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Abstract
The Bayesian approach is well recognised in the structural dynamics community as an attractive approach

to deal with parameter estimation and model selection in nonlinear dynamical systems. In the present pa-

per, one investigates the potential of approximate Bayesian computation employing sequential Monte Carlo

(ABC-SMC) sampling [1] to solve this challenging problem. In contrast to the classical Bayesian inference

algorithms which are based essentially on the evaluation of a likelihood function, the ABC-SMC uses differ-

ent metrics based mainly on the level of agreement between observed and simulated data. This alternative is

very attractive especially when the likelihood function is complex and cannot be approximated in a closed

form. Moreover, this flexibility allows one to use new features from either the temporal or the frequency

domains for system identification. To demonstrate the practical applicability of the ABC-SMC algorithm,

two illustrative examples are considered in this paper.

1 Introduction

The problem of model selection using dynamic data from a structural or mechanical system is widely en-

countered in mechanical and civil engineering. Generally speaking, model selection refers to the problem of

using data to select one model from a set of competing models [2]. In recent years, Bayesian approaches have

been widely used for parameter estimation and model selection in system identification of structures based

on measured data [3]. The usual approach is to find the optimal model amongst competing models which

can provide acceptable agreement between real and predicted data. It is obvious that a more complicated

model can fit the data better than a simple one which has fewer adjustable parameters. Therefore, if the op-

timal model is chosen by minimising some norm of the error between the output data and the corresponding

predictions of the optimal model, the optimal model will always be the most complicated one. However, the

selection of complicated models may lead to overfitting the data. When an overfitted model is used for future

prediction, it will very likely lead to poor results because the model will depend too much on the details of

the training data, and the noise in the data might have an important role in the data fitting. For this reason,

it is necessary to penalise a complicated model for robust and reliable predictions. For practical problems,

it means that simpler models are preferable to complicated ones, that is, the competing models should agree

closely with the observed response of the system and be simple as possible.

During the last few years, several papers have been published concerning model selection issues under a

Bayesian framework in different domains and with various algorithms: structural dynamics [4–6], biol-

ogy [7], cosmology [8] among others. In the field of structural dynamics and earthquake engineering, Beck

and his colleagues [9–11] have pioneered the Bayesian model selection approach. Chatzi et al. [12] have

proposed a Bayesian approach using the unscented Kalman filter (UKF) method to investigate the effects of
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model complexity and parametrisation of nonlinear hysteretic systems. In their contribution, the authors ex-

amined the case when not only the parameters of the system are unknown but also the nature of the analytical

model describing the system. Worden & Hensman [13] have attempted to solve the problem of Bouc-Wen

(BW) hysteretic system parameter identification as a model selection problem using the Metropolis-Hastings

(MH) based Markov chain Monte Carlo (MCMC) algorithm. In the Bayesian framework and in particular for

model selection issue, several selection criterions have been proposed in the literature to rank the competing

models, essentially the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the

cross-validation criterion. For more details concerning the mathematical formulations and the significance

of these metrics, the reader can refer to the following references [14, 15].

In this paper, one proposes to introduce the approximate Bayesian computation using sequential Monte

Carlo (ABC-SMC) method to select the most plausible dynamic models representing a mechanical system

by using its response measurements. During the last decade, ABC is increasingly considered as a distinct

inferential formalism and not merely as an approximation to conventional Bayesian inference. This algorithm

was originally developed to solve problems in biology [1]; however, as its efficiency was recognised, its

popularity increased and, consequently it started to be used in different domains and recently in structural

dynamics [16]. The motivation behind the use of ABC instead of the classical MCMC methods is that the

latter often have convergence problems. Moreover, one of the important merits of this technique compared

to the classical MCMC algorithms is its independance of the initial parameters, which should be specified in

MCMC algorithms. This has led to the development of alternatives to MCMC (e.g., [17]) and a group of these

alternative methods has come to be known as ABC. Different variants have been proposed in the literature,

for more details the reader can refer to [18–20]. Recently, Chiachio et al. [21] proposed a new algorithm,

named ABC-Subsim, by incorporating the subset simulation technique [22] into the ABC algorithm. In

practice, and as shown in several published papers, the ABC algorithm presents several advantages; it does

not require the definition of a likelihood function, therefore a considerable amount of data can be analysed

and more complex models can be used. Compared with the classical MCMC algorithms which rely on

the use of the Bayesian evidence to rank the competing models, the ABC algorithm is straightforward and

converges directly to the most likely model by eliminating progressively the least good models. In fact, the

