
HAL Id: hal-02527950
https://univ-angers.hal.science/hal-02527950

Submitted on 17 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LiDAR-only based navigation algorithm for an
autonomous agricultural robot

Flavio Malavazi, Rémy Guyonneau, Jean-Baptiste Fasquel, Sébastien
Lagrange, Franck Mercier

To cite this version:
Flavio Malavazi, Rémy Guyonneau, Jean-Baptiste Fasquel, Sébastien Lagrange, Franck Mercier.
LiDAR-only based navigation algorithm for an autonomous agricultural robot. Computers and Elec-
tronics in Agriculture, 2018, 154, pp.71 - 79. �10.1016/j.compag.2018.08.034�. �hal-02527950�

https://univ-angers.hal.science/hal-02527950
https://hal.archives-ouvertes.fr

LiDAR-Only Based Navigation Algorithm for an Autonomous Agricultural Robot

Flavio B. P. MALAVAZI, Remy GUYONNEAU, Jean-Baptiste FASQUEL, Sebastien LAGRANGE, Franck MERCIER

LARIS - System Engineering Research Laboratory of Angers - University of Angers, FRANCE

Abstract

The purpose of the work presented in this paper is to develop a general and robust approach for autonomous robot navigation inside

a crop using LiDAR (Light Detection And Ranging) data. To be as robust as possible, the robot navigation must not need any prior

information about the crop (such as the size and width of the rows). The developed approach is based on line extractions from 2D

point clouds using a PEARL based method. In this paper, additional filters and refinements of the PEARL algorithm are presented

in the context of crop detection. A penalization of outliers, a model elimination step, a new model search and a geometric constraint

are proposed to improve the crop detection. The approach has been tested over a simulator and compared with classical PEARL and

RANSAC based approaches. It appears that adding those modification improved the crop detection and thus the robot navigation.

Those results are presented and discussed in this paper. It can be noticed that even if this paper presents simulated results (to ease

the comparison with other algorithms), the approach also has been successfully tested using an actual Oz weeding robot, developed

by the French company Naio Technologies.

Keywords: Crop Navigation, LiDAR Measurements, Line extraction, PEARL, RANSAC

1. Introduction

The legislation about the use of chemical products for farm-

ing is getting increasingly severe. In France for instance, the

Ecophyto 2018 program aims to drastically reduce the use of

phytosanitary products [1]. As a result, some agricultural tasks5

that were ease (but still not easy) by the use of chemicals (weed-

ing for instance) need alternative solutions to maintain the pro-

duction efficiency. As a response to that need, the French com-

pany Naio Technologies1 developed an autonomous weeding

robot : the Oz robot. This robot is equipped with a LiDAR2
10

sensor that is used to detect the crops, therefore allowing it to

∗Remy GUYONNEAU
Email addresses:

flavio.barrospimentelmalavazi@etud.univ-angers.fr (Flavio B. P.

MALAVAZI), firstname.LASTNAME@univ-angers.fr (Remy

GUYONNEAU, Jean-Baptiste FASQUEL, Sebastien LAGRANGE, Franck

MERCIER)
1http://www.naio-technologies.com/en/
2Light Detection And Ranging

move autonomously inside the field without damaging the veg-

etables. For an efficient autonomous navigation, the robot (as

provided by the company) needs some prior information about

the length, the width and the number of the field crop rows. That15

is, the navigation behavior is directly dependent of the accuracy

of those informations. The objective of the work presented here

is to provide a new autonomous navigation algorithm that does

not require any prior field information.

While expecting an autonomous robot navigation, the first20

results were obtained with camera based systems [2, 3]. But as

pointed out in [4], the camera data are sensitive to light condi-

tions and atmospheric effects, which can affect the robustness

of the approach. An other approach is to consider a GPS3-based

navigation [5, 6]. But unless improved precision is consid-25

ered, RTK4-GPS for instance, classical sensors are not accurate

enough for navigation purposes. Moreover RTK-GPS can be

3Global Positioning System
4Real-Time Kinematics

Preprint submitted to Computers and Electronics in Agriculture August 22, 2018

http://www.naio-technologies.com/en/

expensive and are not adapted for an Oz robot size/price sys-

tem.

LiDAR based approach appears to be an affordable alter-30

native while being weakly sensitive to outdoor lighting, that

is why it is considered in several commercial robots (the Oz

robot, but also the new French robot PUMAgri5 for instance).

As mentioned before, in addition to the sensor data the cur-

rent robots need some prior information about the crops (size,35

length...) and are dependent to the accuracy of those informa-

tions. That is, this paper focuses on processing LiDAR data to

propose a robust autonomous navigation method that does not

need those prior information.

To move autonomously in the field, the robot must detect40

the crop rows. This can be cast into a problem of model fitting:

from a data set (LiDAR measurements), we have to be able to

find a set of straight lines (the rows) that best fit the data into

individual clusters (Figure 1).

In [4], an interesting LiDAR based autonomous navigation45

algorithm is presented. The main drawback of this approach is

that it requires a ”testing phase” in order to calibrate the algo-

rithm. This can be assimilate to prior knowledge requirement,

that we want to avoid for robustness purposes.

