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ABSTRACT
In this paper, we design a diagnostic technique for a partially observed labeled Petri
net where the faults of the system are modeled by unobservable transitions. The fault
detection and isolation uses an on-line count vector estimation associated with the
firing of unobservable transitions exploiting the observation of firing occurrences of
some observable transitions. The support of the approach is an algebraic description
of the process under the form of a polyhedron developed on a receding horizon. We
show that a diagnostic can be made despite that different transitions can share the
same label and that the unobservable part of the Petri net can contain circuits.
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1. Introduction

Fault diagnosis is the process of Fault Detection and Isolation (FDI) which can also
include fault identification. Fault detection is a binary decision that decides whether
the system is in normal or abnormal operation. Fault isolation consists in identifying
the system component (plant equipment as a sensor or actuator, component malfunc-
tioning, etc.) responsible for the occurrence of this fault. Fault identification consists
in determining the amplitude and possible evolution of the faults over time.

This paper focuses on the diagnosis of a process whose state evolves at the oc-
currence of events. This process can be modeled as a discrete event system (DES).
This class of models presents numerous applications as transport networks, computer
systems, multimedia systems, food industry, and manufacturing systems. In the liter-
ature, we find two graphical and mathematical tools for modeling the DES which are
the Finite State Automaton (FSA) and the Petri Net (PN). In this paper, we choose
the PN model that can model the phenomena of synchronism, assembly and sharing of
resources, thanks to its structure. For various economic and/or technical reasons, the
presence of a sensor for each system variable is not always possible. As a result, the PN
may contain transitions that model unobservable events in the system. Unobservable
events can also model faults, disturbances, or noises that can affect the system. The
relevant transitions are named unobservable transitions and the PN is then called a
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partially observed PN.
In the litterature, the most known methods for PN diagnosis has been based on the

faulty model for fault diagnosis (Cabasino et al., 2013; Wang et al., 2015). In fact,
methods working with fault-model are well adapted for fault isolation. The techniques
used for the diagnostis depend on the knowledge available on the system as well as on
the detectable faults affecting the system (Wu et al., 2005), (Benveniste et al., 2003).
For fault diagnosis, we can find event-based, state-based, and mixed-based faults. The
event-based faults model the system faults into a set of transitions, and the occurrence
of certain faults is equivalent to firing the associated transitions. The detection and
isolation of faults are carried out based only on observed events. These event-based
models have the advantage of detecting intermittent faults (Genc et al., 2007)(Garcia
et al., 2008)(Ramirez et al., 2012). The state-based faults consider that the occurrence
of a fault is equivalent to the change in the state of the PN deviating from its nominal
behavior, which is expressed by losses or duplications of tokens. The disadvantage of
the state-based faults’ modulation is that it can not detect intermittent faults that are
short events leading to unstable states (Wu et al., 2005)(Benveniste et al., 2003). The
mixed-based faults modulation is a combination of the occurrence of fault events and
the attainability of fault states (Wu et al., 2005).

In this paper, we are interested in the diagnosis of a partially observed Labeled
PN (LPN). Assuming that the faults of the system are modeled by some unobservable
transitions (event-based faults), we focus on the optimistic and pessimistic cases of the
occurrences of faults, which allow the interpretation of fault detection and isolation.
Our diagnosis approach is based on an observer that estimates the events that can-
not be directly observed by an outside observer. Exploiting the observation of events
available from the PN, the observer ideally makes an estimation of the events relevant
to unobservable firing sequences that enable a sequence of observed transitions from a
given initial marking. More practically, as the image of the sequence is a firing count
vector that counts the number of each unobservable transition firing, an objective is to
estimate the count vectors coherent with the observed events. A fault will be detected
if the observer notices that all the possible unobservable firing sequences include a
fault transition at least. Precisely, the count vector of fault transitions is always dif-
ferent from the null vector. Symmetrically, no fault will appear if the observer cannot
generate a possible unobservable firing sequence including a fault transition.