ABC-SMC algorithm proposes jumps between the models with different dimensionalities without matching

the dimensionalities. So it is simpler in a sense than the rejection-jump MCMC proposed by Green [23]. In

addition, the ABC algorithm offers the possibility to use different metrics for model selection and parameter

estimation, which is a major advantage. As far as the authors are aware, there has been relatively little work

on ABC-SMC algorithm for Bayesian model selection in structural dynamics so far. To demonstrate the

effectiveness of the ABC-SMC algorithm to solve challenging problems, two illustrative examples using

simulated data will be presented in this work. The first example presents cubic and cubic-quintic models,

while the second example deals with the identification of the Bouc-Wen hysteretic system formulated as a

model selection task.

The rest of this paper is organised as follows. In Section 2, a brief description of the Bayesian formulation

for parameter inference and model selection is presented. In Section 3, an overview of the basic elements of

the ABC algorithm and the algorithm settings are given. In Section 4, two illustrative examples in structural

dynamics are then presented and investigated. Finally, Section 5 contains concluding remarks and future

work.

2 General Bayesian framework

The Bayesian approach offers a suitable framework for parameter inference and model selection in dynamical

systems when multiple models can fit the data in a reasonable manner. Denote byD the data from a structural

or mechanical system; the goal is to use D to select the most plausible model representing the system out

of n given models M = {M1,M2, . . . ,Mn}. The basic idea of the Bayesian approach to identification is

that, by repeatedly applying Bayes’ theorem, one can assess the probability of a set of parameters θ as well
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as a model structureM conditional on the data D using:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
(1)

and

p(M|D) =
p(D|M)p(M)

p(D)
(2)

where

p(D|M) =

∫
p(D|θ,M)p(θ|M)dθ (3)

is a normalising constant which ensures that p(θ|D,M) integrates to unity. This is referred as the model

evidence. In Eqs. (1) and (2) , p(θ|D,M) is the posterior distribution, p(D|θ,M) is the likelihood func-

tion which quantifies the probability of getting D; p(θ|M) is the prior probability density function (PDF)

assigned to model parameter values θ; p(M|D) is the posterior probability ofM and p(M) is the prior

probability assigned toM.

3 Approximate Bayesian computation

3.1 Basic features

The ABC-SMC algorithm provides a unified approach to deal with both parameter estimation and model

selection in a straightforward way. The algorithm is similar to the particle filter technique which have been

widely used for system identification. The implementation of the algorithm requires the definition of the prior

distributions associated to the model parameters and the competing models. In addition, the algorithm needs

to define an appropriate sequence of the tolerance schedule (ε1 > . . . > εT ) to guarantee a smooth transition

from the prior to the posterior parameter distributions. Finally, a kernel functions should be selected to move

a candidate sample in the search space. The perturbation allows a better exploration with the intention of

generating better samples. It should be also noted that the algorithm requires the definition of an appropriate

metric to evaluate the agreement between observed and simulated data. To implement the ABC-SMC method

for model selection, the mentioned parameters should be carefully selected for the algorithm to work well.

A brief description is given here of the ABC-SMC algorithm adopted in this work. Let assume n competing

models Mi=1:n and each model is defined by its parameter vector Θi=1:n. Based on the knowledge of

the first tolerance schedule value and the selected metric, the algorithm starts by sampling the samples

{(M1,Θ1), . . . , (Mn,Θn)} from the prior distributions until N samples are obtained. In the first iteration,

one assigns the same weight for all the accepted samples. The samples are then perturbed to find better

ones and propagated through a sequence of intermediate distributions. It should be noted that the samples

are reweighted in the subsequent iterations. Finally, based on the relative acceptance frequencies for the

different competing models, one may approximate the posterior model probabilities for all the competing

models simultaneously. Further details can be found in [1].

3.2 Algorithm settings

By using the ABC-SMC algorithm, there are two practical problems to be solved. First, one has to choose

a suitable metric which reflects the level of agreement between the exact measurements and the predicted

ones. Then, one needs to define a sequence of tolerance thresholds to converge gradually to the posterior

distributions. In this work, the normalised mean square error (MSE) given by Eq. (4) is selected as a metric.