The considered approach in this paper is based on line de-50

tection (the crops) in a 2D point cloud (LiDAR measurements),

as it can be done in [7]. Two famous approaches for line detec-

tion are RANSAC-based line fitting [8] and Hough transform

[7, 9]. From [10] it appears that RANSAC-based approaches

are generally more efficient than Hough transform to detect55

lines in a 2D point cloud.

The recently proposed PEARL Algorithm [11] appears to

be more efficient than RANSAC. Nevertheless, this algorithm

depicts limitations. In this paper, we propose a refined PEARL

algorithm that overcome the limitations of the initial PEARL60

algorithm, using a penalization of outliers, a model elimination

step, a new model search and a geometric constraint. Further-

more, a navigation algorithm based on this refined PEARL is

5http://www.sitia.fr/innovation-robotique/

plateforme-pumagri/

proposed.

Left Crop Right Crop

Robot

Weed

Weed

Weed

LiDAR

Laser Beams

Robot

LiDAR

Obstacles

Robot

LiDAR

Detected
Left
Crop

Detected
Right
Crop

Robot, crops and weeds LiDAR measurements Purpose

Outliers

Figure 1: The considered line fitting problem.

The paper is organized as followed. Section 2 details the65

methods considered in this paper, starting with the original PEARL

approach then presenting our refined PEARL algorithm and fi-

nally introducing the navigation algorithm based on it. Section

3 focuses on experiments performed using the Oz robot simu-

lator, including a comparison with other navigation algorithms.70

Finally, Section 4 discusses about this work and results while

Section 5 concludes this paper and presents perspectives.

2. Method

This section presents the original PEARL method as de-

tailed in [11], then our refined version of it to detect crops and75

finally a navigation algorithm based on this crop detection.

2.1. The Original PEARL Algorithm

2.1.1. The General Idea of the Approach

PEARL is an iterative approach (as RANSAC) that was

found to be promising due to the fact that it usually converges80

in less iterations than RANSAC [11]. This is very interesting

for real time applications such as the one at hand. It does so by

using the knowledge of the last iteration when computing the

new one while RANSAC starts over every time waiting for the

residuals to be under a threshold.85

2

http://www.sitia.fr/innovation-robotique/plateforme-pumagri/
http://www.sitia.fr/innovation-robotique/plateforme-pumagri/

PEARL method aims at minimizing a function, called en-

ergy (Equation 1). This function represents a score for a set of

models (in our case a model corresponds to a line) according to

a data set of points. In other words, it allows to compare two

sets of models for the same data points and thus to select the

one that best fit the data. The energy E is defined by

E(Li) =
∑

p

||p − L(p)|| + λ ·
∑

(p,q)∈N

wpq · δ(L(p) , L(q)), (1)

where:

• Li = {L j}
⋃

L∅ is the current set of models, L j : f j(x) =

a jx + b j is the jth model (the jth line) and L∅ the empty

model. The empty model is used for points that are not

associated to a line (thus considered as outliers, Figure90

1). Figure 2 presents an illustration of points associated

to models ;

• p ∈ R2 is a point extracted from the LiDAR sensor data

and L(p) ∈ Li is the model associated to the point p (i.e.

L : p→ L j ∈ Li);95

• ||p−L(p)|| is the euclidean distance between the point and

its associated line ;

• N is the set of neighbor points and an element (p, q) ∈ N

corresponds to two points p and q in the same neighbor-

hood such that p is associated to the model L(p) and q is100

associated to the model L(q) ;

• δ(L(p) , Lq) equals 1 if L(p) and L(q) are not the same

model, 0 otherwise ;

• λ ·
∑

(p,q)∈N

wpq · δ(L(p) , L(q)) is a penalty for the place-

ment of close points in different models. This penalty is

weighted using

wpq = exp
−||p − q||2

ζ2 , (2)

with ||p − q|| being the euclidean distance between the

points p and q ;105

• ζ and λ are two constants chosen heuristically [11].

p1

p2

p3

p4

p7

p5

p6

p8

p9
p10

p11

L1
L2

Figure 2: Labels example: {p1, p2, p3, p4} are labeled with the model L1,

{p5, p6, p8, p10, p11} are labeled with the model L2 and {p7, p9} are labeled with

the model L∅. For instance L(p2) = L1 and L(p8) = L2.

Note that outliers are points that are too far from any com-

puted models according to an heuristically defined threshold. It

corresponds to LiDAR points that are generated by an obstacle

in the middle of the field (a weed for instance) and does not110

belong to any crop. That is, inliers are points associated with a

model.

2.1.2. The Algorithm Steps

Here we present the original PEARL algorithm steps. This

algorithm, detailed in Figure 3, searches for models (lines in115

our case) in a data set (LiDAR points).

Initialization
- step 1 -

affect points
to models
- step 2 -

Start

Re-estimating
models

- step 4 -

End

Has the
energy decreased?

- step 3-

Yes

Noadd/remove
models

- step 5 -

Figure 3: PEARL algorithm for model fitting.

