ) T (x un <2> ) T T and x obs = (x obs <1> ) T (x obs <2> ) T T . Detection The row-vector c det for the fault transitions x 4 and x 5 is the concatenation of a submatrix of h.n = 6 zeros relevant to T R obs and c <1> c <2> with c <1> = c <2> = 1 1 0 . So, c det = 0 0 0 0 0 0 1 1 0 1 1 0 and, the optimizations give J - det ({x 4 , x 5 }) = 1 and J + det ({x 4 , x 5 }) = 3 which show the existence of at least a fault and no more than 3 occurrences of faults (also given in the first row of the table below).

Isolation

The row-vector c loc relevant to the fault transition x 4 is similar to c det except that c <1> = c <2> = 1 0 0 . The row-vector c loc relevant to the fault transition x 5 is similar to c det except that c <1> = c <2> = 0 1 0 . The results are presented in the two last rows of the following table.

J -() J + () {x 4 , x 5 } 1 3 {x 4 } 0 1 {x 5 } 0.666 2
The last row makes the isolation of the fault x 5 since the minimal criterion over the integers is 1. No conclusion can be made on the transition x 4 except that the occurrence of x 4 cannot be equal to or greater than 2. Now, let us analyze the ambiguity of the labels by considering the isolation of the fault transition x 5 . For the above C, the relaxed solutions over R are:

x obs = 0 0 1 0.666 0.333 0 and x un = 0 0 0 0.333 0.666 0.333 for J - loc (x 5 ) = 0.666 and x obs = 0 0 1 0 1 0 and x un = 0 0 0 1 2 1 for J + loc (x 5 ) = 2. So, the relaxation over R leads to integer solutions for J + loc (x 5 ) = 2 but to a "fluidification" of the solutions at the iteration < 2 > for J - loc (x 5 ). The sequence of label ba means that we have two possible cases which are now explored. We can remove the ambiguity of the label a if we modify the estimation problem such that n = n = 3 and C = I n xn . In other words, any pair of different observable transitions does not share the same label.

The case 1 (Respectively, case 2) which is the firing of transition x 3 followed by the firing of x 1 (Respectively, x 2 ) is built if we take y = 0 0 1 1 0 0 (Respectively, y = 0 0 1 0 1 0 ). The results are given in the following table (x obs is not given since x obs = y )

J - loc () x un for J -J + loc () x un for J + Case 1: 1 (000011) 2 (000121) Case 2: 2 (000121) 2 (000121)
The results are coherent as the non-ambiguous labels simplifying the problem leads to a restriction of the interval [J - loc (x 5 ), J + loc (x 5 )]. The last solution x un defined by Case 2 and J + loc corresponds to the second solution obtained for the ambiguous label a and J + loc .

Complexity study and comparisons

In this article, the fault detection needs two ILP problems for the observed sequence while the fault isolation is established by the resolution of at most (2

* |T R f |) ILP problems.
An ILP problem is considered as an NP-hard problem and its resolution is done in an exponential time in the worst case (it can be of a polynomial complexity in particular cases). Among classical algorithms solving ILP problems, we can cite the cutting-plane method and the branch-and-bound method, where each iteration is based on a specific linear programming problem. In a similar way, the ILP problems of diagnosis can be solved more efficiently if a relaxation over R is made. We can use efficient standard algorithms of linear programming, which can be applied to relatively great full matrices (at least the size (100X100) can be treated with Scilab or Matlab and usual computers): The simplex algorithm is known to be efficient in practice as it has polynomial-time average-case complexity in some general cases. The modern algorithms of linear programming are polynomial in the worst case (the complexities of the ellipsoid algorithm of Khashiyan and the interior point algorithm of Karmarkar are respectively O(n 4 xL) and O(n 3.5 xL) where n is the number of variables and L is the number of bits necessary in the storage of data.)

