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Abstract
Automated warehouses picking performance optimization
is strongly influenced by a wise assignment of products into
storage locations. The storage location assignment pro-
blem (SLAP), is usually solved with Operational Research
methods. This article draws up a literature review to solve
this problem by highlighting links with Machine Learning.
It also presents plausible prospect to solve this problema-
tic by combining Machine Learning and Operational Re-
search.
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Zusammenfassung
Die Optimierung der Kommissionierleistung in automati-
schen Lagern wird stark durch eine kluge Zuordnung die
Artikel zu Lagerorte zum Zwecke der Kommissionierung
beeinflusst. Das Lagerortzuordnungs-Problem storage lo-
cation assignment problem (SLAP) wird in der Regel mit
Methoden der Betriebsforschung (Operational Research)
gelöst. In diesem Artikel wird ein Literaturüberblick zur
Lösung dieses Problems erstellt, wobei die Verbindung zum
maschinellen Lernen hervorgehoben wird. Er stellt auch
ein Lösungsansatz für dieses Problems durch die Kombi-
nation von maschinellem Lernen und Operationsforschung
dar.
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1 Introduction
Digital revolution in business, through the implementation
of the Industry 4.0 paradigm, has brought a wealth of data
to the table. Exploitation of these data can be used to sup-
port data-driven approach for decision making and diag-

nostics. Nevertheless, first these data must be transformed.
This large amount of data (Big Data) must be converted
into information (Smart Data) thanks, in particular, to the
use of machine learning algorithms [2].

In this context, we are focusing on the warehouse mana-
gement optimization issues introduced by [9] and at the
heart of the concerns of the Knapp company. In gene-
ral, these problems deal with the assignment of article to
storage containers (pallet assignment), the assignment of
these containers into storage locations (storage assignment
or slotting) and the scheduling of handling operations (sto-
rage/retrieval) of the containers (interleaving). In our study,
we will focus on the problem of assigning containers to
storage locations : Storage Location Assignment Problem
(SLAP), often addressed in the literature by Operational
Research (OR) methods [9, 8, 21].

As recently pointed out, machine learning offers multiple
perspectives for industrial applications (e.g. component fai-
lure detection, fault diagnosis, production optimization, da-
mage detection) [2]. Nevertheless, this type of approach is
still under-exploited [15]. Despite the perspectives offered
in multiple others fields, in Deep Learning [7], and Deep
Reinforcement Learning.

The objective of this article is, for our application context
and its own constraints, to identify points on which ma-
chine learning could be relevant. Our contribution consists
in proposing a warehouse management strategy that allows
us to deal with the problem of assigning storage location in
a dynamic way, based on the perspectives offered by ma-
chine learning combined with OR. This proposal will be
contextualized by drawing on examples of related applica-
tions involving machine learning.

Section 2 is dedicated to a detailed presentation of the pro-
blem and the state of the art, highlighting difficulties still
little addressed, linked to the lack of orders anticipation.
Section 3 focuses on methods to solve the problem, based
on OR and machine learning. Eventually, in section 4, we
present new investigation tracks.
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2 Problematic and State of the Art
2.1 System description
For this study we will focus on automated warehouse of
type goods-to-person implementing a Shuttle-based Sto-
rage and Retrieval Systems (SBS/RS), which is a deriva-
tive of the Automated Storage and Retrival System (AS/RS)
using shuttles. The SBS/RS is composed of one or more
aisles. In the center of the aisle shelves, on each floor, runs a
tier captive shuttle runs. Shuttles are responsible of storage
containers transport from and to the lift (the I/O point) and
of their handling in the racks (storage and retrieval). The
figure 1 shows a top view of a warehouse. The SBR/RS is
configured with 4 aisles, each racks are configured in single
deep. In the racks are stored the storage containers, holding
the Stock Keeping Units (SKUs).

FIGURE 1 – schematic of a warehouse with an SBS/RS

Figure 1 illustrates the environment associated with our
problem. In a logistics warehouse, several operations are
necessary to ensure the preparation of orders :

1. Goods-in : Product are entering the system. Before-
hand, the SKUs must be available for picking, i.e.
stored in the SBS/RS.

2. Picking : this is the preparation step. The picking
containers are routed from a start station to the pi-
cking stations, and the storage containers (holding
the stock) are routed to the same picking stations
(steps 1,2,3 and 4 in the figure 1). Once the picking
and storage containers have both arrive at the pi-
cking station, the picker can transfer the products
from the storage containers into the picking contai-
ners.