The detailed algorithm steps:

1. At initialization, the algorithm randomly samples data to

get L0, which is the first set of models, according to a

defined number of initial models. It may also add the120

empty model L∅ for points that are considered as outliers

;

3

2. Run α-expansion [12] for the energy described by Equa-

tion 1 and α ∈ Li. This step associate each data point to

the closest model L j ∈ Li (in a euclidian distance point of125

view). If the closest model is further than a threshold the

data point is associated to the outlier label L∅. Once the

label of all the data points has been updated the energy

of that iteration can be computed (Equation 1). Figure 4

presents an example of α-expansion result ;130

3. If the computed energy from step 2 does not decrease

with respect to the previous iteration, then the procedure

ends ;

4. Else, one solves Equation 3 and obtains a new set of mod-

els L′i by replacing each model L j ∈ Li by a model L j
′

that better fits the points of the model according to

L′j = arg min
L j

∑
p∈P(L j)

||p − L j||, (3)

where

• P(L j) = {p|L(p) = L j} is the set of points p that are135

associated to the model L j.

5. Sample more models from the points that belong to L∅,

or merge/split current models inL′i if there are too closed

(according to the euclidean distance). Go to step 2.

p1

p2
p3

p4

p7

p5

p6

p8

p10

p9

L1

L2

before alpha-expansion after alpha-expansion

p1

p2
p3

p4

p7

p5

p6

p8

p10

p9

L1

L2

Figure 4: Example of α-expansion process: before the α-expansion, the points

p5 and p7 are associated to the model L1 and the point p2 is associated to the

model L2. After the α-expansion, the point p5 is associated to the model L2

because it is closer to L2 than L1 (according to the euclidean distance). For

the same reason, the point p2 is associated to L1 after the α-expansion. Note

that the point p7 is finally associated to the outliers model L∅ because it is

considered too far from L1.

2.1.3. Motivation for Implementing Step 5140

It was observed that, because of the characteristics of crop-

ping fields, the inclusion of step 5, described as optional in [11],

was very likely to provide better results.

Merging models that are too close seems very reasonable,

considering that we are treating 3-dimensional plants that do145

not represent a single point in space, but a small cluster. In or-

der to extract the best possible model for a row, PEARL is ex-

pected to have a single model for a single row, this step prevents

PEARL from assuming that there are two very close models if

using different points of the same plant.150

Furthermore, searching for new models in the outlier pool

allows the algorithm to retrieve rows that may exist, but were

not yet probed or had been discarded during previous iterations.

2.2. The Refined PEARL Algorithm

Using the standard PEARL method described in Section155

2.1.2 as a starting point, we present here adjustments that would

make it more adapted to the context of a crop navigation.

2.2.1. Penalizing the Energy Based on the Outlier Count

It was noticed, during the benchmark for PEARL, that a typ-

ical set of LiDAR measurements would contain a fair amount of160

points that would be automatically included within non empty

models. This means that the outlier model L∅, would usually

be small, compared to the whole initial data set. The reason for

that is: if we have weeds distributed alongside the plants, the

LiDAR does not provide enough information to rule them out165

from the data set, so they will end up falling into the model that

describes the row that they are close to. If, on the other hand,

the weeds are positioned in the middle of the row, they will very

likely be ruled out, but even then, it is reasonable to assume that

the amount of points provided by each row will be greater than170

the amount of points in the middle of them.

Due to those facts it is possible to penalize the energy (Equa-

tion 1) based on the number of outliers at the end of each α-

4

expansion. Thus the new energy computation is

E(Li) =
∑

p

||p − L(p)|| + λ ·
∑

(p,q)∈N

wpq · δ(L(p) , L(q)) + φ · ||P(L∅)||

(4)

where:175

• φ · ||P(L∅)|| is the inserted energy penalty based on the

amount of outliers, φ represents the weight (heuristically

chosen constant) given to each point that is within the

empty model L∅.

2.2.2. Model Elimination After Each α-expansion180

Another modification proposed for the PEARL procedure,

is a run through all the models after each α-expansion in order

to check if they have a number of inliers that is greater than

the minimal number of points they have started with. If they

do, they are maintained, but if not, we remove the points from185

the labels placing those into the outlier pool L∅. This allows to

eliminate failed models even faster, and, by doing so, increases

the chances of getting the right models in less iterations.

2.2.3. Searching for New Models After the α-expansion

With the model elimination, the algorithm is now eliminat-190

ing models just after each α-expansion. Thus, the searching

models from within L∅ step can be moved to be just after each

alpha expansion. The models that are obtained through this

search then join the others that were already known for the pro-

ceeding of the algorithm.195

2.2.4. Adding a Geometric Constraint

In a field, the plants are generally organized as a set of par-

allel strait lines. This configuration allows the seeding, caring

and harvesting of the plants to be faster and more efficient.

For this reason a parallelism constraint is proposed for the200

PEARL procedure. Models that PEARL is supposed to fit the

data with must also be parallel and, by being so, having a siz-

able portion of inliers attributed to each one of them.

This is made by performing the following procedure:

1. For each model L j of the current set of modelsLi, we cal-

culate D j the sum of the distance between all the points of

the model and the model itself over the number of points

attached to the model (model inertia).

D j =

∑
p∈P(L j)

||p − L j||

||P(L j)||
.

2. For each model L j ∈ Li, we compute ψ j that corresponds205

to the number of models that are parallel to L j:

ψ j =
∑

Lk∈Li\(L j
⋃

L∅)

δ(L j//Lk).

The parallelism δ(L j//Lk) is defined regards to a thresh-

old (heuristically chosen constant):

δ(L j//Lk) =

 1 if |a j − ak | < threshold

0 otherwise
, (5)

where a j and ak are slopes related to L j and Lk lines.