E
IM

IN
A

R
Y

C
E

dθdθ

tes to unity. Thistes to unity. This

distribution,distribution, pp((DD
the prior probabilitythe prior probability

posterior probabilityposterior probability

computationcomputation

approach toapproach to

algorithm is similaralgorithm is

implementationimplementation

parameters and theparameters and the

tolerance scheduletolerance schedule

parameter distributions.parameter distributions.

space. The perturbatspace. The perturbat

should be also notedshould be also noted

between observbetween observ

mentioned parametersmentioned parameters

here of the ABC-SMChere of the ABC-SMC

model is definedmodel is defined

schedule value andschedule value and

Θnn))}} from thefrom the

weight forweight for

ated through a sequenceated through a

the subsequentthe subsequent

competing models,competing models,

simultaneously. Furthersimultaneously. Further

Algorithm settingsAlgorithm settings

using the ABC-SMCthe ABC-SMC

metricmetric



h =
100

Nσ2u

N
∑

ℓ=1

(

uobs
ℓ
− ǔsim

ℓ

)2
(4)

where N is the number of samples, σ2u is the variance of the measured displacement, uobs
ℓ

and ǔsim
ℓ

are the

observed and predicted displacements given by the selected modelM(·), respectively.

For the present examples, the tolerance schedule required for ABC inference is defined a priori for demon-

strative purpose. It should be mentioned that this can be defined adaptively based on the values of the selected

metric at the previous population for instance. By decreasing ε, one is inducing a gradual transition from

the prior to the posterior parameter distributions. In practice, the final tolerance schedule should tend to

zero; however, this choice is highly case dependent. The computational time associated to the ABC-SMC

depends mainly on the target tolerance εT and the population size. This means that the selection of εT has

a large influence on the posterior parameter estimates and their associated posterior uncertainties. Often, the

choice of εT should reflect a trade-off between computability and accuracy. To demonstrate the usefulness

and the applicability of the ABC-SMC algorithm for model selection in structural dynamics, two illustrative

examples detailed in the following section will be investigated.

4 Numerical examples

4.1 Example 1: cubic and cubic-quintic models

The first example aims to assess the capability of the ABC-SMC algorithm in the case when two competing

models are proposed. The competing models proposed in this example are the cubic M1 and the cubic-

quinticM2 given by Eqs. (5) and (6), respectively:

M1 : mÿ + cẏ + ky + k3y
3 = f(t), (5)

M2 : mÿ + cẏ + ky + k3y
3 + k5y

5 = f(t). (6)

where m represents the mass, c the damping, k linear stiffness, k3 and k5 are the non-linear stiffness coef-

ficients. y, ẏ and ÿ are displacement, velocity and acceleration responses of the system, respectively. The

forcing function is of the form f(t) = F cos(ωt), with ω = 20rad/s and F = 10.

For both models, the unknown parameters are assumed to be uniformly distributed over a sufficiently wide

range (see, Table 1). In this example, the training data used for model selection were generated from the cubic

model. Denote by Θ = {m, c, k, k3} the parameters associated to the model to be identified. Typically, one

sets the prior probabilities of each model to be equal, i.e., Pr(M1) = Pr(M2) =
1

2
. The duration of

measurements is T = 10 s with sampling frequency, fres = 200MHz, so that the number of data points

is N = 1000. The response time history of the correct model is calculated by the Runge-Kutta method

and shown in Fig. 1. In the first case, one assumes that the data are free of noise. Then, the case when

measurements are corrupted by noise is considered.

Parameter True value Lower bound Upper bound

m 1 0.1 10

c 0.05 0.005 0.5

k 50 5 500

k3 103 102 104

k5 104 103 105

Table 1: Parameter ranges of competing models.
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Figure 1: The response time history of the cubic model.

In this example, the initial tolerance was estimated through some numerical simulations and fixed at ε1 =
100. The prior distributions are taken to be uniform and the perturbation kernel Kθ is updated from popu-

lation to population, Kθ = ξU(−δ, δ), with ξ = 0.5. For the t-th population, δ is estimated based on the

support of the posterior distribution from the (t− 1)-th population given by:

δ = max(θ)t−1 −min(θ)t−1 (7)

In the present work, the population size (or the number of samples) is fixed at N = 2000 which seems

reasonable to achieve precise estimation of the posterior distributions and acceptable computational time.

