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A risk-oriented degradation model for
maintenance of reinforced concrete
structure subjected to cracking

Boutros El Hajj1,2, Bruno Castanier3, Franck Schoefs1 and Thomas Yeung2

Abstract

This article is within the context of decision models aimed for maintenance of structures and infrastructures in civil engi-

neering. The contribution relies on the construction of a degradation model oriented toward risk analysis. The proposed

model can be defined as a meta-model in the sense that it is based on observations while incorporating key features
from the degradation process necessary for the maintenance decision. We propose to stimulate the construction of the

degradation model based on the crack propagation of a submerged reinforced concrete structure subject to chloride-

induced corrosion. Furthermore, a set of numerical illustrations is performed to demonstrate the advantages and applic-
ability of the proposed approach in risk management and maintenance contexts.
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Introduction

Investments in maintenance optimization of structures

and infrastructures continue to grow due to many rea-

sons such as the reduction in resources allocated to

maintenance, the increasingly aging structures, and the

firming up of security requirements linked to increased

social constraints. Within this context, we can find

diverse, yet complementary research axes that need to

be developed.

Before going further on some of these axes, we take

one step back to present the requirements of modeling

and optimizing of risk-based maintenance. A risk-based

maintenance model can be defined as the relationship

between reliability and performance model or a sys-

tem’s degradation model, the available information

that can be used to assess the condition of the structure,

a set of decisions and actions, and finally a decision-

making framework formed from a set of objectives and

requirements. The objective of a maintenance model is

then to provide a set of guidelines for the maintenance

activities on the basis of current data of the structure

with the aim of optimizing decision criteria that some-

times can be complex even contradictory.

Now, we proceed to classify some of the different

research axes in the field of maintenance in civil

engineering according to their priority. We can start by

highlighting the efforts invested in research for the con-

struction of degradation models. These studies deepen

our knowledge in analyzing and understanding

civil engineering pathologies (e.g. to help predict

remaining useful lifetime1). In a classical mechanical

approach, all available physical knowledge is intro-

duced in the degradation model, leading to the produc-

tion of the so-called physics-based models. These

models can be used to estimate the effects of loads and

constraints as well as the spread of damage within a

structure at a microscopic level. However, they require
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a thorough knowledge of the constitution of the struc-

ture as well as the environment in which it operates.

Furthermore, the literature is rich with research

devoted to the development of inspection and monitor-

ing techniques of structures.2 The challenges in this

research axis can be summarized in the identification of

indicators of degradation that can adequately account

for the process of degradation of the structure. We dis-

pose of a wide range of techniques classed into two

categories: non-destructive testing (NDT) which can be

used for in-situ tests during inspections, and destructive

testing (DT) which are used for testing samples in the

laboratory (a controlled environment) to obtain mate-

rial properties and other detailed information on the

condition of the structure and respective deterioration

processes. A technical guide on inspection techniques

can be found in the following link: http://durati.lnec.pt.

Also, we can emphasize on the difficulty encountered

in some cases between measuring the degradation and

the degradation mechanisms. In some cases, the degra-

dation is not visible or measurable using NDT, for

example, fatigue-motivated degradation (roads, etc.).

Fatigue is an internal deterioration mechanism; there-

fore, we find difficulty in measuring the degradation.

Generally, we can consider that we dispose of a great

richness in degradation models, in numerous measuring

and inspecting technologies, and in the maintenance

and decision-making procedures. However, the combi-

nation of all these concepts and their integration in an

management scheme remains the hardest and crucial

task for any risk management and maintenance optimi-

zation procedure. It is within this context that our pro-

posal lays.

With this being said, it is expected from a model of

degradation the following properties:

� The ability to model the degradation process;
� The ability to give a prognostic of the performance

of the structure;
� The ability to be connected to and updated from

available data (NDT);
� The ability to be integrated in complex decision

optimization criteria;

Physics-based degradation models were intensively

developed in the last half century.3 They started incor-

porating more physic-chemical and mechanical cou-

plings. As a result, the numbers of parameters

calibrating the models have increased greatly. Also,

these approaches face several challenges in a reliability

context, especially in the randomization of the model.

