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ABSTRACT: In this work, we propose a new meta-model to describe the evolution of the degrada-
tion of infrastructures for reliability purposes. The model takes into account both hazards, temporal and 
spatial. It is based on the classical homogenous or non-homogenous Gamma process, the scale parameter 
is modeled with log-normal random field in order to assess and incorporate the effect of the spatial 
variability and heterogeneity on the degradation process.

Simulation results are performed using synthetic data based on Monte-Carlo simulations to fit the 
model, the inference of their parameters is performed using the method of moments combined with curve 
fitting method. Computation and estimation of quantities of interests for reliability or maintenance stud-
ies, namely the failure time and remaining life-time are developed and illustrated by numerical examples.

tive or nondestructive testing is required from a 
large amount of structures [12, 10, 9 ,5] for predict-
ing levels of the degradation with accuracy.

The major contribution detailed in this work 
is a new spatio-temporal random model based on 
Gamma process for predicting the degradation 
mechanism which takes into account both hazards, 
temporal and spatial. The temporal variability is 
modeled by the classical Gamma process and the 
spatial variability is modeled by a positive random 
field. This spatial field follows a log-normal dis-
tribution to describe the scaling parameter of the 
Gamma process. Under the assumption of station-
arity satisfied by the random field, the spatial mon-
itoring data of the component contributes in the 
parameters estimation to reduce uncertainty and 
increase the accuracy of the meta-model approach. 
Therefore, the method of moments based on the 
variogram curve fitting is used in the first stage to 
estimate the spatial parameters of the Gaussian 
field, in the second stage the method is reused to 
estimate temporal parameters.

The article is organized as follows, the spatial-
temporal random field degradation model is 
presented in Section 2. The method of moments 
combined with curve fitting method are presented 
in Section 3 for identifying properties of the model 
in terms of statistical inference. Once the model is 
adjusted, Section 4 develops quantities of interests 

1 INTRODUCTION

Mathematical models based on partial differential 
equations with stochastic parameters and data 
are extensively studied in Mechanical and Civil 
Engineering [1, 8, 2] to compute physical quanti-
ties varying in space and in time under uncertainty 
and spatial variability. However, their use in a reli-
ability estimation context is faced with two major 
drawbacks.

Firstly, the approximation of such models to 
compute some physical quantities of interest can 
suffer from the curse of dimensionality, where it 
requires to solve a large number of deterministic 
problems. In particular when the variability and 
uncertainties are important [1, 6]. Secondly, health-
monitoring data which are usually given by Non 
Destructive Techniques are not obviously linked to 
these models to update them with their associated 
parameters.

The Gamma process [12, 7, 5] is widely used 
model for modeling degradation process encoun-
tered in civil engineering. However, it model only 
temporal variability and assume a uniform deg-
radation on the whole structure and does not 
incorporate heterogeneity and spatial variability 
through component. On the other hand, to con-
struct a complete degradation model with accurate 
predictions, a large amount of data using destruc-
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which are useful in the reliability and maintenance 
analysis, Namely, the failure time defined in terms 
of degradation level passages and remaining use-
ful life time defined as the time of inspection of 
the unit to failure. Finally, Section  5 presents a 
numerical example of one dimensional variability 
illustrating the proposed methodology for model 
validation. Once the model is adjusted, Quantities 
of interest are developed and illustrated by an ana-
lytic and sampling approach.

2 SPATIO-TEMPORAL DEGRADATION 
MODEL

We look for modeling the degradation process by 
a convenient spatio-temporal random field to take 
into account its aleatory evolution with time and 
space. A separable model is one simple spatio-tem-
poral model obtained through the tensorial product 
between a merely stochastic process ( )Xt t≥0  and a 
spatial random field Z(z), where z is the spatial vari-
able. This class of separable random field is exten-
sively used even in situations in which they are not 
always physically justifiable, since separability gives 
important computational and mathematic benefits.