3. We then compute the ratio R j:

R j = ω ·
D j

ψ j
,

with ω an heuristically chosen constant.210

If the ratio R j is greater than a threshold, the model L j is ex-

cluded. If not it is maintained. This favors keeping compact

parallel lines, meaning that each line depicts a weak scatter (i.e.

low inertia D j) of detected points around the center line. Note

that if Li = {L∅} (all the models are excluded) after step 4, we215

re-append the best model we had from step 3 (that is the model

with the lowest ratio R j) before starting the next iteration of

PEARL. Otherwise the new set of models Li+1 will correspond

to the ones that were maintained.

2.2.5. OPAL and RUBY : Refined PEARL Algorithms220

We named our final refined PEARL algorithm RUBY. Based

on PEARL, RUBY includes all the modifications presented be-

fore. This new algorithm, depicted in Figure 5, is detailed be-

low.

1. At initialization, the algorithm randomly samples the data225

to getL0, which is the first set of models. It may also add

the model L∅ for the points that are considered as outliers.

5

Initialization
- step 1 -

affect points
to models
- step 2 -

Start

End

Has the
energy decreased?

- step 3-

Yes

No

add/remove
models

- step 6 -

search for
new models

- step 4 -

Re-estimating
models

- step 5 -

Figure 5: Refined PEAL - RUBY Algorithm

2. Run α-expansion [12] for energy described by Equation

1 and α ∈ Li. This places each data point in the closest

model L j within Li, or, if it is still too far from all the230

models (according to a threshold), into L∅. The label of

each data point gets altered, and the final configuration

allows us to compute the energy for that iteration.

3. If the calculated energy from step 2 does not decrease

(regards to the last iteration), stop and return the last set235

of models Li−1.

4. Sample more models using the points that are included in

the L∅ model.

5. Solve Equation 3 to obtain a new set of models Li+1.

6. Eliminate the models that do not meet the geometric cri-240

teria (parallelism) and merge models that are too close

to each other (according to a threshold) as a way of not

having two different models for a single row.

In order to be able to evaluate the gain obtained by adding

the parallel constraint, we named OPAL the refined PEARL al-245

gorithm that does not have it. In other words, the only difference

between OPAL and RUBY is that RUBY considers the parallel

constraint where OPAL does not.

2.3. Navigation of the Robot in the Crop

The RUBY algorithm depicted before allows to detect the250

crops around the LiDAR sensor (i.e. the robot). In this sub-

section we present an algorithm that uses this information to

navigate among the crops.

Basically speaking, in our case, navigation consists in mov-

ing the robot along a line that is equidistant from the closest left255

and right parallel crops previously estimated (Figure 1). Thus,

in addition to the RUBY algorithm, we propose filters to im-

prove the robustness of the autonomous navigation of the robot.

The model filtering aims at selecting models that are co-

herent over the time, rejecting possible abnormal models that260

might be given by one isolated RUBY call.

Different additional filters are added to improve the navi-

gation. One filter is used to enlarge the LiDAR’s range (using

results from the previous iterations) in order to improve the data

points selection. An other filter is used to prevent the robot from265

taking wrong control decisions while standing non-parallel to

the detected rows. Note that the navigation work-flow is de-

picted on the Figure 9 while the steps are detailed in the next

subsections.

2.3.1. The Data Filtering270

The idea of this filter is to use the previously computed

models (the known rows) to filter the new LiDAR data set, re-

moving points that are generated by obstacles between the rows.

This may be seen as building region of interests (boxes) around

the followed models, from which it is possible to take the data275

for the next reading. The boxes have infinite dimensions in

length, being limited only in width, in order to eliminate out-

liers that are not part of the models, and by the LiDAR range

that is approximately 4 meters for the Oz robot. The boxes are

illustrated in Figure 6280

2.3.2. The Model Filter

At this step, we take all the models that were found (by the

refined PEARL algorithm for instance) and select the closest to

the robot on the right and left sides. We then proceed to test the

selected models in order to see whether they are parallel or not285

to the ones we had on the previous iteration. In other words: it

compares the set of models that arrived with the two (or one)

main models we had before (right and/or left) in order to come

6

Figure 6: Boxes used as filters for the LiDAR measurements and resulting data

points. It can be seen that points generated by obstacles between the rows are

removed from the data set.

up with the best possible model for the robot to follow. If the

new computed lines are not consistent with the previous ones,290

they are ignored. A safety mechanism is added that prevents the

rejection of too many results in a row: it consists of a counter

of permanence that erases the followed models if a number of

successive results are rejected. After that amount of rejections

(limit chosen heuristically), the filter becomes more flexible (as295

it goes into an initialization mode). This caution is important

because in case of a fast correction, the new arriving models

may diverge from the previous ones by more than the tolerance

given by the strict filters, and in that case, the robot would never

have a new model to follow, and consequently would run over300

the plants.

2.3.3. The Pre-control Function

Once the models corresponding to the rows have been iden-

tified, some values are computed such as: the average of the

a and b coefficients (note that models are lines such that y =305

ax + b), the average distance between rows (consequence of the

b coefficient) and the current distance to the target (the center of

two rows or, if it is a single one, a threshold of half the average

distance between the past rows or even a default distance).