To ensure the gradual transition between prior and posterior distributions, t = 18 populations with εt =
{100, . . . , 0.03}t=1:18 are generated.

4.2 Results and discussion

Fig. 2 shows the marginal posterior distributions for the competing models at some intermediate populations.

One may observe how the ABC-SMC algorithm converges gradually to the correct model. At population 17,

M2 is eliminated which means that the model is unable to describe the system behaviour given the available

measurements. Model probabilities associated to each competing model at intermediate selected populations

are also shown in Fig. 2. Fig. 3 shows the histograms of the unknown parameters associated to the correct

model. One observes that the obtained histograms are highly peaked around the true values given in Table 1.

The statistics associated to the inferred parameters are summarised in Table 2.

Fig. 4 shows the simulated and predicted responses using the mean values given in Table 2. A good agree-

ment between simulated and predicted responses is observed which demonstrates the efficiency of the ABC-

SMC inference method. Fig. 5 shows the MSE distribution associated to the last population. Note that the

tolerance threshold can be decreased further. Decreasing the tolerance threshold further reduces the uncer-

tainties in the model parameters and then improves the model predictions; however, this may increase the

computational time drastically. For the present case, one assumes that the final level of accuracy is enough to

get robust prediction. Fig. 6 shows the scatter plots of the model parameters which show how samples move

from population to population. It should be noted that the number of samples associated to the correct model

increases by decreasing the tolerance threshold which allows us to get a precise estimate of the uncertainties

associated to each unknown parameter.

4.3 Model selection using corrupted measurements

To investigate how noise may impact the model selection as well as the model parameters, the exact mea-

surements are now corrupted by noise. Here, noise of RMS 1% of the response is added to the displacement
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Figure 2: Marginal model posterior distributions at some selected populations.
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Figure 4: Simulated and predicted displacement responses.
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Figure 5: MSE distribution at the last population.

Parameter Exact value Estimated value σ µ− 3σ µ+ 3σ

m 1 1.0002 0.0068 0.9799 1.0205

c 0.05 0.05 0.0034 0.0399 0.06009

k 50 50.0999 1.7784 44.7647 55.4350

k3 1000 1000.8215 24.5139 927.2798 1074.3632

Table 2: Identification results using simulated data.

signal. Table 3 shows the optimal parameters and how those parameters change compared with the previous

case. It should be mentioned that we keep the same sequence of the tolerance schedule used previously.

For the noisy case, the algorithm is stopped at the tolerance threshold ε17 = 0.05 as the acceptance rate

drops significantly and the algorithm cannot move efficiently. Using the noisy measurements, ABC-SMC

algorithm shows that model M1 is the most probable model based on the data, with a posterior probability

of 1 at population 17. Table 3 summarises the statistics associated with the optimal parameters using noisy

measurements. Larger standard deviations are obtained compared with the results with exact measurements.

Parameter Exact value Estimated value σ µ− 3σ µ+ 3σ

m 1 1.0005 0.0080 0.9763 1.0246

c 0.05 0.0502 0.0042 0.0376 0.0627

k 50 50.0796 2.2470 43.3385 56.8208

k3 1000 1001.8587 28.9190 915.1016 1088.6157

Table 3: Identification results using noisy simulated data.
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Figure 6: Two-dimensional scatterplots of the samples at some intermediate populations.

4.4 Example 2: the Bouc-Wen hysteresis model

This case study follows the spirit of the second example in Worden and Hensman [13], where the Metropolis

Hastings algorithm was used to identify the Bouc-Wen (BW) model parameters. The highly nonlinear nature

of the BW model, along with a large number of model parameters has made the identification of this system

a challenging problem. The model has been receiving more attention in recent times due to the development

of efficient numerical algorithms that can be used to identify the model parameters more accurately. Several

methods have been discussed in the literature to accomplish this, including analytic approaches, Gauss-

Newton, simplex, reduced gradient method, and extended Kalman filters. Due to the nonlinear nature of the

problem, stochastic optimisation algorithms have been also found to be well suited. Algorithms such as ge-

netic algorithm [24], particle swarm optimisation [25], and differential evolution [26] have been successfully

implemented. However, those algorithms do not provide a probabilistic characterisation of the uncertainty

of the unknown parameters. In this paper, one investigates the capability of the ABC-SMC approach to deal

with the BW model parameters identification. The identification problem is formulated as a model selection

task which allows one to reduce the number of parameters.
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Figure 7: Simulated data from the BW model, n = 2.