3. Shipping : Expedition step. After picking is com-
pleted, the picking container is convoyed to the
shipping station and the storage container returns
to the SBS/RS for further storage.

4. Slotting : Storage location assignment step. The

Warehouse Management System (WMS) will se-
lect the best storage position for the storage contai-
ner, based on the characteristics of the SKUs in the
container, the order history and the implemented
storage strategy.

2.2 Automated Warehouse Optimization
In order to gain or maintain competitive advantage, manu-
facturers are on the move to improve warehouses perfor-
mance through better design and optimized run of opera-
tions. The optimization of an automated warehouse can be
defined by several concomitant objectives to be minimi-
zed : average distance of a picking circuit, investment and
operating costs, orders or a group of orders picking time,
use of equipment and people or loss of space [12].
Achieving these goals requires to take decisions that can
be prioritized into strategic, tactical and operational levels
[22]. These decisions include : warehouse layout design
and sizing (layout design), product allocation to storage lo-
cations (storage assignment), order allocation to routes and
aisle grouping into work areas (batching and zoning), order
picker routing (routing), order sorting and accumulation
[12]. As illustrated by the figure 2, order picking opera-
tions have been identified [12] as the most time consuming
and labor intensive activity.

FIGURE 2 – Distribution of the logistics operation costs cu-
mulated over a year in a warehouse (left) and distribution
of the time of each task over the order picking activity (or-
der picking - right) (extract from [11])

55% of operational costs can be attributed to order pre-
paration [27]. Picking time is itself impacted by (i) travel
time (Travel) of the SKUs to, from and between pick po-
sitions (up to 50%), (ii) identification time (Search) of the
SKUs needed for order picking (up to 20%), (iii) time for
picking (Picking) the SKUs from the storage containers (up
to 15%), (iv) preparation time (Setup) of the tour (up to
10%) and (v) other tasks (Other) (up to 5%) [23], as shown
in Figure 2. For this reason, we focus on reducing the or-
der picking time, and in particular on minimizing the travel
time (or distance) of the SBS/RS shuttles. From this pers-
pective, we will study the allocation of products to optimal
storage locations in order to reduce the cost of picking ope-
rations.
Assignment of products to storage positions is known in the
literature as Storage Location Assigment problem (SLAP),
witch was first formulated by [9], and was proven NP-hard



by [5]. SLAP can be approached in different ways [8] de-
pending on the nature of the input data : known dates of
entry and exit of the product into and out of the system,
product characteristics (weight, dimensions), etc. When as-
signing containers (and thus the products they contain) into
storage locations (Slotting), the WMS endeavour to choose
the best storage locations. According to a storage strategy
that allows good performance during Picking while respec-
ting business and operational rules :

— the overall mass of the products must be distributed
over the entire length of the rack to limit mechani-
cal stresses ;

— Empty spaces must be kept to facilitate intra-aisle
handling operations ;

— combustive and combustible products must not be
stored next to each other ;

— stock must be distributed between the aisles and le-
vels, so no stock reference is unavailable in case of
unavailability of a device (lift or shuttle).

All these rules must to be taken into account while solving
the SLAP. However, some are not often considered in the
literature in the formalization of the problems, in particu-
lar the distribution of the mass, as underlined in the state
of the art of [21]. To solve SLAP, exact methods (dyna-
mic programming, integer mixed linear programming) and
approximate methods (heuristics and metaheuristics) have
been proposed [26]. Several storage strategies can be consi-
dered, inducing particular rules and formulation to deal
with the SLAP problem [11]. The most common strategies
are :

— Class-Based (CB) : the products are separated into
several classes and a storage area is dedicated to
each class. The most popular is the assignment in
3 classes, ABC where the SKUs are distributed ac-
cording to a criterion such as the turnover (e.g.
the most frequently ordered products are placed in
the class A, associated with the area closest to the
I/O point), introduced by [9]. Within each class,
the products are arranged with a simple rule (e.g.
closest available position to the I/O point). Other
classifications may be considered. For example, the
classification XYZ (detailed in the section 2.3) is ba-
sed on order fluctuations for a product [19, 24] ;

— Duration-of-Stay (DoS) : products are assigned to
a location where the distance from the I/O point is
proportional to the time stend by the SKU in the
warehouse. Under certain conditions (DoS known
in advance and a balanced number of goods input-
output), this rule is optimal [6] (compared to other
strategies, in terms of travel time and space occu-
pation) ;

— Cube-Order-per-Index (COI) : This metric defines
the ratio between the space needed to store a pro-
duct and its demand [6]. Products with a low COI
(i.e. small size and often in demand) are placed near
the I/O point ;

— Random-Based : This policy, assign product to so-
torage location randomly. It’s used in the industrie

and is used in academic study as comparison basis.