The computation of this last value also has a safety mea-310

sure built in. If the followed models are too steep (which may

happen if the robot turns within the row), it changes the way

of calculating distance to target (i.e: the error used by the FIR

filter and the PID controller detailed later). The new compu-

tation becomes the distance between the robot and the point315

where it would intercept the straight line defined by the model.

This safety measure is very important since RUBY and filters

may return two steep models with the robot at their exact center.

In this case, it would be interpreted as a 0 error, so no correc-

tion would be made and plants would most certainly be lost.320

The Figure 7 shows two situations where the given models are

steep, and how the robot may be positioned in relation to those.

In the first case, the regular error calculation could be enough

for driving the robot back to the center of the rows, but in the

second scenario, the error coefficient would be close to 0 since325

both rows are equidistant to the robot (yellow square).

Figure 7: Two different scenarios for steep models (models that are not parallel

to the robot direction) returned by RUBY and the filters: the small squares

correspond to the data (LiDAR measurements), the big squares correspond to

the robot estimated position and the lines correspond to the estimated crops.

2.3.4. Finite Impulse Response Filter (FIR)

The error value calculated and saved previously, is passed

through a FIR (Finite Impulse Response Filter), in order to have

a bit of the influence of past values of error in the new one.

Equation 6 presents the filter computation.

e f [k] = b0e[k] + b1e[k − 1] + ... + bNe[k − N], (6)

with

e f [k] : the filtered error at time k (value that will be con-

sidered by the PID)330

e[k] : the non filtered error at time k (direct estimated

value)

7

N : the filter order (constant chosen empirically)

b0, b1...bN : the values of the impulse response

This is interesting because during movement, the robot does335

not alter its position instantly so, the errors are directly con-

nected one to another if taken in sequence. The FIR has another

important feature that is limiting the influence of an impulse

over time, not allowing the error to build up indefinitely.

2.3.5. Proportional Integrate Derivative controller340

Finally, we arrive to the controller itself, for this part we

use a standard PID controller and the error calculated by the

FIR filter. The output of the PID controller is the correction

that is applied to the wheels-speed, and by doing so, guides the

robot through the field.345

3. Results

This section presents tests that have been done using the

Oz simulator Version 1.0.0 provided by the Naio Technologies

company. First the considered crop scenarios are presented,

then the navigation procedure and the evaluation protocol are350

presented to finish with a presentation and discussion of the re-

sults.

3.1. The Experimentations

We have created 3 different simulated crops (Figure 8) for

the robot to go through, and running eight different algorithms355

through those crops.

3.1.1. Navigation Procedures

The set of procedures introduced in Figure 9 has been de-

fined to be able to evaluate the contribution, in terms of naviga-

tion efficiency, of each step of the proposed navigation system.360

Each flowchart represents an approach that has its results quan-

tified in the Tables 1, 2 and 3. All the blocks presented in the

flowcharts are described in the list bellow.

• Raw LiDAR data: Arrays of data points provided by the

LiDAR sensor in front of the robot.365

(a) Layout for level 1.

(b) Layout for level 2.

(c) Layout for level 3.

Figure 8: The three simulated crops. The gray rectangle on the left illustrates

the robot, the dark shapes correspond to crops and weeds and the lines corre-

spond to the LiDAR measurements.

• Data filtering: Selecting data from the arrays that fits the

lastly accepted model of each side, if it is not too steep.

In case there are no accepted models or the model on that

side is too steep, the filter takes the points that are in that

side of the robot with the only limitation that they must370

be between 30 cm and 3 m from the robot.

• CROP MODELING: This block is either our RUBY

algorithm as described in Section 2.2.5, the OPAL al-

gorithm (the RUBY algorithm but without considering

the geometric constraint), the original PEARL algorithm375

as described in 2.1.2, or the RANSAC-based method for

model fitting as described in [8].

• Right and left model filtering - 1: Selection, from the

models given by the previous step, of which will be the

model on the right and on the left side of the robot. This380

filter takes into account the history of already accepted

models by using: the average value of the distance be-

tween right and left models (thus, the distance between

the rows of the crop), the average and the value of the

last a and b coefficients (reminder: the models are lines385

described by the equation L j : f j(x) = a jx + b j).

8

Start

Raw LiDAR
data

CROP
MODELING

Right and
Left Model
Filtering 1

Update
Filters

Lastly
Accepted
Models

Pre Control
Function

FIR Filter

PID
Controller

Data
Filtering

Start

Raw LiDAR
data

CROP
MODELING

Right and
Left Model
Filtering 2

Pre Control
Function

FIR Filter

PID
Controller

Filtered Version Non Filtered Version

Figure 9: Routines considered for the tests. The crop modeling is either RUBY,

OPAL, PEARL or RANSAC, depending on the tested algorithm.

• Right and left model filtering - 2: Simple filter, takes

only the closest right and left models in order to place the

robot between only two models instead of the unknown

number that will emerge from the model fitting .390

• Update Filters: Function that updates the model and

data filters with the accepted model’s values. If no model

is accepted, it deactivates the data filtering and uses the

average values of a and b for updating the right and left

model filtering.395

• Pre-control function: Calculates the average values of

distances between rows, steepness of models, and the dis-

tance to the target. This will be used in the next step. The

target distance is either the distance between the robot

and the center of the two rows it is following (if the mod-400

els are not too steep) or the distance between the robot

and the model it is about to intersect (in case the lines are

too steep).