On the other hand, we have probabilistic models

such as random variables and Markov chains,4 but

these approaches suffer from lack of acceptability by

the civil engineering community due to several reasons:

lack of data for the calibration, poor parameter identi-

fication, restrictive assumptions (especially when the

degradation shows non-stationary characteristics), and

lack in the application guidelines.

One approach seems promising for maintenance

optimization in civil engineering is the construction of

data-driven degradation meta-models based on sto-

chastic processes such as the gamma process.5,6 It

allows modeling the evolution of the degradation using

observations via NDT while maintaining the most criti-

cal aspects of the degradation mechanism in the model

for the decision and an ease of integration in a more

complex maintenance decision criteria. We may further

highlight modeling difficulties when the selected pathol-

ogies have non-stationary behavior over time (accelera-

tion or deceleration effects of degradation). We can

find extensions called conditional or state-dependent

models are used to model these non-stationary effects

based solely on levels of degradation.7,8 However, it

may be noted that in the construction of these

approaches, the authors failed to find a robust proce-

dure for the identification of input parameters as well

as a lack of application procedure, limitations making

them difficult to appropriate and validate in an operat-

ing context.9

The aim of this work is to investigate the ability of

the degradation meta-model to respond to common

concerns in civil engineering and maintenance optimi-

zation, such as heterogeneity in collected field data, risk

management applications, and maintenance action

modeling.

This work is an extension of the preliminary

work presented in El Hajj et al.,10 where databases were

considered perfect (in terms of inspection quality).

This work is a part of the SI3M project (2012–

2016 Identification of Meta-Model for Maintenance

Strategies) funded by Region Pays de la Loire

(France).

The remainder of this article is organized as follows.

Section ‘‘Construction of the meta-model of the rein-

forced concrete structure cracking’’ explains the

corrosion-induced cracking and the construction of the

degradation the meta-model associated to it. Section

‘‘Statistical performance analyses’’ investigates the sta-

tistical performances of the proposed degradation

meta-model when faced with heterogeneity in data-

bases. In section ‘‘Application to risk analysis,’’ a risk

analysis is proposed to illustrate the potential benefit of

the proposed degradation model for risk management.

Section ‘‘Maintenance action modeling’’ illustrates how

a maintenance action’s effect can be integrated in the

degradation meta-model. Finally, conclusions and per-

spectives are drawn in section ‘‘Conclusion.’’

Construction of the meta-model of the

reinforced concrete structure cracking

In this section, we present the degradation pathology

and its main parameters of interest showing their evolu-

tion through time. Then, we develop the meta-model to

evaluate these parameters.
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Description of the chloride-induced corrosion

Corrosion is the main threat to reinforced concrete

(RC) structures.11,12 If left untreated, corrosion can

lead the structure to failure due to spalling or delamina-

tion. The role of reinforcements in RC is to strengthen

the material property, but can also cause failure because

of its own corrosion.

The cracking process of a RC structure can be

divided into three phases:13

� Diffusion phase: characterized by the diffusion of

chlorides into the concrete. When the concentration

of chloride exceeds a threshold, we have depassiva-

tion of the steel and the corrosion will be initiated;
� Corrosion phase: dominated by the expansion of

corrosion products resulting from the corrosion

process. The rust slowly fills the surrounding pores

and starts to generate internal tensile stress on the

concrete. When the first crack appears, this phase is

considered to end;
� Crack propagation phase: characterized by the

excessive accumulation of rust from the ongoing

corrosion process resulting in crack propagation

until reaching the ultimate point of rupture.

Selection of the degradation indicators

In this study, we are interested in the crack propagation

phase. Within this phase, it was found that the para-

meters of importance, sufficient for modeling the pro-

cess at every stage, are the corrosion current density

and the width of the crack.13 In this study, we consider

that propagation is resulting directly and solely from

corrosion and not fatigue.