2.3 Problem of fluctuating orders
In our operational and industrial context, beyond the busi-
ness constraints presented above (mass distribution, empty
spaces, compatibility between products and spatial distri-
bution), additional complications have been detected when
using the Slotting algorithms (implemented in WMS).
These complications result from aspects that are often
ignored :

1. SKUs frequency of demand and the quantity in pick
orders varie anf fluctate over time ;

2. Arise of rare but significant events [1]. For
example, promotions sales leading to a sudden and
brief peak in orders quantity.
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FIGURE 3 – The number of parts ordered and the perfor-
mance of the picking by week is an example.

This last point is illustrated by the figure 3 which repre-
sents a history of orders observed by the Knapp company,
in a given warehouse and over a specific period. The first
ordinate (left) represents the quantity of pieces ordered by
week over a period of approximately 6 months. The se-
cond ordinate (right) represents the picking performance,
expressed (by convention) as the number of picks per hour
(pick/h - average over a week). In our example, there is a
drop in preparation performance of about 30% in week 10.
This drop in performance could be explained by a reduction
in the amount of work (number of pieces ordered) in week
10, which would imply a drop in picking performance. Ho-
wever, we can see that the total quantity of SKUs to be
prepared increases by +3% between weeks 9 and 10. Such
a small variation in the number of parts ordered should not
have such an impact on performance. The drop in perfor-
mance is the result of a peak order for a particular type of
pieces, as detailed below.
The figure 4 represents the number of pieces ordered for
3 SKUs as a function of the week and the second ordinate
represents the picking performance. The 3 SKUs selected
are representative of the types of demand variations obser-
ved in the warehouses. The product labelled x has a low or
negligible demand (less than 0.005% of overall demand),
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FIGURE 4 – The number of pieces ordered for labeled
SKUs, X, Y and Z, and the performance of the picks by
week

with little variation over time. The product labelled y has a
higher level of demand (close to 0.12%) and there is a slight
variation in quantity over time. Finally, the product label-
led z has a sharp variation in demand. We notice that this
product, never ordered before week 10, becomes in week
10 a very demanded product (17 000 pieces out of a total of
1 352 273 required, that is to say nearly 1,28% of the ove-
rall demand) and this for a duration of only 1 week. Then
its demand becomes sporadic, but remains significant (less
than 0.37% of the demand).
These behaviors of demand variation are identified in the
literature by means of the classification by analysis XYZ
[19, 24]. Class X includes products where the variation in
demand (over time) is stable, uniform, and continuous with
little variation. Class Y regroups products where the de-
mand fluctuates more, especially with the season. Finally,
Class Z regroups products where the demand is sporadic,
irregular or even abnormal in terms of quantity compared
to other products. Variations in demand for Z products are
unforeseeable or/and unpredictable.
This SKU classification applies to our example, the one
labeled x ∈ X, the one labeled y ∈ Y and labeled z ∈ Z.
The product, labeled textttz, underwent a sudden and brief
change in the number of products requested.
It was thus identified by the WMS as a high turnover pro-
duct. Therefore this SKU was assigned storage locations
as close as possible to the I/O point. The operation of the
WMS is perfectly normal, based on the available data (or-
der history, variation in past demand for SKUs) and the sto-
rage strategy used. The slotting algorithm assigned a high-
demand product to the storage locations with the "fastest"
access. Nevertheless, the problem is the following : this
explosion of commands for the reference z is valid for a
short and short period. The following weeks require only a
small amount of this product reference, which is in the last
quartile of requested products. However, the SKU labeled
Z uses the "best" storage locations, which implies longer
trips for the shuttle, which have to overtook this storage