We now present a comparison between the proposed diagnosis approach and some approaches presented in the literature for the partially observed LPN diagnosis based on linear programming. Some work has been made to decrease the number of variables of ILP problems and to reduce the number of ILP problems to be solved. In [START_REF] Cabasino | Discrete event diagnosis using labeled Petri nets. An application to manufacturing systems[END_REF], the authors designed a diagnosis approach based on the notion of a basis markings set M b (w) that was the set of possible reached markings by firing the sequences associated with the observation w and the possible shortest unobservable sequences coherent with w. The authors defined (|T R f | × |M b (w)|) ILP problems for the fault detection. The number of possible markings of M b (w) might be important, so the number of ILP problems to be solved for fault detection was considerable. Basile et al. [START_REF] Basile | An efficient approach for online diagnosis of discrete event systems[END_REF] suggested an approach of fault diagnosis of a PN requiring an on-line computation of the set of possible fault events explaining the last observed event. The on-line computation consisted in solving the ILP problems formulated on a net structure and based on g-markings, which were net markings that might had negative components. The detection procedure was based on the resolution of at most (2 * |w| * |T R f |) ILP problems. In [START_REF] Dotoli | On-line fault detection in discrete event systems by Petri nets and integer linear programming[END_REF], the authors proposed a diagnosis approach based on the resolution of at most (|T R f | + 1) ILP problems. The effectiveness of the approaches mentioned previously was indicated only in the particular case where the unobservable subnet of a bounded LPN was an acyclic "state machine". In fact, in this case the incidence matrix of the unobservable subnet is a totally unimodular matrix. The resolution in a polynomial time would be possible because the solutions of the relaxed problem were integers. In this case, the proposed detection approaches were of a polynomial complexity, otherwise they were of exponential complexity. The authors in [START_REF] Mahulea | Fault diagnosis of discrete-event systems using continuous Petri nets[END_REF] showed that the fluidization of a partially observed purely logic PN would produce an untimed Continuous PN (CPN) with a set of markings that were consistent with a given observation which was convex. Using this convexity property, the diagnosis states were computed solving LP problems for untimed CPNs. For fault detection, two LP problems were defined for each observed transition of the observed sequence w and for each fault transition T i f ∈ T R f . Thus, for fault detection, (2 * |w| * |T R f |) LP problems had to be solved under the assumption that the T R un -induced subnet had no spurious solutions. However, the update of the initial marking after each observed transition of the observation was necessary. Therefore, the complexity would increase with the number of observed transitions (Chouchane et al., 2018). This was why the authors in [START_REF] Ru | Bounds on the number of markings consistent with label observations in Petri nets[END_REF] took the assumption that the marking was periodically known or was periodically reset. In this article, to avoid the procedure of estimation based on the sequential treatment of each transition of the observed sequence using loops, we generalize this procedure by introducing an approach based on a new description of the problem, not for one observed transition but for the set of transitions of the observed sequence, using matrix and vector calculations instead of loops. In fact, "Matrix algebra is a general example of vectorisation. There loops are executed by highly tuned external libraries like BLAS. If you can figure out a way to use matrix algebra to solve your problem, you'll often get a very fast solution."(cited in [START_REF] Wickham | Advanced r[END_REF]).