The evolution in time models the intrinsic alea-
tory and the Gamma process is a natural candidate 
to catch this monotonous degradation. The spatial 
random field models the variability and uncertainty 
through the structure, and in many applications it 
is classically modeled by a second order stationary 
random field and given by a transformation of a 
Gaussian random field. Therefore, for simplicity 
and in order to construct a separable model, we 
assume that those source of randomness (time and 
space) are independent. Therefore, we consider a 
separable spatio-temporal random field to model 
the spatial variability in the degradation process.

Consider α ( )⋅  to be a non-decreasing, right-
continuous, real-valued function for t ≥ 0  and 
vanishing at t = 0  and β > 0  a positive constant. 
A stochastic process ( )Xt t≥0  is said to be a Stand-
ard Gamma process with function shape α ( )⋅  and 
identical scale parameter β if  it satisfies the follow-
ing properties

• X0 0=  with probability one,
• X X Ga t s tt s t+

− + − ,∼ ( ( ) ( ) )α α β ,
• Xt has independent positive increments,

Where Ga( ( ) )α β⋅ ,  is the Gamma distribution 
defined by the density function f xGa ( ) :

f x x e xGa
x( )

( ( ))

( )
( )=

⋅
, > ,

⋅

⋅ − −
β

α

α
α β

Γ

1 0for each

and Γ is the classical Gamma function. The process 
Xt satisfies the following scaling property,

X Gat = ⋅ , , > .−( ( ) )α β β1 01 for each (1)

The scaling property of the gamma process in 
(1) motivates us to consider the scale parameter 
to be a spatial random field to obtain a separable 
spatio-random filed model,

G z X zt t( ) ( ):= ,−β 1 (2)

where β(⋅) is spatial and positive random field which 
is assumed to be independent of Xt, and (without 
loss of generality we consider) X Gat ∼ ( ( ) )α ⋅ ,1 . The 
scaling property satisfied by the process Xt in (1) sug-
gests to see (formally) the spatio-random field Gt(z) 
as Gamma process with spatial random scale β(⋅).

In practice, it is difficult to verify and to find 
a positive distribution for a spatial or spatio-tem-
poral random field. However, log-normal distri-
bution occurs naturally as a limit distribution of 
physical processes, because the Central Limit The-
orem applied to the product of positive independ-
ent random variables (number of measures >30) 
ensures that the log normal distribution can occur. 
Therefore, we choose the Log-normal distribution 
for the random scale coefficient,

β ( ) ( )z eY z= ,

where Y is the spatial Gaussian random field Y(z) 
which defined in D a set in Rd with d = , ,1 2 3 . The 
field Y is assumed to be homogenous (stationary 
field) and then completely defined [14] by its con-
stant mean µ := ⋅E[ ( )]Y  and its stationary covari-
ance function cov r Y z r Y z( ) [ ( ) ( )]:= + −E µ2 .

The Matérn model of the covariance functions 
are the commonly used covariance in the engineer-
ing applications for the Gaussian random field. 
There are defined by the following function:

cov r
r

l
K

r

lc c

( )
( )

=












−

σ

ν

ν ν
ν

ν

ν

2
12 2 2

Γ
(3)

where the parameters σ
2 , ν , α  and lc are non-

negative real numbers, σ 2  is the variance of Y, lc is 
the correlation length, r is the Euclidean distance 
between two points, Kv denotes the modified Bessel 
function of the second kind. The parameter ν > 0  
is a non-negative number that characterizes the 
degree of smoothness of cov which is related to the 
smoothness of the field Y. when ν = 1

2
, cov coin-

cides with the exponential covariance,

c r e r lc( ) := .− /

this covariance is only Hölder continuous and so 
for the samples paths of Y. When ν → ∞,  it 
approaches the gaussian covariance,
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c r e r lc( ) ( ):= ,− /2 22

which is an analytic function and so the samples 
paths of Y are also analytic.

3 METHOD OF MOMENTS FOR 
PARAMETERS INFERENCE

In order to obtain a complete and accurate deg-
radation model for practical examples, statistical 
methods for parameters estimation of gamma 
processes and gaussian random field are required. 
A typical data set of Gt(z) consists of inspection 
points in different increasing time tj for j Nt= 0, ,…

, with the same period τ , where for each time tj the 
inspection positions are given in uniform positions 
zl for l Nz=1, ,…  with step size h. Here, we assume 
for simplicity that α ( )⋅  follows a power law:

α ( )t atb= ,  (4)

for some unknown a > 0 and a known power 
b = 1.