area, to reach the other SKUs.
The problem illustrated by this example is : how to use the
order history to choose optimal position for the SKUs in the
warehouse? This implies following underlying questions :
should the position assignments for each SKU be recalcu-
lated and thus dynamically change the warehouse layout ?
This would imply intra-aisle handling movements to relo-
cate containers and downtime for stock and shuttles (busy
with tasks with no immediate added value). This means
specifying a warehouse management policy that allows this
handling to be carried out without disrupting production.
To the authors best knowledge, this aspect is little cove-
red in the literature. It is called Dynamic Storage Location
Assignment Problem (DSLAP). This problem has been ta-
ckled by heuristic methods cited above [8]. Concerning the
exploitation of order history in particular, and in the case of
a CB strategy (ABC or XYZ), the industry relies essentially
on a superficial analysis of the data (average of orders pla-
ced for ABC or their average fluctuation for XYZ), without
seeking to modify the warehouse SKU allocation dynami-
cally.
The following section focuses on a more specific modeling
of this problem and possible links between OR and ma-
chine learning.

3 Modelling, Operational Research
and Machine Learning

With problem described above, including the fluctuation of
the controls, we propose a way to couple optimization pro-
blem modelling with machine learning, based on recently
published works on this subject. Section 3.1 is dedicated to
the formulation of the SLAP optimization problem. Section
3.2 deals with the use and perspectives of machine learning
in our context. We will be particularly interested in unsu-
pervised learning, supervised learning and reinforcement
learning, highlighting the links with learning be means of
deep neural network.

3.1 Optimization Problem Modeling
In this section, we focus on a formulation of our optimi-
zation problem. The SLAP formulations are based on the
General Assignment Problem (GAP) problem [10].
The entities often encountered in the literature are the fol-
lowing. LetN = {1, ..., N} be the set of SKUs (elements)
to be stored. Let L = {1, ..., L} be the set of positions.
Let O = {1, ..., O} be the set of commands. We define a
binary variable xik equal to 1 if the article of type i ∈ N
is assigned to the position k ∈ L, 0 otherwise. In each of
the aisle racks, the distance between a storage position k
and the I/O entry/exit point, located at the elevator level, is
noted as dk ≥ 0, k ∈ L. The exit sequence of the SKUs
and the required quantity are given by the set of picking or-
dersO = {1, ..., O}. This set determines the probability of
demand for each SKU i, denoted pi ≥ 0, i ∈ N . Note that
this probability is generally based on a simplistic measure
(average number of orders per item), and does not detect
peaks if the estimation interval is too large.



A list of properties can be added to each item belonging to
theN set : compatible item classes (e.g. flammable product
problem), weight, dimensions, etc.

FIGURE 5 – Diagram of the SBS/RS to highlight columns
considered for the mass distribution constraint

Several ways to formulate the problem can be considered,
depending on the modeling of the warehouse and the crite-
rion(s) one is trying to optimize (e.g. see recent work inte-
grating multi-objective optimization [28, 4]). We give here
a simplified example, inspired by [29] in the case where the
optimization criterion is to minimize the total travel dis-
tance of the shuttles and the weight distribution. For this,
we define wi, corresponding to the mass of the SKU i, and
the entityM = {1, ...,M} the set of columns (see figure
5). A column mi is a partition of the set L.
The objective function to be optimized can be formulated
by z :

z = min
∑
i∈N

∑
k∈L

xik · dk · pi (1)∑
i∈N

xik ≤ 1 ∀k ∈ L (2)∑
k∈L

xik = 1 ∀i ∈ N (3)

|
∑

i|k∈m1

wixik −
∑

i|k∈m2

wixik| ≤ ε ∀(m1,m2) ∈M2

m1 6= m2 (4)
xik ∈ {0, 1} ∀i ∈ N ,∀k ∈ L

Constraint (2) imposes only one product for each position,
constraints (3) imposes only one position for each product.
Constraints (4) imposes to distribute the overall mass of
the SKUs over the entire length of the rack (ε being a pa-
rameter associated with the weight differences between co-
lumns). These constraints could be extended based on other
properties associated with SKUs, such as the problem of
compatibility between products (flammable products).
This formulation is quite similar to the DoS strategy (where
our pi can be associated with the time of presence in the
system), in connection with deep learning [15].
In the case of a strategy of type Class-Based, one could
classify the products in categories and adapt the formula-
tion by integrating a new entity C = {1, ..., C}, designa-

ting the set of defined storage classes : the products are
then pre-assigned to zones, inducing additional constraints
on the assignment positions (variables xik).