The corrosion current density icorr is an instanta-

neous rate of corrosion measured using NDT,

expressed in (mA=cm2). It can be used to calculate the

corrosion rate Vcorr(mmyear�1) through Faraday’s

law. The acquiring of icorr is highly sensitive to external

conditions (e.g. temperature and humidity), thus, in

this context, we should usually dispose of modeling

and decision support calibration curves or we must

always conduct the inspections under identical condi-

tions. In this study, we consider the second situation;

the first one has not been established generally.14 The

crack width can be measured using gauge blocks or

image analysis.

Figure 1(a)15 represents the variation in the corro-

sion rate on all three phases of the cracking, and Figure

1(b)16 draws the shape of the variation in the width of a

crack versus time for two cases of corrosion rate (invar-

iant or time-varying).

From Figure 1(b), we can see the importance of mod-

eling the corrosion rate; the hypothesis of an invariant

corrosion rate is not conservative since it leads to an over-

estimation of by 100% (from 0:5 to 1mm in 20 years).

As far as we know, the mutual dependencies

between the two degradation indicators of

importance of this phase (corrosion current density

and crack width) have not been studied. One main

reason can be attributed to the need of a high number

of experiments that is not available for this particular

phase; another good reason is that it is virtually

impossible to integrate the mutual dependencies in

the available physics-based models. In the present

work, we aim to tackle this issue with a focus on risk

and reliability assessment.

Construction of the model

The idea of modeling the degradation using two pro-

cesses can be very rewarding in terms of degradation

modeling and maintenance management. Having two

sources of inspections instead of one is shown to be

more reliable in a maintenance context. Also, this can

be appealing to inspection optimization in a sense that

the decision maker can combine information coming

from two inspection techniques to get a more robust

assessment of the condition state.

We propose to define the bivariate process

(rt, ut)8t50 as follows

� (rt)8t50 modeling the width of the crack (maximum

size of one structural component) «a» (mm);
� (ut)8t50 modeling the corrosion current density

\\ icorr .. (mA=cm2)

Figure 1. (a) Mean tendency of corrosion rate15 and (b) Mean

tendency of crack width for the third phase.16
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The two processes (rt)8t50 and (ut)8t50, hereafter

written r and u, are both dependent and observable.

The evolution of degradation over a period of time t

is given by positive increments for the degradation pro-

cesses respectively (Dr,Du) which are continuous ran-

dom variables. Let gt(x, y; r, u) be the conditional

probability density function of (Dr,Du) over the next

time period t given the current degradation level (r, u).

The construction of the state-dependent function

gt(x, y; r, u) is based on the process proposed in Zouch

et al.8 and developed in El Hajj et al.10 Both of the mar-

ginal probability functions of Dr and Du are assumed

to be gamma probability functions with two parameters

where the respective shape functions are proportional

to the considered time interval t (more information on

the use of gamma processes in maintenance optimiza-

tion for structures can be found in Van Noortwijk6).

The gamma process offers many benefits in terms of

degradation modeling. As we will see in the remainder

of this document, the self-explanatory parameters of

the process allow us to associate to them physical

meanings, making the integration of a maintenance

action easier. Furthermore, the monotonous character-

istics of the process is adequate to many pathologies

found in civil engineering (such as creep, wear, and fati-

gue cracking)

Furthermore, the corrosion current density has an

effect on the propagation of cracks, and vice-versa

(mutual dependencies). This correlation is modeled in

terms of mutual acceleration effects directly in each of

the shape functions of the gamma distributions.

Finally, to simulate, we first seek to characterize the

evolution in terms of the causal process (corrosion cur-

rent density, equation (2)), then doing so for the respec-

tive effect process (crack width, equation (3)). We can

then write 8(r, u). 0

Du t; r, uð Þ;g au r, uð Þ:t,buð Þ ð1Þ

Dr t; r, u,Duð Þ;g ar r, u,Duð Þ:t,br

� �
ð2Þ

Note that to simplify the identification process, we

consider that the state dependence is exclusive to the

shape functions: the scale functions bu and br are con-

sidered time independent. Therefore, we have to define

the shape functions au and ar.