3.1 Step 1: Spatial parameters

The Method of Moments (MOM) uses the ben-
efit of the separability of the model to estimate the 
parameters of Gt(z) in two steps. The first step of 
(MOM) consists in estimating the spatial param-
eters of the model. They are defined as the param-
eters of the second order stationary random field 
Y, i.e, the variance σ

2 , the correlation length lc 
and the regularity parameter v of  the correlation 
function given in (3).

In order to obtain an estimate of these param-
eters, we use nonparametric estimate of the semi-
variogram which is typically obtained through 
(MOM) of one or more realizations of Y and 
defined by [3]:

2
1

ˆ ( ) ( ( ) ( ))
2

i j hl l

l i jY

z z Sh

h Y z Y z
N , ∈

= − ,ϒ ∑  (5)

where Shl
 is the set of the points separated with 

distance hl and Nhl
 its cardinal.

For a fixed time instant t, the variogram of 
the field log( ( ))Gt ⋅  equals the variogram of Y ( )⋅ . 
Therefore, the empirical variogram ˆ

Yϒ  is obtained 
by computing the empirical variogram of the ran-
dom field log( )Gt , the logarithm of Gt. Thus, in 
any fixed time t we get:

2
1

ˆ ( ) (log( ( )) log( ( )))
2

i j hl l

l t i t jY

z z Sh

h G z G z
N , ∈

= −ϒ ∑  (6)

When M realizations of the degradation Gt(z) 
are available, they can be used to improve the esti-
mation of ˆ ( )lY

hϒ  by empirical average.
Since the random field Y is stationary, the exact 

variogram is given by:

ϒY l lh cov h( ) ( )= − ,σ σ
2 2 (7)

where the correlation function cov(h) is given in 
(3). Therefore, we estimate the spatial parameters 
by minimizing the quadratic error (Least square 
method) between exact variogram and experimen-
tal one, thus σ

2 , lc and v are deduced by the fol-
lowing minimization problem.

2 2 2

0
1

ˆmin ( ( ) ( ) )
zN

l lY
lc

l

h cov h
σ ν

σ σ
, , >

=

+ −ϒ∑ (8)

Remark 3.1. The classical least square method can 
be extended to a generalized least squares (GLS) 
method, where we minimize a weighted error, given 
by the correlation matrix R of the set 1

ˆ{ ( )} zN

l lY
h =ϒ . 

A simplified approach of this generalization is the 
weighted method where the matrix R is diagonal 
with entries Rl

h

N

Y l

hl
=

2ϒ ( )
 as suggested in [3] assum-

ing a Gaussian law and non-correlation among 

1
ˆ{ ( )} zN

l lY
h =ϒ .

We note when the space positions are not equidis-
tant, estimation (5) is slightly modified for non uni-
form grid to compute the experimental variogram 
of Y from the logarithm of the field Gt(⋅), spatial 
mean is given on all pairs of points whose distance 
are between h and h h+ δ  for some threshold δ h > 0  
[3].

3.2 Step 2: Temporal parameters

The temporal parameters are defined as the param-
eters of the process Xt, i.e, the shape function α ( )t  
defined in (4) and the deterministic contribution 
η µ= e  of the scale field β.  Since we assume that 
the power b is known, we estimate then a and η . 
Note that η  contains a contribution of the spa-
tial mean of the random field Y. Let { ( )}G zt

i
lj

 be 
a sequence of independent and identically distrib-
uted (i.i.d.) simulations of the degradation model 
described in the previous section. Each i-th deg-
radation process is observed at time tj among Nt 
times and on location xl among Nz locations.