The first work on the diagnosis of PNs is based on the control of the changes of
the tokens in P-invariants of a generalized PN (Portinale, 1995). A fault is detected
when a P-invariant do not keep their number of tokens. In (Ramirez et al., 2012), the
difference of the marking of the actual behavior model and the estimated marking,
called residue, provided enough information for the immediate isolation of faults. In
(Cabasino et al., 2013; Ran et al., 2017), a diagnosis approach of partially observed
LPN was based on the notion of basis markings which was a reduced set of actual
markings coherent to an observed sequence. The faults were modeled by unobservable
transitions and might also been modeled by undistinguishable observable transitions.
If the LPN was bounded, the diagnosis approach was based on the Basis Reachability
Graph (BRG) which can be computed off-line. An Extended BRG (EBRG) was con-
structed in (Ran et al., 2017) which is a basis marking computed by assuming that
all the system faults are observable. The EBRG has significantly fewer states than the
reachability graph in most cases, but it still exponential with respect to the number
of nodes. Wang et al. (Wang et al., 2015) used a Fault Diagnosis Graph (FDG) for
fault diagnosis of partially observed Time PN (TPN) were the faults are modeled by
unobservable transitions. The FDG was incrementally computed using the State Class
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Graph (SCG). Starting from the SCG, Basile et al. (Basile et al., 2015) determine a
new graph called the Modified SCG (MSCG), that visualize in a compact form the
main information on all the possible evolutions of a given labeled TPN system initial-
ized at a given marking. Given a timed observation, i.e., a sequence of observed labels
with the corresponding time instants of observation, the fault diagnosis is based on the
exploration of the MSCG and on the solution of some ILP problems to determine which
states are consistent with the observation. If all the consistent state that is reachable at
t = 0 via sequences containing some fault transitions, then a fault is detected. Lefebvre
(Lefebvre, 2014) used linear matrix inequalities to compute the firing sequences consis-
tent with each elementary observation sequence for a partially observed PN diagnosis.
A forward-backward algorithm was suggested, which analysed the sub-sequences of
bounded lengths. A fault is detected if these estimated sub-sequences include fault
transition. Sufficient conditions for detection and isolation were formulated as ILP
problems. In (Dotoli et al., 2009), the diagnosis approach of partially observed LPN
was based on the resolution of some ILP problems for each observed transition of the
observed firing sequence. The initial marking update after each considered transition
of the observed sequence was avoided. The system faults were modeled by some un-
observable transitions. A fault is detected if it is includes in a subset of unobservable
sequences coherent with the observation verifying an ILP problem. In (Basile et al.,
2009), authors proposed an approach of fault diagnosis of a partially observed PN
requiring an on-line computation of the set of possible fault events explaining the last
observed event. The on-line computation consisted in solving the ILP problems for-
mulated on a net structure and based on g-markings. The resolution time of an ILP
problem is in general case NP-hard. Therefore, the diagnosis procedure is time con-
suming. To reduce the temporal complexity, the fluidization technique was explored for
fault diagnosis (Mahulea et al., 2012).The main idea of the fluidization of PNs is the
relaxation of the transitions firings allowing them to fire in positive real amounts. The
fluidization of a partially observed purely logic PN produces an untimed Continuous
PN (CPN) with a set of markings that are consistent with a given observation which
is convex. Using this convexity property, the diagnosis states are computed solving LP
problems for the untimed CPNs. For fault detection, two LP problems were defined
for each observed transition of the observed sequence and for each fault transition
under the assumption that the unobservable subnet was acyclic. Moreover, the update
of the initial marking after each observed transition of the observation was necessary.
Therefore, this diagnostic approach is time and space consuming. In (Hadjicostis et
al., 1999), fault diagnosis is based on incorporating structured redundancy into a PN.
Monitors were constructed, which operated concurrently with the original system and
allowed detecting and identifying different types of faults by performing consistency
checks between the state of the original PN and that of the monitor state. In (Yang
et al., 2009), the authors were interested in diagnosing the faults of controller that
was modeled by PN with uncontrollable and unobservable transitions. The inadmis-
sible constraints with uncontrollable and unobservable transitions were transformed
into admissible conditions in this method. Separate redundant PN controllers utilizing
additional places, connections and tokens to impose invariant conditions enabled the
systematic detection and identification of faults via the Hamming code. In (Wu et al.,
2005), the authors devised an algebraic approach for partially observed PN diagnosis.
Two types of faults to be diagnosed based on the observed marking at the end of a
period were the transition faults and the place faults. For this purpose, a number of
places were added to the PN model. The resulting model was a redundant PN that in-
cluded 2q additional places and allowed the identification of 2q−1 transition faults and
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q place faults. The incorporated redundancy permitted fault diagnosis using algebraic
decoding techniques. In terms of coding theory, the transition faults were measured
in the form of the ”Lee metric distance” and the place faults were measured in the
form of the ”Hamming metric distance”. However, the computational Techniques in
algebraic coding theory are both time and space consuming.

In this paper, the fault detection is based on the resolution of at most two LP prob-
lems for an observed sequence w. We assume that the incidence matrices and the initial
marking (denoted M init in what follows) are known. The occurrences of observable
transitions are non-simultaneous. We also assume the feasibility of the system and the
presence of observations during the application of the estimation procedure. The same
label can be associated with more than one observable transition and circuits can exist
in the unobservable subnet.

The procedure of estimation is usually based on the sequential treatment of each
transition produced by the observed sequence in an on-line procedure. The firing of
a found unobservable sequence and the observed transition generates a set of new
current markings used in the following step. The search procedure is repeated at the
occurrence of each event. However, this procedure presents some drawbacks. As this
technique needs to consider any starting marking in the estimation at each iteration,
this procedure is time-consuming and the boundedness of spaces is problematic (Ru
et al., 2009). Another difficulty is to extend the obtained results (as an optimality)
for one observed transition to a sequence of observed transitions even if some results
exist for minimal solutions (Li et al., 2011). Therefore, we generalize this procedure by
introducing in this paper an approach based on a new description of the problem, not
for a unique observed transition but for a set of observed transitions which are possibly
indistinguishable. Thus, the initial marking update after each considered transition of
w is avoided. The estimation problem is algebraically described under the form of
a polyhedron A.x ≤ b over Z with an unknown x which is developed on a receding
horizon. This construction implies that the different possible current markings are
not computed but are algebraically expressed in the polyhedron. To the best of our
knowledge, the case of indistinguishable observable transitions has been considered by
only few authors and the proposed procedure has been the only one that could consider
the indistinguishable observable transitions under an algebraic point of view, which
can express it clearly and allows its reuse in other fields. The hypothesis of acyclicity
is not taken in this article, contrary to many papers in this topic, except (Cabasino et
al., 2013; Dotoli et al., 2009).

The paper is organized as follows. In section 2, we present the preliminary notions.
In section 3, we build a polyhedron defined on a receding horizon, which describes the
estimation problem under an algebraic point of view. In section 4, we introduce two
criteria which permit the fault detection and isolation. The proposed approach is illus-
trated in section 5 by a pedagogical example containing a circuit and two transitions
sharing the same label. In section 6, we consider the complexity. In section 7, a numer-
ical comparison with the discrete approach based on ”basis markings” is performed.
In section 8, we end with a conclusion and some perspectives.

2. Preliminary

The notation |Z| is the cardinality of set Z, and the notation AT corresponds to the
transpose of the matrix A. The upper integer part and the lower integer part of α ∈ R
denoted dαe and bαc, respectively. A Place/Transition (P/TR) net is the structure N =
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(P, TR, W+, W−), where P is a set of |P | places and TR is a set of |TR| transitions.
The matrices W+ and W− are respectively the |P | × |TR| post and pre-incidence
matrices over N, where each row l ∈ {1, ..., |P |} specifies the weight of the incoming
and outgoing arcs of the place pl ∈ P . The incidence matrix is W = W+ −W−. The
pre-set and post-set of the node z ∈ P

⋃
TR are denoted by •z and z•, respectively.

A labeling function L : TR → AL ∪ {ε} assigns to each transition xi ∈ TR either
a symbol from a given alphabet AL or the empty string ε. Without loss of generality,
the mapping L is assumed to be surjective. In a partially observed LPN, we assume
that the set of transitions TR can be partitioned as TR = TRobs

⋃
TRun, where

the set TRobs (respectively TRun) is the set of observable transitions (respectively
unobservable transitions) associated with a label of AL (respectively the empty string
ε).