• FIR Filter: Takes a number of past value errors and

weight them using fixed coefficients to find the present405

error value.

• PID Controller: Classical PID controller that actuates

if there are models to be followed. In the off case that

there are not, the controller returns the command 0 and

reduces the speed of the robot in order to give it time to410

find the models. Note that for experiments, navigation

parameters (PID and FIR) have been empirically tuned.

3.1.2. Evaluation Protocol

As mentioned before, we use the simulator provided by

Naio Technologies 6 version 1.0.0 and the tests are conducted415

like follows:

1. The robot went through every simulated field (Figure 8 :

without weeds - 1, some weeds - 2 and a lot of weeds -

3) 10 times using each algorithm, which totals 240 paths

creating images like in Figure 10a.420

2. By remotely controlling the robot we create the ideal path

that the robot is supposed to take (i.e. a straight line

through the middle of the crop) as illustrated in Figure

10b.

3. To ease the algorithm comparison a line of distinctive425

color (pink) was drawn over the ideal path. This step

is illustrated by Figure 11.

4. Navigation failure is defined over two scenarios:

(a) The robot leaves the area shown in Figure 12a.

(b) The robot stops for any reason before the end of the430

studied area.

Figure 12b illustrates a navigation failure.

5. We count the number of blue spots (robot path) in each

figure, and add their distances to the distinctive pink line

6http://www.naio-technologies.com/

9

representing the ideal path. This counting actually com-435

putes how much the robot has deviated from the ideal

path. This error is normalized with the amount of blue

dots in each figure (this number is directly connected to

the robot speed).

6. The average, maximum and minimal values of the errors440

generated by the processed path regards to the ideal one

are all calculated for each method at each level. The re-

sults are available in tables 1, 2 and 3. Note that the fail-

ures are not used and are just counted for each methods

success rate calculations.445

7. For every successful passage of each method, the number

of times that at least one plant got destroyed (moved over)

by each method is counted.

(a)

(b)

Figure 10: Illustrated paths taken by the robot in the simulator.

Figure 11: Line drawn in the middle of crop’s rows, covering the ideal path.

3.2. The Results

3.2.1. The Considered Metrics450

Here are explanation about the table values:

(a) Box that sets the bounds for failure.

(b) Clear failure.

Figure 12: Illustrating failures.

• Success Rate: percentage of successful runs (that did not

failed as defined in the evaluation protocol).

• Success Rate without crushing plants: percentage of suc-

cessful runs that did not destroyed any vegetable.455

• Errors: due to irregular sampling rate7, we did not choose

an error value based on mean square values (difficulty of

pairing irregularly spaced points). Instead we computed

an error based on the total distance traveled by the robot

during the runs regards to the perfect one (strait line re-

garding the optimal path):

error = (traveled distance)/(perfect run distance) (7)

The simulator considers 20 × 20cm2 patches (see grids

on figures), and the optimal path has a length of 480cm.

7In the considered simulation the sampling rate is directly dependent of the

robot speed and thus of its accelerations and decelerations.

10

For instance, an error of 1.15 means that the robot path

was 1.15 longer than the optimal path. As the optimal

path is 480 cm long, an error of 1.15 means that the robot460

traveled 552 cm, so deviate from the path of 72 cm all

along the row.

– Average error: the mean error of successful runs

regards to the ideal one (straight line with constant

speed). The higher the value the more the robot465

deviated from the optimal path.

– Maximal error: the worst successful run (longest

traveled distance).

– Minimal error: the best run (shortest traveled dis-

tance).470

3.2.2. Analysis of the Tables

By looking at the tables 1, 2 and 3, it is possible to see an

evolution pattern between the four PEARL based approaches

that we have proposed for model fitting. Here is an analysis for

each column and a general conclusion about the study.475

• Algorithm 1 - RUBY Filtered: The best PEARL-based

approach that we obtained, using the RUBY refinement.

It combines all the features previously described for a

method that proved itself robust, and quite close to the

ideal path that we would like the robot to follow. It de-480

stroyed no plants at all, and it’s deviation from the ideal

path was the smallest one, giving us the best encountered

solution for the problem to date.

• Algorithm 2 - RUBY Only: Having the parallelism con-

straint in its favor, by using RUBY, this method encoun-485

tered quite a meaningful success by itself. It performed

better than the OPAL only, and even the filtered OPAL

in level 1. It destroyed less plants than both OPAL ap-

proaches, when comparing all levels, while maintaining

a higher success rate as well. The distances increased sig-490

nificantly when weeds were added to the field, showing

that it is not enough to use RUBY only for our goal.

• Algorithm 3 - OPAL Filtered: The usage of the filter-

ing, combined with OPAL (PEARL variation without the

parallelism constraint), provided us with a result that was495

somewhere between our best method, and the standalone

PEARL, without filtering of any kind. For noisy scenar-

ios (levels 2 and 3), it presented a superior behavior to the

unfiltered approaches. At level 1, it performed slightly

worse than the unfiltered RUBY, which shows that the500

parallel constraint has quite a deep impact at the method’s

performance.