Numerical comparison with discrete approach based on basis markings

Let us check the numerical efficiency of our approach and compare with the discrete approach based on basis markings [START_REF] Cabasino | Fault detection for discrete event systems using Petri nets with unobservable transitions[END_REF] on a case study presented in [START_REF] Mahulea | Fault diagnosis of discrete-event systems using continuous Petri nets[END_REF], which can be easily found on the web. The automated manufacturing system is shown in Figure 2 and the corresponding PN is depicted in Figure 3. The plant represents a part of a large manufacturing system where M A 3 , M A 4 , M A 5 and M A 6 are four machines, R 1 and R 2 are two robots, B 7 and B 8 are two buffers, two inputs of parts to be processed are I 1 and I 2 , and two outputs for the processed parts are O 1 and O 2 . Two various types of a final product have been produced by two production lines. The two robots R 1 and R 2 modeled respectively by the transitions x 1 and x 2 , take parts from two different buffers modeled by places p 1 and p 2 , respectively. The four parts taken by robot R 1 are packed in couples and placed on two different conveyor belts modeled respectively by places p 3 and p 4 , that follow two parallel lines at two different levels, where p 4 is located in the lowest level, and p 3 is located in the highest level. Parts in the conveyor belts represented by place p 4 are processed by the machine modeled by transition x 7 and then put in a common buffer represented by place p 7 . The bottom part of the net models similar operations. Transitions x 3 and x 4 respectively model the output of parts from the conveyor belts modeled by p 3 and p 6 to a common buffer modeled by p 8 . On the other hand, transition x 5 models the output of parts from the common buffer p 7 . The system faults are modeled by the unobservable events x 9 and x 10 consisting in some breakage in the highest conveyor belts at the beginning of the two main production lines. Nevertheless, the unobservable events x 7 and x 8 present non faulty events. To each part exiting p 7 and p 8 corresponds a new part entering p 1 and a new part entering p 2 , and the process is cyclically repeated. The observable transitions of the set T R obs = {x 1 , x 2 , x 3 , x 4 , x 5 , x 6 } are labeled as follows: l(x 1 = a, l(x 2 ) = b, l(x 3 ) = c, l(x 4 ) = d, l(x 5 ) = e, l(x 6 ) = a. Let us consider the observation w = aaaabbbbeeeeeeeeeeeeddddaaaa associated with the unique observed sequence x 1 x 1 x 1 x 1 x 2 x 2 x 2 x 2 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x 4 x 4 x 4 x 4 x 1 x 1 x 1 x 1 from the initial marking 80 80 0 0 0 0 0 0 T . In Table 1, a comparative study is represented for the isolation of faults for three different approaches: an approach based on basis markings [START_REF] Cabasino | Fault detection for discrete event systems using Petri nets with unobservable transitions[END_REF], an approach based on ILP problems resolution and our approach based on the relaxation of the ILP problem. Using Matlab, the computations are carried out on PC Intel with a clock of 1.80 Ghz, as in [START_REF] Mahulea | Fault diagnosis of discrete-event systems using continuous Petri nets[END_REF]. The three diagnosis states, namely N , U , and F , correspond respectively to No fault, Uncertain, and Fault state. We denote ∆ 1 and ∆ 2 the diagnosis state respectively of the fault transitions x 9 and x 10 . For the initial marking 80 80 0 0 0 0 0 0 T , the number of basis markings is huge, which considerably affects the execution time of the approach despite the limited number of transitions. In particular, considering one observed sequence of 28 transitions, the approach produces 34650 basis markings for just the last observed transition and takes 739 seconds (12mn). Contrariwise, the execution time of our approach is negligible (0.181 second). Moreover, the execution time of our approach does not depend on the initial marking, whereas for the discrete approach, a multiplication by 50 implies that the computation does not end after one day [START_REF] Mahulea | Fault diagnosis of discrete-event systems using continuous Petri nets[END_REF].

Simulation also shows the effectiveness of our approach based on the resolution of non-integer LP problems compared to the approach based on the resolution of ILP problems. 

Conclusion

In this paper, we have presented an estimation approach and a diagnostic technique of LPNs based on linear programming. We have considered the case where a label can be emitted by the firings of various observable transitions leading to non-determinism, and the induced unobservable LPN can contain circuits. The solution set of the obtained polyhedron includes the set of explanation vectors. The burdensome determination of any starting marking for each iteration is replaced by an algebraic development on a receding horizon. The technique is numerically efficient as the standard algorithms of linear programming can be used (remember that the Simplex algorithm is exponential in the worst case but is polynomial on the average under weak assumptions [START_REF] Schrijver | [END_REF]). Note that the receding horizon cannot be increased infinitly as it is connected to the execution time, but in a future paper, we will generalize this study and propose an approach based on a sliding horizon which may solve this problem. As illustrated by the example of section 7, the fault diagnosis can efficiently produce results although the approach uses a relaxed model which neglects the firing conditions of the unobservable transitions or the integer characteristic of the count vectors.