The unobservable induced subnet of the Petri net N is defined as the new net
Nun = (P, TRun,W+

un,W−
un) where W+

un and W−
un are the restrictions of W+ and W−

to P × TRun. Therefore, Wun = W+
un −W−

un. The observed subnet of N is defined as
the new net Nobs = (P, TRobs,W

+
obs,W

−
obs) where W+

obs and W−
obs are the restrictions

of W+ and W− to P × TRobs. A reorganization of the columns with regards to TRun

and TRobs yields W =
(

Wun Wobs

)
. The notation (xun)i expresses an unobservable

transition, belonging to TRun, while an observable transition belonging to TRobs is
denoted (xobs)i.

The notation Θ∗ represents the set of firing sequences, denoted σ, consisting of
transitions of the set Θ ⊂ TR. The vector σ (respectively xun) of dimension |TR|
(respectively |TRun|) expresses the firing vector or count vector of the sequence σ ∈
TR∗(respectively xun ∈ TR∗

un), where the i -th component σi (respectively (xun)i) is
the firing number of the i -th transition of TR, which is fired σi times in the sequence σ
(respectively (xun)i ∈ TRun which is fired (xun)i times in the sequence xun). The same
notation is taken for xobs of dimension |TRobs| . The reorganization of the components
of σ yields σ =

(
xun

T xobs
T

)T
.

The marking of the set of places P is a vector M ∈ N|P | that assigns to each place
pi ∈ P a non-negative integer number of tokens Mi, represented by black dots. The
i -th component Mi is also written as M(pi). The marking M reached from the initial
marking M init (which replaces the usual notation M0) by firing the sequence σ can
be calculated by the fundamental relation: M = M init + W.σ. The transition xi ∈ TR
which can be (xun)i ∈ TRun or (xobs)i ∈ TRobs is enabled at M if M ≥ W−(., xi) and
may be fired yielding the marking M ′ = M + W (., xi). We write M [σ Â to denote
that the sequence of transitions σ is enabled at M , and we write M [σ Â M ′ to denote
that the firing of σ yields M ′.

We take n = |TRun| , n′ = |TRobs|, n′′ = |AL| and m = |P | .

3. Relaxed problem on a horizon

The problem considered in this part is as follows. Let us consider a LPN where the
incidence matrix W and the initial marking M init are known. Given a sequence of
labels of AL emitted by the firing of the observable transitions of TRobs, which are
generated by the activity of the LPN, we want to algebraically describe the space of
the count vectors that are coherent with the observations.
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3.1. Polyhedron of LPN

We present here a linear algebraic approach based on the fundamental equation of
marking and the conditions of firing transitions in a LPN. Assuming that the oc-
currences of observable transitions and the production of a relevant label are non-
simultaneous, we associate an iteration < i > to each occurrence of an observable
transition. The k observations defines the horizon {1, . . . , k} where 1 and k corre-
sponds the first and last observations, respectively.

The firing of the observable transition (xobs)j for j ∈ {1, . . . , |TRobs|} and the rel-
evant count vector for each iteration i ∈ {1, ..., k} are respectively denoted (xobs)<i>

j

and (xobs)<i>
j . The same notations are taken for the count vector of the unobservable

transitions (xun)j for j ∈ {1, . . . , |TRun|}, and the count vector of the observed labels
is defined as follows: The vector y<i> of dimension |AL| describes the count vector of
the observed labels for iteration < i > where the component associated to a unique
label a ∈ AL is the number of appearances of this label generated by the observable
transitions of the LPN expressed by the firings of the transition (xobs)j . Thus, the
following notations are relevant to the horizon {1, . . . , k} :
xun =

(
(xun

<1>)T (xun
<2>)T (xun

<3>)T . . . (xun
<k>)T

)T ,

xobs =
(

(xobs
<1>)T (xobs

<2>)T (xobs
<3>)T . . . (xobs

<k>)T
)T

and y =
(

(y<1>)T (y<2>)T (y<3>)T . . . (y<k>)T
)T .

The dimensions of xun, xobs and y are k.n, k.n′ and k.n′′, respectively. We have
(xobs)<i>

j and (y)<i>
j ∈ {0, 1} as we consider a unique firing of an observable transition

for each step < i > by assumption. We take later M<1> = M init.

Definition 3.1. When the estimate of the firing count vector xun associated to the
unobservable transitions corresponds to a sequence that can be followed by the LPN,
this count vector will be named ”explanation vector”. The sets of all possible ex-
planation vectors for the starting marking M<1> and the observation y are denoted
E(y).

The set of explanation vectors exists as we assume that the LPN is live on the horizon
{1, . . . , k}. Let us consider an iteration < i >. The algebraic formulation of a possible
explanation vector is made using the above reasoning for a given marking M<i> and
the unique observation (xobs)<i>

j with an iteration < i >. As M<i>[x<i>
un Â M ′, the

marking M ′ satisfies the following equation:

M ′ = M<i> + Wun · xun
<i> (1)

In addition, the transition (xobs)<i>
j is enabled for M ′. As M ′[(xobs)<i>

j Â, we can
write the following inequality:

M ′ ≥ W−
obs.xobs

<i> (2)

where xobs
<i> = 0, except a unique entry (xobs)<i>

j . By replacing M ′ by its expression
(1), we obtain:

−Wun.xun
<i> + W−

obs.xobs
<i> ≤ M<i> (3)

for i ≥ 1, with the constraint of non-negativity xun
<i>, xobs

<i> ≥ 0 .
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Let us develop the relations on the horizon {2, . . . , k}. The firing of a found un-
observable sequence and of the observed transition generates a new current mark-
ing used in the following step. Formally, M ′[(xobs)<i>

j Â M<i+1>. Hence, M<i> =
M<i−1> + Wun.xun

<i−1> + Wobs.xobs
<i−1> and more generally, as

M<i> = M<1> + Wun.

i−1∑

j=1

xun
<j> + Wobs.

i−1∑

j=1

xobs
<j>

for i ≥ 2, we obtain:

−Wun

i

.
∑

j=1

xun
<j> −Wobs.

i−1∑

j=1

xobs
<j> + W−

obs.xobs
<i> ≤ M<1> (4)

The consideration of (3) for i = 1 and (4) for i ≥ 2 leads to the following system:

A.xun + B.xobs ≤ b with xun, xobs ≥ 0 (5)

where A=




−Wun 0 0 0
−Wun −Wun 0 0
−Wun −Wun −Wun 0

. . . . . . . . . . . . . . .
−Wun −Wun −Wun . . . −Wun




,

B =




W−
obs 0 0 . . . 0

−Wobs W−
obs 0 . . . 0

−Wobs −Wobs W−
obs . . . 0

. . . . . . . . . . . . . . .
−Wobs −Wobs −Wobs . . . W−

obs




and b =




M<1>

M<1>

M<1>

...
M<1>




.