3.2 Machine Learning
As pointed out in the introduction, machine learning and
in particular deep learning have proven to be effective in
many areas [7]. In particular, this is part of the recently for-
mulated perspectives on the use of deep learning for order
prediction and product categorization [31, 21].
Several approaches can be considered to exploit pick orders
history based on machine learning. We will consider below
three approaches of recent interest to the scientific com-
munity : unsupervised learning, supervised learning and
reinforcement learning. In each case, we give some recent
work, highlighting the possible links with deep learning,
around our issue and around related issues, using these ap-
proaches, thus underlining their potential to address our to-
pic.

3.2.1 Unsupervised Learning
Unsupervised learning makes possible to identify groups
of objects with similar characteristics on the basis of the
characteristics of the manipulated objects or their interac-
tions.
In our case, unsupervised learning can be used on the
SLAP to classify SKUs into categories, when the storage
strategy is of type Class-Based. The SKUs are distributed
in C classes, mentioned in the previous section, be means
of the machine learning [30].
Product classes can be established by clustering techniques
based on the attributes of the different SKUs ordered and
the order history. In the study of the SLAP of a storage wa-
rehouse by clustering in e-commerce, [30] is using stan-
dard attributes of the Class-Based classification, such as
price and sales volumes, to which it associates complemen-
tary attributes : the rate of favorable comments from SKUs,
the type of payment authorized on delivery (cash payment
or not), whether the shipping costs are offered or not. He
was thus able to guide the process of clustering, and divide
109 SKU into 3 categories.
This method of clustering is based on the intrinsic attri-
butes of the SKUs, other classification methods are based
on the interactions between the SKUs. Association rules
association rule mining allow to extract relationships of in-
terest between SKUs. These rules then provide metrics(e.g.
weighted support count (WSC) [18], product affinity [14]),
which are used to categorize SKUs and assign them to sto-
rage positions.
The classification methods studied make little use of neural
networks. However, deep learning classification methods
are part of the recently formulated perspectives for product
categorization [31, 21].

3.2.2 Supervised Learning
Supervised learning aims at prediction and/or classifica-
tion, based on training on labeled data.
Supervised learning can also be uses in the SLAP problem,
for example in the case of a strategy such as Duration of



Stay. [15]. This work introduces the term p̂ for the (predic-
ted) duration of stay of a SKU in the system, the Duration
of Stay (DoS), which is estimated with a deep convolutio-
nal neural network (CNN) and a recurrent neural network
(RNN) of the long short-term memory type. (LSTM) [3]).
This network is trained on commands history, correspon-
ding to the O entity introduced previously. For a container
with a DoS predicted by machine learning, noted p̂, the
Astoragepositionassignmentfunction : R → W is,
according to [15] :

A(p̂) = arg min
w∈

∼
W
d(Nr̂Ŵ (p̂), w) + c(w) (5)

Where d(v, w) is the distance between two v and w posi-
tions. c(w) represents the associated costs associated with
storing at that w position. This takes into account the costs
of the specific constraints of each warehouse,(e.g : stock-
mixing, stock-splitting, mass distribution,...). The approxi-
mate optimal storage position in the case of DoS is gi-

ven by Nr̂Ŵ (p̂).
∼
W represents the set of storage posi-

tions available when a storage container enters the wa-
rehouse. d(Nr̂Ŵ (p̂), w) represents the cost of not sto-
ring a pallet at the optimal storage position for DoS. The
storage position A(p̂) is then chosen based on those two
costs (the associated costs c(w) and the cost of not storing
d(Nr̂Ŵ (p̂), w))[15].
This approach assumption is illustrated by the figure 6, in
the present case (DoS) and from the perspective of use in
the case of a strategy of type class-based. We can note here
that this approach combines deep learning and optimiza-
tion under constraints.
To our knowledge, the paper of [15] is the first paper dea-
ling with SLAP with deep neural networks, taking into ac-
count the dynamic nature of the warehouse and the uncer-
tainties of operation. Note that this work is associated with
the provision of one of the only public databases containing
warehouse data to address the allocation problem.

FIGURE 6 – Deep Learning and Constraint Optimization.
Variant (a) neural networks return the c storage class for
SKUs. Variant (b) neural networks predict the p̂ value of
the DoS for SKUs

.