The choice of each shape function is motivated by

the evolution of its respective indicator in time (Figure

1(a) and (b)). In other terms, the S-shaped condition

state evolution of the corrosion current density (Figure

1(a) requires a bell-shaped shape function. The L-

shaped condition state evolution of the crack width

(Figure 1(b)) requires an akin shape function. As a

result, we propose as shape functions 8(r, u). 0

au r, uð Þ= a3:r+ a4ð Þ:e
� u�a1ð Þ2

a2 ð3Þ

ar r, u,Duð Þ= a6: u+
Du

2

� �
+ a7

� �
:e�a5:r ð4Þ

The exponential parts of the shape functions govern

the required shape of the shape function (e.g. bell

shaped). The linear functions play an acceleration role,

allowing by that to model the dependencies of the two

processes.

One of the main motives in using degradation meta-

models is to minimize the number of parameters,

explaining the simple linear form of the acceleration

function. However, if further knowledge on the correla-

tion of the two physical indicators is available, it is pos-

sible to complexity these functions to account for the

suitable acceleration and deceleration effects between

the two indicators.

Now that the model has been defined, a physical

meaning can be given for each parameter. In fact, the

mathematical formulation of the model allows us to

identify physical tendencies (or causalities) associated

with each parameter. In Table 1, the physical meanings

of each parameter are summarized.

Furthermore, Figures 2 and 3 illustrate the respective

au and ar shape functions of the processes. Each shape

function is state-dependent and is presented as a func-

tion of the two degradation indicators (r, u).

In Figure 4, four trajectories are simulated to illus-

trate the model.

The following parameters are used for these

illustrations

a1 =1, a2 =1, a3 =1, a4 =1:2, a5 =0:8,

a6 =1:8, a7 =2, br =0:3 andbu =0:3:

Estimation procedure

We assume the existence of a database formed by suc-

cessive perfect measurements of the crack width and

the rate of corrosion of n structures denoted

f(r(j)t , u
(j)
t ), t50, j 2 1, ng.

We propose here to estimate the parameters of

the meta-model by the method of maximum likelihood

on the existed database. However, due to the mathe-

matical expression of the shape function, the estimation

of the nine parameters leads to numerical instability

when using conventional optimization procedures. To

work around this problem, we have built a heuristic

Table 1. Definition of the parameters.

Parameter Definition

bu,br Proportionality factors common to different
structures (materials)

a1 Abscissa of the inflection point of the
realizations of corrosion current density

a2 Reflects the dispersion around the inflection
point

a3, a6 Acceleration coefficients
a4 Corrosion current density speed at the origin
a5 Reflects the kinetics of the process r
a7 Crack growth rate at the origin
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based on the fixed-point theorem. This heuristic is

applied iteratively to provide estimates of the parameters

of the respective models equations (1) and (2).

Heuristic

Step 0.

1. Construction of the database f(r(j)t , u
(j)
t ), t50,

j 2 1, ng(resp: f(r(j)t , u
(j)
t ,Du

(j)
t ), t50, j 2 1, ng with

Du
jð Þ
t = u

jð Þ
t+1 � u

jð Þ
t )

2. Calculate the likelihood of equation (1) (resp.equa-

tion (2)) for the corresponding database

3. Initiate br =b(0) (resp.bu)

Step j. While b̂
(j)
� b̂

(j�1)
���

���. e, do

4. Determinate the MLE estimates âi
(j) for br = b̂(j�1)

(resp.bu)

5. Evaluate b̂(j) as the estimator of the MLE for the

just considered âi
(j).

where MLE is the classical maximum likelihood estima-

tion (MLE) method applied to each process separately.

It may also be noted, databases in civil engineering

might suffer from incompleteness. In such cases, this

algorithm needs to be extend in order to impute the

missing or erroneous information and to estimate the

parameters of the model. The Stochastic Estimation

Maximization algorithm is to be used.17

NB: we will not demonstrate the convergence of this

fixed-point type algorithm. However, the large number

of numerical experiments that we describe below por-

tends the good properties of this algorithm.