The dimension of the matrices A and B and the vector b are (k.m×k.n) , (k.m×k.n′)
and (k.m×1), respectively. The matrices A and B depend on the structure of the LPN,
whereas the vector b depends on the initial marking.
Remark:
Note that A, B, b, xun and xobs depend on the horizon {1, . . . , k}. If the horizon is
reduced to {1, 1}, we obtain the well-known inequality (3).

3.2. Indistinguishable events

The first non-determinism is produced by the fact that the label ε is associated with all
the unobservable transitions of TRun. The second non-determinism is as follows. Let us
consider the case where the mapping L is not injective. The same label of the alphabet
AL can be associated with more than one observable transition. Consequently, several
observable transitions may share the same label a ∈ AL, which leads to an ambiguity
in the data as we cannot deduce the effective transition. Accordingly, the emission
of the label is said to be ambiguous as it does not permit distinguishing associated
transitions. Let Ωa ⊂ TRobs be a set of observable transitions for the label a. Formally,
Ωa = {(xobs)j ∈ TRobs | L((xobs)j) = a} .

7



We can deduce a connection between (xobs)<i>
j for (xobs)j ∈ Ωa and (ya)<i> for each

observation, which is
∑

(xobs)j∈Ωa

(xobs)<i>
j = (ya)<i> with (xobs)<i>

j , (ya)<1> ∈ {0, 1}.
As we assume that there is a unique firing of a transition (xobs)j which occurs at

each iteration, the case (xobs)<i>
j = 1 implies (ya)<i> = 1. Conversely, (ya)<i> = 1

implies the existence of a transition (xobs)<i>
j . Therefore, after building the relevant

matrix C ≥ 0 with the appropriate components 0 or 1, we can write: C.xobs
<i> = y<i>

for i ∈ {1, . . . , k}, where the dimensions of C are (n′′xn′), and we obtain:

C.xobs = y (6)

with C =




C 0 0 . . . 0
0 C 0 . . . 0
0 0 C . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . C




.

The dimension of C is (k.n′′xk.n′). Accordingly, C.xobs = y is equivalent to C.xobs ≤
y and −C.xobs ≤ −y and the relaxation of (xobs)<i>

j ∈ {0, 1} leads to 0 ≤ xobs ≤ u,
where u is the unitary vector of the dimension of xobs.

3.3. Final polyhedron

Finally, the final system used in this paper is as follows:

A.x ≤ b with x ≥ 0 (7)

with A =




I 0
C 0

−C 0
B A


 , x =

(
xobs

xun

)
and b =




u
y

−y
b


 .

The dimensions of A, x and b are (k.(m + n′ + 2.n′′)xk.(n + n′)), (k.(n + n′)x1) and
(k.(m+n′+2.n′′)x1), respectively. Note that if n′ = n′′ , C=In′′xn′′ , then C=Ik.n′′xk.n′′ ,
xobs = y and the system is reduced to A.xun ≤ b−B.y with xun ≥ 0.

Remark
Generally, the integer solution of matrix inequality (7) describes a set that includes the
set of explanation vectors. Indeed, the existence of non-negative integer solutions of
fundamental inequality (7) is not sufficient to determine the true explanation vectors
that express valid firing sequences (Kostin, 2003). For the PN with acyclic TRun-
induced subnets, the solution set of matrix inequality (7) in Zk.(n+n′) is coincident
with the set of explanation vectors.

We denote SR(y) = {x ∈ Rk.(n+n′)|A.x ≤ b, x ≥ 0} the space of admissible
solutions over R and we denote SZ(y) = SR(y) ∩ Zk.(n+n′) the space of admissible
solutions over Z. Accordingly, the solutions of the obtained algebraic model (7) over
R or N always includes the set of explanation vectors E(y). Therefore, the solutions
of SR(y) and SN(y) are named candidate solutions or candidate vectors over R and
N, respectively. This inclusion can possibly be strict as the firing conditions of the
unobservable transitions are neglected in this part. As a result, we have:

SR(y) ⊇ SN(y) ⊇ E(y) (8)
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which defines the context of this paper. Considering xun, xobs in the integers, this
system can be solved by standard solvers of integer linear programming if we add a
criterion. However, this resolution is exponential in the worst case, and we can prefer
the relaxation of system (7) where efficient algorithms of linear programming, such
as the Simplex algorithm, the Karmarkar’s algorithm and the Khashiyan’s algorithm,
can be applied.

Analyzing the relaxation of (7), the objective is now to determine the optimal
candidate solution in SR for a linear criterion dedicated to the diagnostic problem. We
show that a diagnostic can be made despite the relaxation over R by determining a
lower bound and an upper one (if it is possible) for fault occurrences.

4. Diagnosis of a partially observable LPN

We assume that the faults occurring in the process are modeled by unobservable
transitions and the notation TRf represents the relevant set. The set of unobservable
transitions describing a normal behavior is denoted TRn . Therefore, TRf ⊂ TRun =
and

TRun = TRn ∪ TRf (9)

with TR = TRobs ∪ TRun.

4.1. Fault detection

The process contains a fault if there is at least the firing of one fault transition for the
observed word w. This means that the firing sum of the fault transitions is greater than
or equal to 1 for the k observed transitions of w. Let us define the relevant criterion
cdet.x where the row-vector cdet is the concatenation of the submatrix of k.n′ zeros
and the submatrix

(
c<1> c<2> c<3> . . . c<k>

)
relevant to TRobs and TRun,

respectively. The components (c<i>)j for any fault transition j ∈ TRf ⊂ TRun are
equal to 1 for any i = 1, ..., k, while the other ones are null. As a result, c<1> = c<2> =
... = c<k>. Thereby, we can consider the following J−det criterion:

{
J−det = min(cdet.x)
s.t. A.x ≤ b with x ≥ 0 (10)

By solving the optimization problem (10) in Z, the computed criterion J−det is a lower
bound of the number of detected faults. These detected faults can be the repetition
of the firing of the same fault transition. Symmetrically, the fault can be transient.
Particularly, we have:

• If min
Z

(cdet.x) ≥ 1, then at least a fault is detected on the horizon.