• Algorithm 4 - OPAL Only: Stripped of the parallelism

constraint and the filters, OPAL, performed fairly well for

an ideal scenario, but had an extremely high destruction505

rate and trajectory deviance increased when faced with

weeds in the field. It consisted on the first step towards

development and it helped us to understand what would

be necessary for reaching the ”RUBY - filtered” success-

ful approach.510

• Algorithm 5 - Original PEARL Filtered: Using the

original PEARL approach, alongside with the filters cre-

ated during the development, produced results that were

better than the RANSAC ones, and even better than the

intermediate modified algorithms, although, when com-515

pared against the fully developed RUBY approach, the

original PEARL crushed more plants and went through

larger distances in two out of the three levels that were

tested and, in the third one, had a success rate that was

20% lower than RUBY did, on the same scenario.520

• Algorithm 6 - Original PEARL Unfiltered: The pure

PEARL unfiltered approach was the one that had the most

setbacks. Being the responsible for the bigger distances

that the robot faced on levels 1 and 2, it failed com-

pletely on level 3, not providing any result that could be525

accounted as a success. This was addressed to during

the development, by modifying the order of the optional

steps, and adding the filtering and calculations that led to

the RUBY method.

11

Algorithms RUBY

filtered

RUBY

only

OPAL

filtered

OPAL

only

PEARL

filtered

PEARL

only

RANSAC

filtered

RANSAC

only

Success Rate 100 % 100 % 100 % 100 % 100 % 80 % 90 % 100 %

Success Rate without

crushing plants
100 % 100 % 100 % 100 % 100 % 80 % 90 % 100 %

Average Error 1.15 1.38 1.49 1.65 1.33 3.53 1.10 1.09

Maximal Error 1.56 3.13 3.94 2.21 3.17 4.71 1.15 1.14

Minimal Error 1.04 1.00 1.02 1.03 1.00 2.18 1.05 1.05

Table 1: Level 1 - simulated perfect scenario

Algorithms RUBY

filtered

RUBY

only

OPAL

filtered

OPAL

only

PEARL

filtered

PEARL

only

RANSAC

filtered

RANSAC

only

Success Rate 100 % 100 % 80 % 60 % 90 % 20 % 50 % 100 %

Success rate without

crushing plants
100 % 100 % 70 % 50 % 90 % 10 % 20 % 100 %

Average Error 1.10 3.75 2.64 5.24 2.10 7.26 9.68 3.27

Maximal Error 1.29 4.74 6.06 9.06 4.09 9.41 11.28 4.14

Minimal Error 1.00 2.01 1.26 2.84 1.08 5.10 8.01 2.42

Table 2: Level 2 - simulated scenario with some outliers

• Algorithm 7 - RANSAC Filtered: - Changing from PEARL530

based methods to RANSAC, while keeping the same fil-

ters developed for RUBY proved itself to be a bad com-

bination, having a success rate that dropped to 30% with

numerous weeds, destroying plants at a rate and number

that superseded almost all other approaches.535

• Algorithm 8 - RANSAC Only: The pure RANSAC ap-

proach showed that it is possible to use our control func-

tions (without any other filters than the FIR and the pre-

control) to control the robot with a performance that was

equivalent to RUBY Filtered at the ideal scenario, but had540

a serious degradation in performance after the addition of

the smallest number of weeds.

After weighting the results seen in the tables, it can be con-

cluded that the RUBY Filtered approach is indeed the most ro-

bust one, having the smallest deviation from the ideal path at545

levels 1 and 2, while keeping its efficiency at 100% on all levels,

the pure PEARL algorithm, that has indeed obtained a smaller

average distance on the hardest level, did not however manage

to clear the field in all its iterations on level 3, hence demon-

strating that the RUBY approach was indeed an improvement550

over PEARL for this scenario.

4. Discussion

The previously presented results show that our modified

PEARL based approach can provide an efficient method to de-

tect crops using LiDAR data. Those results were obtained using555

a simulator in order to easily obtain a ground truth for evalua-

tion and comparison purposes. As this work is meant to be used

with actual agricultural robots the results can be discussed for

real application. Preliminary experiments have been performed

12

Algorithms RUBY

filtered

RUBY

only

OPAL

filtered

OPAL

only

PEARL

filtered

PEARL

only

RANSAC

filtered

RANSAC

only

Success Rate 100 % 90 % 70 % 60 % 80 % 0 % 30 % 100 %

Success rate without

crushing plants
100 % 100 % 70 % 50 % 80 % 0 % 0 % 100 %

Average Error 2.33 7.20 3.98 6.26 1.41 NaN 10.82 4.51

Maximal Error 3.39 10.94 7.39 8.67 3.17 NaN 13.44 5.59

Minimal Error 1.28 3.49 1.59 2.23 1.04 NaN 6.65 2.73

Table 3: Level 3 - simulated scenario with a lot of outliers

using an actual Oz robot and results are promising8 (subjective560

evaluation of the robot navigation). It appears that the new ap-

proach allows the robot to move between the crops, even if the

crops are non regular and people are moving around. The reader

should note that those results were obtained without any modi-

fication of the algorithm tuned in our laboratory (the constants565

were heuristically defined in an indoor environment with plastic

cones instead of plants). This depicts how robust the approach

can be. Next steps will concerns the quantitative evaluation us-

ing these real data, with the underlying difficulty of building of

a ground truth.570

The proposed approach depicts some limitations, mostly re-

garding the considered sensor and robot. As the LiDAR is a 2

dimensional sensor, it has been noticed that its height is a criti-

cal parameter:

• if the LiDAR is too low according to the weeds that are575

between the crops, the sensor can be ”blinded” by the

weeds and in this case the approach can not be used to

detect the crops,

• on the other hand if the sensor is too height according to

the crops, the sensor does not detect them and thus the580

approach can obviously not be used.