4.4.1 Equations of motion

The general single-degree-of-freedom (SDOF) hysteretic system described in the terms of Wen [27], is rep-

resented below where g(y, ẏ) is the polynomial part of the restoring force, z(y, ẏ) the hysteretic part and

x(t) is the excitation force:

mÿ + g(y, ẏ) + z(y, ẏ) = x(t) (8)

The hysteretic component is defined by Wen [27] via the additional equation of motion:

ż =

{

−α|ẏ|zn − βẏ|zn|+Aẏ, for n odd

−α|ẏ|zn−1|z| − βẏ|zn|+Aẏ, for n even
(9)

The parameters α, β and n govern the shape and the smoothness of the hysteretic loop. The equations offer a

simplification from the point of view of parameter estimation in that the stiffness term in (9) can be combined

with the Aẏ term in the state equation for z. The reader can refer to [13] for further details.

In this example, the response variable will be assumed to be displacement. The sampling interval was taken

as 0.001 s, corresponding to a sampling frequency of 1000 Hz. As in the first example, the problem of model

selection is considered by using both exact and corrupted measurements. The training data used here were

composed of 10000 points corresponding to a record duration of 10 seconds. Fig. 7 shows the BW model

response; the exact values used to generate the training data and the parameters ranges are summarised in

Table 4 with n = 2.

Parameter True value Lower bound Upper bound

m 1 0.1 10

c 20 2 200

α 1.5 0.15 15

β -1.5 -15 -0.15

A 6680 668 66800

Table 4: Parameters ranges of the BW model.

To deal with the problem of parameter estimation and model selection, 5 competing models are considered,

the linear model and 4 models by varying n from 1 to 4. The competing models are defined as follows:































M1 : mÿ + cẏ +Ay = x(t)

M2 : Eqs. (8) and (9), n = 1

M3 : Eqs. (8) and (9), n = 2

M4 : Eqs. (8) and (9), n = 3

M5 : Eqs. (8) and (9), n = 4
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Figure 8: Model posterior probabilities at different intermediate populations.

To implement the ABC-SMC algorithm, equal prior plausibilities Pr(Mi|D) =
1

5
are considered. As in the

first example, the sequence of the tolerance is defined a priori εt = {100, . . . , 5×10
−8}t=1:44. The obtained

results are summarised in the following subsections for the exact and corrupted measurements.

4.4.2 Results and analyses

Fig. 8 shows the posterior model probabilities at different intermediate populations. One observes how the

ABC-SMC algorithm proposed here allows a progressive elimination of some competing models during the

inference procedure. After some intermediate populations, the ABC-SMC approach identifies the true model

from which the training data were generated. As one can see from Fig. 8, the BW model with n = 4 is firstly

eliminated, then the linear model, which is not able to capture the nonlinearity of the BW model. The ABC-

SMC algorithm identifies the correct model at population 32 as shown in Fig. 8 at the tolerance threshold

ε = 10−5. It should be mentioned that once a model is eliminated, the algorithm continues the inference by

using only the remaining competing models. Therefore from population 33 to population 44, the algorithm

uses onlyM3 and improves the precision related to the posterior distributions of the model parameters. In

the present case, the target tolerance is equal to 5 × 10−8 which is sufficient to get a precise estimate of the

true parameters. For the present case, 44 populations are used to converge to the correct model since several

competing models are proposed and the model responses are quite similar.

Table 5 summarises the obtained results from the ABC-SMC algorithm. One may observe that the algorithm

provides a precise estimate of the true values. The posterior distribution associated to each parameter is

shown in Fig. 9. As one can see from this example, to converge to the true posterior distribution and to gain

more confidence to the estimated parameters, the final tolerance threshold should tend towards zero. Fig. 10

shows the simulated and predicted responses; a good agreement is shown, which proves the effectiveness of

the ABC-SMC method to deal with parameter estimation and model selection issues.