Symmetrically, we can define another J+
det criterion giving the maximum number by

replacing the expression ”min” by ”max” above.
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{
J+

det = max(cdet.x)
s.t. A.x ≤ b with x ≥ 0 (11)

A simpler way to express the results and to apply the solvers of linear programming
is to keep the operator min but to replace cdet by −cdet in the expressions. Thus, the
results are similar after replacing ”majorant” by ”minorant” and ”upper bound” by
”lower bound”. The interpretation is that the maximum number of detected faults
cannot be greater than the obtained value max

Z
(cdet.x) of J+

det solving (11) in Z. Par-

ticularly, we have:

• If max
Z

(cdet.x) = 0, then no fault is detected.

Note that the aforementioned interpretations based on sufficient conditions do not
need an additional assumption as the acyclicity of the unobservable induced subnet.

Proposition 4.1. For an LPN with a cyclic unobservable induced subnet, if an ob-
tained vector is not an explanation vector, then the possible explanation vectors can
only give the same value or a greater value than min

Z
(cdet.x) and the same value or a

lower value than max
Z

(cdet.x).

Proof. (1) We consider the following two cost functions:

f− = {min(cdet.x) | A.x ≤ b, x ≥ 0 , x ∈ Zk.(n+n′)}
f−cyc = {min(cdet.x) | A.x ≤ b, x ≥ 0 , x ∈ Zk.(n+n′) and ∃σ ∈ TR∗

un such thatΠ(σ) = x}

∀x such that A.x ≤ b, x ≥ 0 , x ∈ Zk.(n+n′), we have cdet.x ≥ f− and in
particular f−cyc ≥ f−. The case f−cyc different from f− is possible as we have the
condition Π(σ) = x.

(2) We consider the next two cost functions:

f+ = {max(cdet.x) | A.x ≤ b, x ≥ 0 , x ∈ Zk.(n+n′)}
f+

cyc = {max(cdet.x) | A.x ≤ b, x ≥ 0 , x ∈ Zk.(n+n′) and ∃σ ∈ TR∗
un tel queΠ(σ) = x}

∀x such that A.x ≤ b, x ≥ 0, x ∈ Zk.(n+n′), we have cdet.x ≤ f+, particularly
f+

cyc ≤ f+.

Naturally, the on-line interpretations of the above procedure tends to be more ac-
curate if the computed count vector always describes a possible sequence (we can take
the assumption of the acyclicity of the unobservable induced subnet), as it leads to
the reduction in the space SZ(y) = E(y). This remark also holds for the next part.

Remark. If min
Z

(cdet.x) = 0 and max
Z

(cdet.x) ≥ 1, then we cannot conclude on

the existence of a fault. Nevertheless, we can always say that the number of detected
faults is between min

Z
(cdet.x) and max

Z
(cdet.x) under the liveness condition of the LPN.
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The same reasoning holds if we relax the minimization and the maximization
problems over R. We can easily show that:

(1) min
R

(cdet.x) ≤ dmin
R

(cdet.x)e ≤ min
Z

(cdet.x)

(2) max
R

(cdet.x) ≥ bmax
R

(cdet.x)c ≥ max
Z

(cdet.x) (12)

In fact,

(1) Let us consider:

f−R = {min
R

(cdet.x) | A.x ≤ b with x ≥ 0, x ∈ Rk.(n+n′)}
f−Z = {min

Z
(cdet.x) | A.x ≤ b with x ≥ 0, x ∈ Zk.(n+n′)} (13)

∀x ∈ Rk.(n+n′) such that A.x ≤ b, x ≥ 0, we have cdet.x ≥ f−R , especially
min
Z

cdet.x ≥ f−R . Therefore, min
R

(cdet.x) ≤ min
Z

(cdet.x). We can also write that

min
R

(cdet.x) ≤ dmin
R

(cdet.x)e ≤ min
Z

(cdet.x)

(2) Let us consider:

f+
R = {max

R
(cdet.x) | A.x ≤ b with x ≥ 0, x ∈ Rk.(n+n′)}

f+
Z = {max

Z
(cdet.x) | A.x ≤ b with x ≥ 0, x ∈ Zk.(n+n′)} (14)

∀x ∈ Rk.(n+n′) such that A.x ≤ b, x ≤ 0, we have cdet.x ≤ f+
R , in particular

max
Z

cdet.x ≤ f+
R . Therefore, max

R
(cdet.x) ≥ max

Z
(cdet.x). We can also write that

max
R

(cdet.x) ≥ bmax
R

(cdet.x)c ≥ max
Z

(cdet.x).

According to the two previous results, the decision of fault detection is taken by the
following proposition:

Proposition 4.2. Consider an LPN with TR = TRobs
⋃

TRun descriped as (5). Let
TRf ⊂ TRun be the set of fault transitions. Therefore,

• If dmin
R

(cdet.x)e ≥ 1, then at least a fault is detected on the horizon.

• If bmax
R

(cdet.x)c = 0, then no fault is detected.

• If min
R

(cdet.x) = 0 and max
R

(cdet.x) ≥ 1, then we cannot conclude on the existence

of a fault.

Proof. – We suppose that dmin
R

(cdet.x)e ≥ 1. We have shown previously that

dmin
R

(cdet.x)e ≤ min
Z

(cdet.x), so min
Z

(cdet.x) ≥ 1. Proposition 4.1 implies that a fault

is detected.
– We suppose that bmax

R
(cdet.x)c = 0. We have demonstrated previously that

bmax
R

(cdet.x)c ≥ max
Z

(cdet.x), so max
Z

(cdet.x) = 0. Consequently, we can deduce that

no fault is detected, according to proposition 4.1.

Naturally, the previous proposition holds for the two bounds dmin
R

(cdet.x)e and

bmax
R

(cdet.x)c as well as for the integer solutions dmin
Z

(cdet.x)e = min
Z

(cdet.x) and
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bmax
Z

(cdet.x)c = max
Z

(cdet.x) provided by ILP. It is important to note that the accuracy

of the results increases in this last case, as well as the execution time of the detection
procedure. For simplicity, the relevant propositions are not presented.

Remark
If max(cdet.x) = +∞, the interpretation given by points 1 and 3 of the previous
proposition can still be hold.