In the next section, we propose to investigate the sta-

tistical performances of the proposed degradation

meta-model in heterogeneous databases. The general

idea is to question the potential use of heterogeneous

databases to ameliorate the estimation process of the

model’s parameters when the original database is poor.

Statistical performance analyses

In El Hajj et al.,10 the convergence of the estimation

procedure is discussed through numerical analyses.

These numerical analyses are conducted by simulating

a database from defined parameters, and then the esti-

mation’s performance is assessed by means of the esti-

mated average mean squared errors (MSE) on the

estimated parameters.

The main result is illustrated by the paradigm in the

inspections of a limited number of structures on their

complete lifetime and the inspections of a higher num-

ber of structures inspected through the first years of

their respective life. Because of the very long lifetime, it

is concluded that such approach gives a real benefit in

terms of applicability in civil engineering. Nevertheless,

the classical problem of the non-homogeneity of

a population in the database can degrade this

conclusion.

Figure 2. Bell-shaped shape function of the u process—

au(r, u).

Figure 3. L-shaped shape function of the r process for

constant Du—ar(r, u,Du).

Figure 4. Four simulations of the bivariate model (represented

using four colors).

5

http://pio.sagepub.com/


We propose in the next subsection to analyze the

adaptability of the meta-model toward the problem of

non-homogeneity in a database, first, from a parameter

inference point of view and then on a reliability metric

consideration, the mean lifetime of a structure.

Robustness of the estimation procedure in respect to

the heterogeneity of the database

Degradation parameters (cracking initiation and crack

growth rate) are related to specific properties inherent

to the studied structure. In civil engineering, it is clear

that it can be difficult to qualify database samples as

homogeneous because of the strong non-homogeneity

of material, formulas and conception processes, the dif-

ferent in-service conditions, environment, or more pre-

vious maintenance actions. The question of the

homogeneity in a database results in the selection of

samples with very small sizes; this phenomenon is also

amplified with the poorness of current database and

the quality of the inspection policy.18 As a conse-

quence, the quality of the estimation process can be

strongly degraded due to the lack of data.

In this study, we want to investigate the robustness

of the proposed estimation algorithm face to non-

homogeneity in a database. For this, we propose to gen-

erate 500 simulated databases with N trajectories (from

the crack initiation to the end of life for each of the N

structures). In each database, the non-homogeneity is

obtained by integrating some controlled random varia-

bility on the given parameters of the proposed bivariate

meta-model. Hence, for N=20, five of the trajectories

are simulated with the original parameters (no variabil-

ity), five more with 5% variability, five more with 10%,

and the last five with 15%. And then, for N=15, five

homogeneous trajectories, five more with 5% variabil-

ity, and five with 10%. For N=10, we have five homo-

geneous trajectories and five trajectories with 5%

variability. And finally, N=5 is formed by five homo-

geneous trajectories.

The variability sketches the non-homogeneity of the

database and the challenge is in improving the homoge-

neity of the database and is illustrated by the decreasing

from N=20 structures to N=5 (perfectly homoge-

neous case) for the estimation of the model parameters

fâi, i=1, . . . , 9g by removing five structures each time.

We propose to analyze the benefit of including more

structures, even non-homogeneous ones, in the estima-

tion process using the MSE given by

MSE= trace E c(Y
Nð Þ

�Y)c(Y
Nð Þ

�Y)T
� �� �

ð5Þ

where Y is the vector of the given parameters, and Ŷ
(N)

the vector of the estimated parameters using N trajec-

tories. Table 2 contains the mean of the MSE obtained

for each of the 500 databases, MSE (third row). The

second row, MSE
(N)

0 , is the mean values obtained for

homogeneous databases (no variation in the

parameters for the whole simulated database) with dif-

ferent number of structures. The last row is the relative

error given by

�e=
MSE�MSE

(N)

0

MSE
(N)

0

ð6Þ

In this example, the following parameters are used

a1 =1, a2 =2, a3 =2, a4 =0:8, a5 =0:6,

a6 =1, a7 =1:4, br =0:3 andbu =0:3:

In this numerical experiment, we point out the

potential benefits of considering additional data issued

from heterogeneous structures. In this example, the

increase in the relative error when N=20 suggests that

the homogeneity level should be optimized to ensure

the estimation quality.