Certainly, the accuracy of the results can be improved (but with a loss of efficiency in terms of complexity) if solvers of integer linear programming are applied.

A possible perspective to extend this contribution is to introduce time, which can be made in various ways and frameworks. A first step can focus on the checking of the consistency of each obtained count vector. The technique proposed in [START_REF] Declerck | A strategy for estimation in timed Petri nets[END_REF] is based on the addition of elementary time durations on the places. Knowing the consistent trajectories, the second step can improve the accuracy of the interpretations of the diagnostic in the untimed case if the probabilities of the consistent trajectories can be computed. For that purpose, a stochastic PN where a firing rate vector characterizes the transition firing delays, can be associated to an untimed PN [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF].

Another perspective is to insert this proposed approach in a general methodology where the resilience is the main criterion. It may be defined as follows: Resilience refers to the capability of systems to recover their functions after partial damage to turn a failure into a success [START_REF] Zhang | Toward a resilient manufacturing system[END_REF]. An extension of this paper can enhance resilience since any action leading to the satisfaction of some roles of the system must be deduced from an estimation of its current state: Particularly, the diagnostic module provides fault states which are useful data, yielding decisions as a switch from a faulty subsystem to a redundant one or activating a plan for the emergency evacuation of victims when a part of the roads is damaged. Therefore, a natural perspective is the development of control systems exploiting faults states.

  dimensions of A, x and b are (k.(m + n + 2.n )xk.(n + n )), (k.(n + n )x1) and (k.(m+n +2.n )x1), respectively. Note that if n = n , C=I n xn , then C=I k.n xk.n , x obs = y and the system is reduced to A.x un ≤ b -B.y with x un ≥ 0.
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  (c det .x) and the same value or a lower value than max Z (c det .x).

Z

  (c det .x) = 0 and max Z (c det .x) ≥ 1, then we cannot conclude on the existence of a fault. Nevertheless, we can always say that the number of detected faults is between min Z (c det .x) and max Z (c det .x) under the liveness condition of the LPN.

Proposition 4. 2 .

 2 Consider an LPN with T R = T R obs T R un descriped as (5). Let T R f ⊂ T R un be the set of fault transitions. Therefore,• If min R (c det .x) ≥ 1, then at least a fault is detected on the horizon. • If max R (c det .x) = 0, then no fault is detected. • If min R (c det .x) = 0 and max R (c det .x) ≥ 1,then we cannot conclude on the existence of a fault. Proof. -We suppose that min R (c det .x) ≥ 1. We have shown previously that min R (c det .x) ≤ min Z (c det .x), so min Z (c det .x) ≥ 1. Proposition 4.1 implies that a fault is detected. -We suppose that max R (c det .x) = 0. We have demonstrated previously that max R (c det .x) ≥ max Z (c det .x), so max Z (c det .x) = 0. Consequently, we can deduce that no fault is detected, according to proposition 4.1. Naturally, the previous proposition holds for the two bounds min R (c det .x) and max R (c det .x) as well as for the integer solutions min Z (c det .x) = min Z (c det .x) and max Z (c det .x) = max Z (c det .x) provided by ILP. It is important to note that the accuracy of the results increases in this last case, as well as the execution time of the detection procedure. For simplicity, the relevant propositions are not presented.

Figure 1 .
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	Observation w	Basis markings approach	ILP based approach	LP based approach
		(∆ 1 , ∆ 2 )	Execution time(s)	(∆ 1 , ∆ 2 )	Execution time(s)	(∆ 1 , ∆ 2 )	Execution time(s)
	t 1 t 1 t 1 t 1	(U, N )	0.149	(U, N )	0.15	(U, N )	0.058
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		(U, U )	43.463	(U, U )	0.164	(U, U )	0.089
		(F, N )	297.308	(F, N )	0.167	(F, N )	0.101
		(F, N )	227.509	(F, N )	0.168	(F, N )	0.144
			739.524	(F, N )	0.182	(F, N )	0.181
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