4.2. Fault isolation

In this section, we design a method for isolating a unique fault associated with a
fault transition (xf )j . The criterion cloc,j .x enables the isolation, where the row-
vector cloc,j is the concatenation of a submatrix of k.n′ zeros relevant to TRobs and
the submatrix =

(
c<1> c<2> c<3> . . . c<k>

)
which is defined as follows. The

relevant components (c<i>)j are equal to 1 for any i = 1, ..., k, while the other ones
are null. Hence, c<i> = 0 except (c<i>)j = 1 for a given fault transition j and any
i = 1, ..., k .

Following the same reasoning as the detection approach for fault isolation, we de-
fine two diagnostic indicators, J−loc((xf )j) and J+

loc((xf )j), associated with the fault
transition (xf )j and verifying (7):

{
J−loc((xf )j) = min(cloc,j .x)
s.t. A.x ≤ b with x ≥ 0

{
J+

loc((xf )j) = max(cloc,j .x)
s.t. A.x ≤ b with x ≥ 0 (15)

Fault (xf )j will occur if it is fired at least once for the observed word w. This means
that the firing sum of the fault transition (xf )j is greater than or equal to 1 for the k
observed transitions of w.

By solving the two optimizations problems (15) in Z, we distinguish that the fault
(xf )j is detected on the horizon if min

Z
(cloc,j .x) ≥ 1, and that (xf )j surely does not

occur if max
Z

(cloc,j .x) = 0.

In a similar way as for detection and by replacing cdet by cloc,j for each fault
transition (xf )j , we can demonstrate that the relaxation of the minimization and
maximization problems over R give the following results:

min
R

(cloc,j .x) ≤ dmin
R

(cloc,j .x)e ≤ min
Z

(cloc,j .x) (16)

max
R

(cloc,j .x) ≥ bmax
R

(cloc,j .x)c ≥ max
Z

(cloc,j .x) (17)

Therefore, we consider the following proposition for the fault isolation by problem
relaxation:

Proposition 4.3. Consider an LPN with TR = TRobs
⋃

TRun descriped as (5). Let
(xf )j ∈ TRf be a fault transition such that TRf ⊂ TRun. Therefore,

• If dmin
R

(cloc,j .x)e ≥ 1 and bmax
R

(cloc,j .x)c is finite, then the fault (xf )j presents

an occurrence number between dmin
R

(cloc,j .x)e and bmax
R

(cloc,j .x)c.
• If bmax

R
(cloc,j .x)c = 0, then the fault (xf )j occurs.
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• If dmin
R

(cloc,j .x)e = 0 and bmax
R

(cloc,j .x)c = +∞, then the available pieces of

information do not lead to a conclusion on the presence of the fault (xf )j.

Proof. As aforementioned, the same results can be written by taking the integer
bounds given in inequalities (16) and (17).

5. Example with unobservable circuit and indistinguishable events

Let us consider the LPN of figure 1 containing an unobservable circuit and presenting
the case of indistinguishable transitions. The chain going from transition x3 to place p2

describes the official behavior of the process, whereas the remaining part represents the
unauthorized exploitation. Place p2 represents the stock of parts in a manufacturing
system and its marking is the number of parts. The firing of transition x3 models the
authorized input of a part and x6 represents the legal input in the stock. However, an
illegal use of the parts is expressed by the remaining subnet. The firing of transition
x5 models the illegal output of a part, while place p1 represents its copy leading to the
manufacturing of a new part but with a lower quality. Then transition x4 describes
that all the initial and new parts are stocked in place p2, so the firings of x4 and
x5 describe faulty situations. The supervisor system can observe the output of parts
expressed by x1 but cannot distinguish between the legal input and the unauthorized
input of parts, and an image of these transitions is provided by transitions x3 and x4,
respectively.

Let TRun = {x4, x5, x6} and TRobs = {x1, x2, x3} . The alphabet AL is {a, b}. Label
b is associated with the transition x3 (Ωb = {x3}), and the transitions of Ωa = {x1, x2}
share the same label a. Hence, n = |TRun| = 3 , n′ = |TRobs| = 3, n′′ = |AL| = 2

, m = |P | = 5 and C =
(

1 1 0
0 0 1

)
. The set of fault transitions TRf ⊂ TRun is

{x4, x5} .

x4xxxxxxx

x5xxxxx

p
2

p3

p1

x6

p4p4

p5

x2

x3

x1

2

Figure 1. LPN of Example 1 with unobservable circuit and indistinguishable events

The incidence matrices Wun and W−
obs relevant to TRun and TRobs are as follows:
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Wun =




−2 1 0
1 −1 1
0 0 −1
0 1 0
1 0 0




, Wobs =




0 0 0
0 0 0
0 0 1

−1 0 0
0 −1 0




and W−
obs =




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0




.

Simulation. The initial marking M is null. Remember that Mi = M(pi) is the
starting marking of place pi. The observations are defined by the sequence of label
ba, which means that we have the firing of transition x3 followed by the firing of
x1 or x2. A realistic sequence yielding these observed transitions is x3x6x5x1 but
x6 and x5 are not observed and x1 is observed through the ambiguous label a. So,
the relevant horizon is {1, 2} and h = 2. We have y =

(
(y<1>)T (y<2>)T

)T with
(y<1>)T =

(
0 1

)
and (y<2>)T

(
1 0

)
and the vectors to be estimated are xun =(

(xun
<1>)T (xun

<2>)T
)T and xobs =

(
(xobs

<1>)T (xobs
<2>)T

)T
.

Detection
The row-vector cdet for the fault transitions x4 and x5 is the concatenation of a

submatrix of h.n′ = 6 zeros relevant to TRobs and(
c<1> c<2>

)
with c<1> = c<2> =

(
1 1 0

)
. So,

cdet =
(

0 0 0 0 0 0 1 1 0 1 1 0
)

and, the optimizations give
J−det({x4, x5}) = 1 and J+

det({x4, x5}) = 3 which show the existence of at least a
fault and no more than 3 occurrences of faults (also given in the first row of the table
below).

Isolation
The row-vector cloc relevant to the fault transition x4 is similar to cdet except that

c<1> = c<2> =
(

1 0 0
)
. The row-vector cloc relevant to the fault transition x5 is

similar to cdet except that c<1> = c<2> =
(

0 1 0
)
. The results are presented in

the two last rows of the following table.

J−() J+()
{x4, x5} 1 3

{x4} 0 1
{x5} 0.666 2

The last row makes the isolation of the fault x5 since the minimal criterion
over the integers is 1. No conclusion can be made on the transition x4 except that the
occurrence of x4 cannot be equal to or greater than 2.