Impact of the homogeneity level on the reliability

performance

In this section, we illustrate the effect of variability on

the parameters in terms of durability. A failure thresh-

old on r is introduced and the lifetime is defined until

the first inspection after the failure.

The non-homogeneity in the sample is directly mod-

eled in terms of variability on the parameters. In

Figure 5, probability distribution functions of the of

the number of inspections before inspecting a failure

are summarized for five cases where the variability

sweeps the following values 0%,610%,620%,

630%and6 40%:
The results are obtained from 25,000 simulations,

with the following parameters

Table 2. Impact of the non-homogeneity level of the sample on

the estimation performance.

N 5 10 15 20
MSE

(N)

0 4.979 2.179 1.504 1.110
MSE 4.979 2.502 1.518 1.223
�e 0 0.148 0.009 0.012

Figure 5. Probability distribution functions of the number of

inspections before inspecting a failure.

6
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a1 =2, a2 =4:5, a3 =1:8, a4 =1:8,

a5 =0:65, a6 =1, a7 =1, br =0:2 andbu =0:2:

The non-homogeneity level could impact the dur-

ability estimation in two ways. First, some bias is intro-

duced in the mean lifetime estimation when the

variability on the parameters increases. For decision-

making, this effect would lead to a bad inspection

policy.

The second impact is related to the propagation of

the uncertainty in the model, illustrated in the increase

in the variance of the lifetime distribution. Table 3

sketches the evolution of the associated relative increase

in the standard deviation.

In this numerical experiment, we can conclude that

a homogeneity level in the 10% interval remains eligi-

ble for the estimation of the mean lifetime. Beyond this

variability, the quantification of a structure in terms of

durability is too hazardous.

Application to risk analysis

A structure is considered to be safe if the probability of

failure Pf at any time is lower than a given threshold.

For durability of concrete structures, Eurocode 2

requires to express the failure by comparing the crack

width of concrete cover with a cracking threshold L.

The later depends on both the characteristics of the

structure and its environmental conditions.

In case of inspection, the decision criterion becomes

the probability of having a failure before the next

inspection. This probability is required to be lower than

a threshold Pf. To illustrate the potential use of the

model in risk-based analysis, we consider here a thresh-

old Pf =0:05.
The probability of a failure in the next inspection

denoted Pf(ri, ui) is a function of the current observa-

tion (ri, ui) and given by the following equation

Pf ri, uið Þ=P Dr+ ri .L r= ri, u= uijð Þ

=

ðþ‘

L�ri

ðþ‘

ui

g x, y; ri, uið Þdydx
ð7Þ

For a selected range for r(0\ ri \L=3mm) and

u, simulations were done for estimating the probability

of failure by Monte-Carlo method for every possible

combination (ri, ui) for a set of given parameters

a1 =2, a2 =3, a3 =0:8 a4 =0:8, a5 =0:5,

a6 =0:5, a7 =1:0, br =0:3 and bu =0:3:

The results are presented in Figure 6.

All simulations are carried out under MATLAB�.

The use of this curve in reliability based management

could be in a classical way where a Pf threshold defines

an acceptance and critical areas. Therefore, we define

an iso-curve as the line joining all observations (ri, ui)

having Pf =0:05, and then we draw the iso-curve

(green line) in Figure 7.

The iso-curve divides the plot in two areas: an accep-

tance reliability area where Pf \ 0:05, and a critical

reliability area where Pf50:05. The system is said to be

safe for an observation (ri, ui) in the acceptance relia-

bility area (gray area) and unsafe in the critical reliabil-

ity area. It is also easy to define a safety area with two

thresholds and a specific attention or preventive action

could be done to reduce the current risk level.