To overcome this limitation, we plan to use 3 dimensional

sensor in our future work.

8https://youtu.be/qQr68RLNs9o, https://youtu.be/bMudwhPALcM

An other limitation according to the LiDAR is that it is

nearly impossible according to the sensor data to identify the585

type of obstacle in front of the robot: in other words a weed in

front of the robot looks like a rock for the sensor, and the other

way around. This leads to safety issue while the robot is mov-

ing. In the future, we plan to use camera sensors in front of the

robot to overcome this issue.590

Finally the turn around (to change row for instance) is quite

difficult with only one LiDAR sensor in front of the robot. In-

deed, when the robot is at the end of a row, it does not have any

information about what is behind it. It thus has to use odome-

try data and a dead reckoning approach to change row. Due to595

slippery ground, holes, mud... the approach is not reliable and

it often mistakes the row to go in. In the future, we plan to have

symmetrical data to overcome this problem.

5. Conclusion

This paper presents a new approach to extract lines from a600

point cloud with application to agricultural robot autonomous

navigation in a GPS denied environment. Simulated results are

presented to demonstrate the interest of the approach compared

to existing methods (RANSAC, PEARL). The approach also

has been experimented with an actual Oz robot in an actual605

field. Experimental results are promising and the method seems

to be robust even when the crops are not perfect. Some limita-

tion remains and some work still have to be done in order to

be able to use this approach in most of the actual agricultural

13

configurations (mainly due to the considered sensor and robot).610

6. Acknowledgement

This work was supported by the Brazilian Capes Agency

through the Brafitec program.

References

[1] The ecophyto 2018 plan, http://agriculture.gouv.fr/615

ecophyto-english, accessed: 2017-06-01.

[2] J. B. Gerrish, T. Surbrook, Mobile robots in agriculture.

[3] J. Reid, S. Searcy, Vision-based guidance of an agriculture tractor, IEEE

Control Systems Magazine 7 (2) (1987) 39–43.

[4] S. A. Hiremath, G. W. Van Der Heijden, F. K. Van Evert, A. Stein, C. J.620

Ter Braak, Laser range finder model for autonomous navigation of a robot

in a maize field using a particle filter, Computers and Electronics in Agri-

culture 100 (2014) 41–50.

[5] T. Bell, Automatic tractor guidance using carrier-phase differential {GPS},

Computers and Electronics in Agriculture 25 (12) (2000) 53 – 66.625

[6] M. Prez-Ruiz, D. Slaughter, C. Gliever, S. Upadhyaya, Automatic gps-

based intra-row weed knife control system for transplanted row crops,

Computers and Electronics in Agriculture 80 (2012) 41 – 49.

[7] O. C. B. Jr., A. Mizushima, K. Ishii, N. Noguchi, Development of an

autonomous navigation system using a two-dimensional laser scanner in630

an orchard application, Biosystems Engineering 96 (2) (2007) 139 – 149.

[8] M. A. Fischler, R. C. Bolles, Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartogra-

phy, Communications of the ACM 24 (6) (1981) 381–395.

[9] H. P. VC, Method and means for recognizing complex patterns, uS Patent635

3,069,654 (1962).

[10] L. Jacobs, J. Weiss, D. Dolan, Object tracking in noisy radar data: Com-

parison of hough transform and ransac, in: IEEE International Conference

on Electro-Information Technology , EIT 2013, 2013, pp. 1–6.

[11] H. Isack, Y. Boykov, Energy-based geometric multi-model fitting, Inter-640

national journal of computer vision 97 (2) (2012) 123–147.

[12] A. Delong, A. Osokin, H. N. Isack, Y. Boykov, Fast approximate energy

minimization with label costs, in: Computer Vision and Pattern Recogni-

tion (CVPR), 2010 IEEE Conference on, IEEE, 2010, pp. 2173–2180.

14

http://agriculture.gouv.fr/ecophyto-english
http://agriculture.gouv.fr/ecophyto-english
http://agriculture.gouv.fr/ecophyto-english

	Introduction
	Method
	The Original PEARL Algorithm
	The General Idea of the Approach
	The Algorithm Steps
	Motivation for Implementing Step 5

	The Refined PEARL Algorithm
	Penalizing the Energy Based on the Outlier Count
	Model Elimination After Each -expansion
	Searching for New Models After the -expansion
	Adding a Geometric Constraint
	OPAL and RUBY : Refined PEARL Algorithms

	Navigation of the Robot in the Crop
	The Data Filtering
	The Model Filter
	The Pre-control Function
	Finite Impulse Response Filter (FIR)
	Proportional Integrate Derivative controller

	Results
	The Experimentations
	Navigation Procedures
	Evaluation Protocol

	The Results
	The Considered Metrics
	Analysis of the Tables

	Discussion
	Conclusion
	Acknowledgement