Now, let us analyze the ambiguity of the labels by considering the isolation of the
fault transition x5. For the above C, the relaxed solutions over R are:

xobs =
(

0 0 1 0.666 0.333 0
)

and xun =
(

0 0 0 0.333 0.666 0.333
)

for J−loc(x5) = 0.666 and
xobs =

(
0 0 1 0 1 0

)
and xun =

(
0 0 0 1 2 1

)
for J+

loc(x5) = 2. So,
the relaxation over R leads to integer solutions for J+

loc(x5) = 2 but to a ”fluidification”
of the solutions at the iteration < 2 > for J−loc(x5).

The sequence of label ba means that we have two possible cases which are now
explored. We can remove the ambiguity of the label a if we modify the estimation
problem such that n′′ = n′ = 3 and C = In′xn′ . In other words, any pair of different
observable transitions does not share the same label.

The case 1 (Respectively, case 2) which is the firing of transition x3 followed
by the firing of x1 (Respectively, x2) is built if we take y =

(
0 0 1 1 0 0

)
(Respectively, y =

(
0 0 1 0 1 0

)
). The results are given in the following table
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(xobs is not given since xobs = y )

J−loc() xun for J− J+
loc() xun for J+

Case 1: 1 (000011) 2 (000121)
Case 2: 2 (000121) 2 (000121)

The results are coherent as the non-ambiguous labels simplifying the problem
leads to a restriction of the interval [J−loc(x5), J+

loc(x5)]. The last solution xun defined
by Case 2 and J+

loc corresponds to the second solution obtained for the ambiguous
label a and J+

loc.

6. Complexity study and comparisons

In this article, the fault detection needs two ILP problems for the observed sequence
while the fault isolation is established by the resolution of at most (2 ∗ |TRf |) ILP
problems. An ILP problem is considered as an NP-hard problem and its resolution is
done in an exponential time in the worst case (it can be of a polynomial complexity
in particular cases). Among classical algorithms solving ILP problems, we can cite
the cutting-plane method and the branch-and-bound method, where each iteration is
based on a specific linear programming problem. In a similar way, the ILP problems
of diagnosis can be solved more efficiently if a relaxation over R is made. We can use
efficient standard algorithms of linear programming, which can be applied to relatively
great full matrices (at least the size (100X100) can be treated with Scilab or Matlab
and usual computers): The simplex algorithm is known to be efficient in practice as
it has polynomial-time average-case complexity in some general cases. The modern
algorithms of linear programming are polynomial in the worst case (the complexities
of the ellipsoid algorithm of Khashiyan and the interior point algorithm of Karmarkar
are respectively O(n4xL) and O(n3.5xL) where n is the number of variables and L is
the number of bits necessary in the storage of data.)

We now present a comparison between the proposed diagnosis approach and some
approaches presented in the literature for the partially observed LPN diagnosis based
on linear programming. Some work has been made to decrease the number of variables
of ILP problems and to reduce the number of ILP problems to be solved. In (Cabasino
et al., 2011), the authors designed a diagnosis approach based on the notion of a ba-
sis markings set Mb(w) that was the set of possible reached markings by firing the
sequences associated with the observation w and the possible shortest unobservable
sequences coherent with w. The authors defined (|TRf | × |Mb(w)|) ILP problems for
the fault detection. The number of possible markings of Mb(w) might be important, so
the number of ILP problems to be solved for fault detection was considerable. Basile
et al. (Basile et al., 2009) suggested an approach of fault diagnosis of a PN requiring
an on-line computation of the set of possible fault events explaining the last observed
event. The on-line computation consisted in solving the ILP problems formulated on
a net structure and based on g-markings, which were net markings that might had
negative components. The detection procedure was based on the resolution of at most
(2∗|w|∗|TRf |) ILP problems. In (Dotoli et al., 2009), the authors proposed a diagnosis
approach based on the resolution of at most (|TRf |+ 1) ILP problems. The effective-
ness of the approaches mentioned previously was indicated only in the particular case
where the unobservable subnet of a bounded LPN was an acyclic ”state machine”.
In fact, in this case the incidence matrix of the unobservable subnet is a totally uni-
modular matrix. The resolution in a polynomial time would be possible because the

15



solutions of the relaxed problem were integers. In this case, the proposed detection
approaches were of a polynomial complexity, otherwise they were of exponential com-
plexity.
The authors in (Mahulea et al., 2012) showed that the fluidization of a partially ob-
served purely logic PN would produce an untimed Continuous PN (CPN) with a set
of markings that were consistent with a given observation which was convex. Using
this convexity property, the diagnosis states were computed solving LP problems for
untimed CPNs. For fault detection, two LP problems were defined for each observed
transition of the observed sequence w and for each fault transition T i

f ∈ TRf . Thus,
for fault detection, (2 ∗ |w| ∗ |TRf |) LP problems had to be solved under the assump-
tion that the TRun−induced subnet had no spurious solutions. However, the update
of the initial marking after each observed transition of the observation was necessary.
Therefore, the complexity would increase with the number of observed transitions
(Chouchane et al., 2018). This was why the authors in (Ru et al., 2009) took the
assumption that the marking was periodically known or was periodically reset.
In this article, to avoid the procedure of estimation based on the sequential treatment
of each transition of the observed sequence using loops, we generalize this procedure
by introducing an approach based on a new description of the problem, not for one
observed transition but for the set of transitions of the observed sequence, using matrix
and vector calculations instead of loops. In fact, ”Matrix algebra is a general example
of vectorisation. There loops are executed by highly tuned external libraries like BLAS.
If you can figure out a way to use matrix algebra to solve your problem, you’ll often
get a very fast solution.”(cited in (Wickham, 2014)).