One major advantage of the proposed approach in

reliability based management is that the decision can

be modulated according to additional observation,

given that u can be seen as an acceleration factor of the

cracking.

The aim of the following section is to investigate the

effect of a potential error committed in the estimation

of the parameters. Therefore, for the sake of this exam-

ple, we consider a +10% error on the parameters of

Table 3. Impact of variability on the statistical moments of the number of inspections before failure.

60% 610% 620% 630% 640%

m 10.26 10.34 10.56 10.91 11.53
em(%) 0.82 2.94 6.37 12.48
s 2.43 2.57 2.96 3.68 4.77
es(%) 0 5.51 21.52 51.15 96.16

Figure 6. Probability of failure based on the degradation level

(ri, ui).
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the bivariate model. The results are illustrated in Figure

7. In Figure 7, we see that a 10% error on the para-

meters of the u process does not have a noticeable effect

on the iso-curves, contrasting with an error committed

on the parameters of the r process.

An error on the exponential part (a5) of ar (equa-

tion (4)) pushes the iso-curve upward, opposite to the

error on the acceleration part (a6, a7) of ar (equation

(4)) which pushes the iso-curve downward. The para-

meter with the biggest impact on the iso-curve is br,

followed by lesser impact from a5, a6, and a7.

When 10% is added to the br parameter, the iso-

curve is lowered, therefore triggering an early decision

generating an over cost. However, a 10% error on the

exponential part of au pushes the iso-curve upward and

therefore compromising on the ‘‘safety’’ of the decision.

When the iso-curve is lowered, an early decision is

triggered causing additional costs. On the other hand,

when the iso-curve is highbred, the safety of the deci-

sion is compromised by a late decision. However, the

decision maker cannot distinguish between these two

cases. Therefore, if the decision is based on this plot, an

additional safety factor needs to be considered.

We take the case of n=10 structures and T=20

inspections where 10 realizations are simulated. Using

the MLE algorithm, 10 sets of parameters for are esti-

mated and the 10 corresponding iso-curves are then

drawn in Figure 8.

In Figure 8, we witness the dispersion on both sides

of the green iso-curve giving us an indecisive answer on

whether we are over or under the no-error iso-curve.

The safety factor is applied by lowering the estimated

iso-curve by a distance equal to the range between the

two furthest iso-curves. In Figure 8, the mean errors of

the lowest and highest iso-curve are, respectively, 4%

and 10% with a �17% and �4% error on the br. This

safety factor will most probably generate an over cost

without compromising on the security of the decision.

In this study, we carried out a sensibility test and

investigated the use of the bi-variate degradation

meta model for risk-management applications. El Hajj

et al.17 further highlights the potential benefit of using

a bi-variate approach for risk-management when com-

pared to a mono-variate approach.

Up to now, maintenance actions were was not

taken into account in the proposed degradation

model. After a maintenance action, the structure’s

performance is modified. Therefore, it is necessary to

update the degradation model to integrate these mod-

ification. We propose in the next section to describe

how a maintenance action can be modeled within the

proposed framework.

Maintenance action modeling

This section illustrates how a maintenance action is mod-

eled in the meta-model. First, we will describe a mainte-

nance action applied in the case of chloride-induced

corrosion. Then we clarify the mathematical modeling of

the maintenance action. A common maintenance action

used in this case is the cathodic protection (CP).

CP

CP19 is an electrochemical technique used to control the

corrosion by making it the cathode of an electrochemi-

cal cell. CP systems protect metal reinforcement bars in

concrete buildings and structures from corrosion and in

some cases can prevent stress corrosion cracking.

It prevents corrosion by converting the active anodic

sites on the reinforcement surface to passive cathodic

sites by supplying electrical current or free electrons

from an alternate source. It may be achieved by two

ways depending on the supplied source of power: by

the use of an impressed DC current from an electrical

source or by the use galvanic action (also known as

sacrificial anodes).