The figure 6 presents two lines of research envisaged to
solve the SLAP. Variant (a) represents the use of Deep
Learning to categorize products into ci classes based on
order history, inspired by [30, 14, 18]. Variant (b), corres-
ponding to the work of [15], uses Deep Learning to predict
the value of a metric (the DoS for [15], the probability of
demand for SKUs in our case). In both variants (a) and (b),
Deep Learning techniques will transform/use the data, here

theO command history, to provide input variables to solve
our constrained optimization problem.

3.3 Reinforcement Learning : Taking the
Long Term into Account

Reinforcement learning [25] is another interesting lead
that, to our knowledge, has not been studied yet in our
context.

FIGURE 7 – Deep reinforcement learning (extract from
[17])

The principle is illustrated by the figure 7. Nevertheless,
this class of approach is currently being worked on for re-
lated problems. These include information load balancing
[16] (learning for real-time task assignment on distributed
servers), task rescheduling (i.e. client orders) in production
environments [20], demand-oriented power resource ma-
nagement (with uncertainty of demand) [13]. It’s based on
an observation of the environment in order to identify the
actions to be taken in order to maximize the rewards in the
medium or long term. s corresponds to the observed state
and a the optimal action to be taken, on the figure 7 the
optimal action is given by argmax

a
(πθ(s, a)) (θ is deter-

mined by the training phase of the neural network). For our
study, one difficulty is to correctly model the system and
to define the roles : environment, agent, action (e.g. dyna-
mically rearranging the warehouse) and rewards (e.g. mi-
nimizing, on a set of commands, the travel time or distance
of the SBS/RS shuttles to retrieve SKUs).
In our case, the different roles could be assigned as fol-
lows :

— environment is made up of SBS/RS ;
— agent initiates the optimal action, learned by rein-

forcement learning ;
— textbfaction consists of storing the SKU iinN at

position kinL ;
— system status consists of the state of occupancy

of the storage positions L, the set of current com-
mands, the set of SKUs to be stored N and the set
of storage classes C in the case of a class-based
strategy ;

— reward is associated with the profit obtained as a
result of the action taken (associated with the de-
crease in the average distance of the shuttle trips
for example).



4 Conclusion
We have seen that the optimization of an automated
warehouse using an SBS/RS, requires the reduction of
the preparation time and therefore the reduction of the
time/distance of the shuttle travel. Improving the alloca-
tion of product into storage positions (Slotting) is a means
of action to minimize shuttle trips, known in the literature
as the Storage Location Assignment Problem (SLAP). We
have seen, through a concrete example, some difficulties
associated with the hardly predictable fluctuation of orders.
This requires to move towards a dynamic allocation system
based on dynamic learning from past orders.
Then we presented some approaches considered to tackle
this problem, generally formulated as an optimization pro-
blem under constraints, falling within the scope of OR. We
also presented the state of the art of related work involving
machine learning. This review of recent work published in
the literature shows the potential of machine learning for
this problem, and in particular of learning supervised by
deep neural networks and also of reinforcement learning .
This study also shows that little work has been done on the
use of deep learning in this context. Finally, this synthesis
work illustrates how deep learning can be advantageously
combined with the modeling of the problem, done in the
form of a constraint optimization problem : learning can be
used to model commands in order to guide the optimiza-
tion process. The medium-term continuation of this work
will concern the deepening of this study and the realization
of a simulator before the evaluation on a real environment.

About
This article was translated from french to english with the
help of DeepL Translator.
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[19] Irena Nowotyńska. An application of XYZ analysis in
company stock management. Modern Management
Review, 2013.

https://www.deepl.com/translator


[20] Jorge A. Palombarini and Ernesto C. Martínez.
Closed-loop rescheduling using deep reinforcement
learning. IFAC-PapersOnLine, 52(1) :231 – 236,
2019.

[21] J. Reyes, E. Solano-Charris, and J. Montoya-Torres.
The storage location assignment problem : A litera-
ture review. International Journal of Industrial Engi-
neering Computations, 10 :199–224, 2019.

[22] B. Rouwenhorst, B. Reuter, V. Stockrahm, G.J. van
Houtum, R.J. Mantel, and W.H.M. Zijm. Warehouse
design and control : Framework and literature re-
view. European Journal of Operational Research,
122(3) :515–533, 2000.

[23] André Scholz, Sebastian Henn, Meike Stuhlmann,
and Gerhard Wäscher. A new mathematical program-
ming formulation for the single-picker routing pro-
blem. European Journal of Operational Research,
253(1) :68–84, 2016.
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