7. Numerical comparison with discrete approach based on basis markings

Let us check the numerical efficiency of our approach and compare with the discrete
approach based on basis markings (Cabasino et al., 2010) on a case study presented
in (Mahulea et al., 2012), which can be easily found on the web. The automated
manufacturing system is shown in Figure 2 and the corresponding PN is depicted in
Figure 3.
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Figure 2. Manufacturing system
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The plant represents a part of a large manufacturing system where MA3,MA4,MA5

and MA6 are four machines, R1 and R2 are two robots, B7 and B8 are two buffers,
two inputs of parts to be processed are I1 and I2, and two outputs for the processed
parts are O1 and O2. Two various types of a final product have been produced by two
production lines. The two robots R1 and R2 modeled respectively by the transitions x1

and x2, take parts from two different buffers modeled by places p1 and p2, respectively.
The four parts taken by robot R1 are packed in couples and placed on two different
conveyor belts modeled respectively by places p3 and p4, that follow two parallel lines
at two different levels, where p4 is located in the lowest level, and p3 is located in the
highest level.
Parts in the conveyor belts represented by place p4 are processed by the machine
modeled by transition x7 and then put in a common buffer represented by place p7.
The bottom part of the net models similar operations.
Transitions x3 and x4 respectively model the output of parts from the conveyor belts
modeled by p3 and p6 to a common buffer modeled by p8. On the other hand, transition
x5 models the output of parts from the common buffer p7. The system faults are
modeled by the unobservable events x9 and x10 consisting in some breakage in the
highest conveyor belts at the beginning of the two main production lines. Nevertheless,
the unobservable events x7 and x8 present non faulty events. To each part exiting p7

and p8 corresponds a new part entering p1 and a new part entering p2, and the process
is cyclically repeated.

�
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Figure 3. LPN model of the manufacturing system in Figure 2

The observable transitions of the set TRobs = {x1, x2, x3, x4, x5, x6} are labeled as
follows: l(x1) = a, l(x2) = b, l(x3) = c, l(x4) = d, l(x5) = e, l(x6) = a. Let us con-
sider the observation w = aaaabbbbeeeeeeeeeeeeddddaaaa associated with the unique
observed sequence x1x1x1x1x2x2x2x2x5x5x5x5x5x5x5x5x5x5x5x5x4x4x4x4x1x1x1x1

from the initial marking
(

80 80 0 0 0 0 0 0
)T . In Table 1, a comparative

study is represented for the isolation of faults for three different approaches: an ap-
proach based on basis markings (Cabasino et al., 2010), an approach based on ILP
problems resolution and our approach based on the relaxation of the ILP problem.
Using Matlab, the computations are carried out on PC Intel with a clock of 1.80 Ghz,
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as in (Mahulea et al., 2012). The three diagnosis states, namely N , U , and F , corre-
spond respectively to No fault, Uncertain, and Fault state. We denote ∆1 and ∆2 the
diagnosis state respectively of the fault transitions x9 and x10.

For the initial marking
(

80 80 0 0 0 0 0 0
)T , the number of basis mark-

ings is huge, which considerably affects the execution time of the approach despite
the limited number of transitions. In particular, considering one observed sequence of
28 transitions, the approach produces 34650 basis markings for just the last observed
transition and takes 739 seconds (12mn). Contrariwise, the execution time of our ap-
proach is negligible (0.181 second). Moreover, the execution time of our approach does
not depend on the initial marking, whereas for the discrete approach, a multiplication
by 50 implies that the computation does not end after one day (Mahulea et al., 2012).
Simulation also shows the effectiveness of our approach based on the resolution of
non-integer LP problems compared to the approach based on the resolution of ILP
problems.

Table 1. comparative table

Observation w
Basis markings

approach
ILP based
approach

LP based
approach

(∆1, ∆2)
Execution

time(s)
(∆1, ∆2)

Execution
time(s)

(∆1, ∆2)
Execution

time(s)

t1t1t1t1 (U, N) 0.149 (U, N) 0.15 (U, N) 0.058

t1t1t1t1t2t2t2t2 (U, U) 5.79 (U, U) 0.15 (U, U) 0.052

t1t1t1t1t2t2t2t2t5t5t5t5 (U, U) 18.10 (U, U) 0.155 (U, U) 0.0618

t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5 (U, U) 43.463 (U, U) 0.164 (U, U) 0.089

t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5 (F, N) 297.308 (F, N) 0.167 (F, N) 0.101

t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t4t4t4t4 (F, N) 227.509 (F, N) 0.168 (F, N) 0.144

t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t4t4t4t4t1t1t1t1 (F, N) 739.524 (F, N) 0.182 (F, N) 0.181

8. Conclusion

In this paper, we have presented an estimation approach and a diagnostic technique of
LPNs based on linear programming. We have considered the case where a label can be
emitted by the firings of various observable transitions leading to non-determinism, and
the induced unobservable LPN can contain circuits. The solution set of the obtained
polyhedron includes the set of explanation vectors. The burdensome determination of
any starting marking for each iteration is replaced by an algebraic development on a
receding horizon. The technique is numerically efficient as the standard algorithms of
linear programming can be used (remember that the Simplex algorithm is exponential
in the worst case but is polynomial on the average under weak assumptions (Schrijver,
1987)). Note that the receding horizon cannot be increased infinitly as it is connected
to the execution time, but in a future paper, we will generalize this study and propose
an approach based on a sliding horizon which may solve this problem.

As illustrated by the example of section 7, the fault diagnosis can efficiently produce
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results although the approach uses a relaxed model which neglects the firing condi-
tions of the unobservable transitions or the integer characteristic of the count vectors.
Certainly, the accuracy of the results can be improved (but with a loss of efficiency in
terms of complexity) if solvers of integer linear programming are applied.

A possible perspective to extend this contribution is to introduce time, which can
be made in various ways and frameworks. A first step can focus on the checking of
the consistency of each obtained count vector. The technique proposed in (Declerck
et al., 2017) is based on the addition of elementary time durations on the places.
Knowing the consistent trajectories, the second step can improve the accuracy of
the interpretations of the diagnostic in the untimed case if the probabilities of the
consistent trajectories can be computed. For that purpose, a stochastic PN where a
firing rate vector characterizes the transition firing delays, can be associated to an
untimed PN (Ammour et al., 2018).

Another perspective is to insert this proposed approach in a general methodology
where the resilience is the main criterion. It may be defined as follows: Resilience
refers to the capability of systems to recover their functions after partial damage to
turn a failure into a success (Zhang and van Luttervelt., 2011). An extension of this
paper can enhance resilience since any action leading to the satisfaction of some roles
of the system must be deduced from an estimation of its current state: Particularly,
the diagnostic module provides fault states which are useful data, yielding decisions
as a switch from a faulty subsystem to a redundant one or activating a plan for the
emergency evacuation of victims when a part of the roads is damaged. Therefore, a
natural perspective is the development of control systems exploiting faults states.
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