Galvanic action (or sacrificial anode). In the application of

passive CP, galvanic (or sacrificial anode) is selected.

The sacrificial anode is more electrochemically active

(lower electrode potential) than the corroded

Figure 7. Fitted iso-curves of the degradation levels for a 0.05

probability of failure function of a + 10% error committed on

several parameters of the meta-model and the simulations and

mean of degradation levels.

Figure 8. Estimated fitted iso-curves.
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reinforcement (cathode) and is electrically connected to

the surface of the steel where it is exposed to an

electrolyte.

The potential of the steel surface is then polarized

until the surface has a uniform potential. At that stage,

we are protecting the cathode. The corrosion is trans-

ferred from the reinforcement steel to the sacrificial

anode, consuming material until eventually replaced.

The polarization of the reinforcement steel is done

through migration of electrons from the anode to the

cathode. Therefore, it is important that these two

metals have a good electrically conductive contact.

This type of CP is mostly used for local protection

where we have a clear idea where the steel is under cor-

rosion reaction.

Impressed current systems. Impressed current systems

(ICS)20 is generally an option where galvanic anodes

fail economically or physically to deliver enough cur-

rent in order to provide protection, for example, larger

structures and higher electrolyte resistivity.

ICS is a set of anodes connected to a direct current

(DC) power source. Sometimes, the DC is supplied by

means of a transformer-rectifier connected to an AC

powered by a supply, solar panels, wind power, or gas

powered thermoelectric generators.

Then, the DC negative pole is connected to the rein-

forcement steel to be protected by ICS, and the positive

is connected to the anodes. The output of the ICS is

adjusted in a way to provide sufficient current to pro-

vide CP.

Effect of a maintenance action on the meta-model

Maintenance actions can have different effects on the

process of corrosion and therefore on its parameters of

interest. In our case, we do not remove concrete and a

CP decelerates the corrosion.

We propose to model the effect of a CP action on

the processes directly in the icorr shape function by

introducing a new parameter: m1 which can be defined

as the degradation acceleration factor after mainte-

nance. Therefore, for the average corrosion current

density, we multiply the u process shape function by a

constant m1 (equation (8) and Figure 9), as a result

au r, uð Þ=m1 3 a3:r+ a4ð Þ:e
�(u�a1)

2

a2 ð8Þ

Maintenance techniques have been widely applied

and studied, and their effect on the physical process are

rigorously studied. So, the harder part in modeling the

maintenance is to quantify m1. The estimation process

in case of maintenance action is beyond the scope of

this article, but a MLE procedure similar to the one

presented earlier can be used toward this aim using

experimental data.

Let us consider for the sake of this example that a

galvanic CP will slow the corrosion process by 10%

and the impressed current CP by 20%; therefore, we

will have, respectively, the following parameters for the

maintenance parameters

� m1 =0:75 for the galvanic action and
� m1 =0:5 for the ICS:

For the purpose of illustrating the CP maintenance

action, in Figure 10, we plot the mean simulations of

the process showing how the CP slows the corrosion

process as predicted.

Conclusion

In the first part of this article, the construction, mathe-

matical formulation, and estimation algorithm of the

data-driven bivariate meta-model were presented.

Then, the meta-model’s robustness was subjected to

tests such as adaptability to non-homogeneous data-

bases, applicability in a risk-based decision analysis,

and maintenance actions modeling.

The performance of the model in a non-

homogeneous context was evaluated. The results

Figure 9. Mathematical modeling of a maintenance action on

the shape functions.

Figure 10. Mean simulations of the degradation indicators in

case of CP maintenance actions.
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illustrated the ability of the meta-model’s estimation

process to respond to non-homogeneity in field-

collected data to a certain level. Furthermore, from a

decision-making perspective, having measurable indica-

tors as outputs of the degradation meta-model allows

to consider and recommend its use in risk-based con-

texts. This article illustrates the potential use of the

proposed degradation meta-modeling approach for

maintenance and risk management.
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