Using the samples obtained at the last population, the correlation matrix can be computed. As one can see

below, a positive correlation exists between (A, β) while a negative correlation between (α, c) is observed.
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Parameter Exact value Estimated value σ µ− 3σ µ+ 3σ

m 1 0.9999 0.0011 0.9967 1.0032

c 20 19.9995 0.0217 19.9344 20.0645

α 1.5 1.5000 0.0012 1.4965 1.5035

β -1.5 -1.5000 0.0066 -1.5198 -1.4802

A 6680 6680.0030 0.1744 6679.4797 6680.5262

Table 5: Estimated parameters: exact measurements, target εT = 5× 10
−8.
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Figure 9: Histograms of the BW model parameters (exact measurements).













Correlation of BW model parameters m c α β A

m 1.0000 −0.0126 −0.0296 0.0311 0.0819
c −0.0126 1.0000 −0.4962 0.0810 −0.1110
α −0.0296 −0.4962 1.0000 0.0586 −0.0347
β −0.0311 0.0810 0.0586 1.0000 0.9469

A 0.0819 −0.1110 −0.0347 0.9469 1.0000













Fig. 11 shows the evolution of the samples at some intermediate populations as the mean values estimated

from the last population. One may observe the capability of the ABC-SMC algorithm to converge towards the

true values. One may also observe how by decreasing the threshold tolerance, the samples move towards a

small area with higher probability. It should be mentioned that the correlation mentioned previously between

(A, β) and (α, c) can be clearly noticed.
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Figure 10: Simulated and predicted responses.
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Figure 11: Two-dimensional scatterplots of the posterior distributions.

4.4.3 Model selection using noisy measurements

In this subsection, one examines the case when measurements are corrupted with different levels of noise.

Table 6, shows the predicted results in the case when the exact measurements are corrupted by RMS 0.1%. In

this case the final tolerance threshold is equal to 3.8× 10−6. From Table 6, one may observe that parameters

(m, β, A) are not affected by the noise, however, (c, α) are clearly affected. As one can see, a decrease of

c is compensated by an increase of α. At the final tolerance threshold, the following parameters (m,β,A)
converge very close to their target values.
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Parameter Exact value Estimated value σ µ− 3σ µ+ 3σ

m 1 0.9991 0.0063 0.9801 1.0180

c 20 18.6221 0.1354 18.2160 19.0283

α 1.5 1.6397 0.0071 1.6183 1.6610

β -1.5 -1.5050 0.0419 -1.6306 -1.3794

A 6680 6680.0078 1.0864 6676.7487 6683.2669

Table 6: Estimated parameters, noisy measurements: RMS 0.1%, target εT = 5× 10−6.

To better understand how noise may affect the estimated parameters, one increases the noise level which is

equal now to RMS 1%. Table 7 shows the obtained results. The same tendency observed previously is shown

here, by increasing the noise level, c parameter continues to decrease while α continues to increase.

Parameter Exact value Estimated value σ µ− 3σ µ+ 3σ

m 1 0.9874 0.0148 0.9430 1.0318

c 20 9.0158 0.3694 7.9077 10.1239

α 1.5 2.7849 0.0253 2.7090 2.8608

β -1.5 -1.5966 0.1714 -2.1131 -1.0847

A 6680 6678.0497 4.4828 6665.2013 6692.0981

Table 7: Estimated parameters, noisy measurements: RMS 1%, target εT = 6× 10−4.

5 Conclusion

This paper shows the ability of the ABC-SMC algorithm to solve efficiently the issue of model selection

in structural dynamics in a straightforward way. The ability of the ABC-SMC is demonstrated through

two nonlinear examples and the obtained results seem very promising to extend the use of the ABC-SMC

algorithm to more complex problems. The flexibility offered by the ABC algorithm is very important as it

allows to formulate new metrics from the frequency domain (power spectra, frequency peaks location, . . . )

for instance. Therefore, the ABC-SMC opens up an alternative paradigm for solving model selection/system

identification issues using new metrics to evaluate the agreement between measured and simulated data.

To reduce the computational requirements, one aims to implement the proposed scheme in a fully parallel

environment to effectively distribute the different computational tasks in available multi-core CPUs. Next,

application of the ABC-SMC algorithm to data from real structural systems is currently under investigation.
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