Logarithm of increments of sample paths of 
Gt(z) writes:

ξ δj l
i

t
i

l t
i

t
i i

lG z X X Y z
j j j, := = − + ,

−
log( ( )) log( ) ( )

1

for i M j N l Nt z∈ , , ∈ , , ∈ , .[ ] [ ] [ ]1 1 1
Since the process Xt and the field Y are inde-

pendent, the first two moments of ξ j l
i
,  are given by:
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m aj l
i

j1 := = −,E[ ] ( ) log( )ξ ψ τ η  (9)

m var aj l
i

j2 1
2:= = + ,,[ ] ( ))ξ ψ τ σ (10)

where the function ψ  is digamma function which is 
defined as the logarithmic derivative of gamma func-
tion Γ , and ψ 1  is the trigamma function defined 
as the derivative of ψ . The temporal grid being 
uniform, thus increments ( )X Xt

i
t
i

j

N

j j

t−
− =1 1  are inde-

pendent and identically distributed. From MNt reali-
zations of those increments combined with spatial 
average we estimate m1 and m2 by the following sum:

m MN Nz t

i

M

j

N

l

N

j l
i

t z

1
1

1 1 1

≈ ,−

= = =

,∑ ∑ ∑( ) ξ (11)

m MN N mz t

i

M

j

N

l

N

j l
i

t z

2
1

1 1 1

2
1
2≈ − .−

= = =

,∑ ∑ ∑( ) ( )ξ  (12)

Therefore, an estimation of temporal parameters a 
and η  is given by:

a
f

m

mη







= ,−
















1 1

2

 (13)

where we define the function f by

2

1

( ) log( )
,

( ) ˆ

u vu
f

uv

ψ τ

ψ τ σ

−  
=   +   

(14)

with τ = − −t tj j 1  and m1 et m2 are estimated in (11, 
12) and 2

σ̂  is the estimate variance σ
2  obtained

in equation (8).

Remark 3.2. When b is unknown, we can use the 
approach of pseudo maximum-likelihood method 
(PML) to estimate temporal parameters. It consists 
of maximizing the likelihood of the sequence of the 
increment ( )δ δ1G & GtN

, ,  on a given fixed spatialposi-
tion z. These increments are conditionally independent 
and their likelihood is given by the product of the mar-
ginal density of the field Gt(z). This marginal density is 
approximated in Section 4 (equation (15) and (16)).

Method of moments for temporal parameters can 
be extended when b ≠ 1 , the non-stationary Gamma 
process can be easily transformed to a stationary one 
by performing a monotonic transformation u t tb( ) =  
on the time increments ( see [12] for more details).

4 QUANTITIES OF INTEREST

4.1 Marginal density approximation

The marginal distribution noted by ft ( )⋅  of  the 
model Gt(z) does not depend on the position z 
but only on the time t, because the spatial random 
field Y is homogenous. This distribution can be 

constructed numerically by simulating paths ofthe 
field Gt(z). It is useful in computation of some 
quantities of interest which are used in structural 
reliability and maintenance. We can also use this 
distribution as a pseudo-likelihood of Gt(z) to con-
clude an estimation of the temporal parameters of 
the model.

Let ξ( )y  be the density of the standard gaussian 
random variable N(0,1). By using the fact that the 
temporal paths of increments of the model Gt ( )⋅  
are conditionally independent, we compute the dis-
tribution ft for all v > 0  by the following form:

f v v v y t y y dyt t( ) ( ) exp( exp( ) ( ) ) ( )= − + ,∫ψ η σ α σ ξ
R

(15)

where we set ψ η

α

α α

t

v

t
v

t t

( )
( ) ( ( ) )

( ( ))
:=

−1

Γ
.

The integral in (15) has a transcendental form, 
thus we use Gauss-Hermite quadrature formula to 
approximate this marginal density ft.

We consider m roots { }y j j
m

=1  of  the Hermite 
polynomial and their associated weights { }w j j

m
=1 . 

Thus, an approximation of ft writes:

f v v v y t y wt
m

t

j

m

j j j( ) ( ) exp( exp( ) ( ) ):= − +
=

∑ψ η σ α σ
1

(16)

The convergence of the sequence f vt
m ( )  for 

any fixed positive reel v > 0  is relatively fast, since 
the integrand is infinitely differentiable. However 
the norm of any m-derivative of this integrand 
depends on the value of the parameters α ( )t , σ  
and η . A large value of these parameters requires 
a large order m of  the approximation in (16), in 
particular for large time t. Therefore, the order of 
the approximation m is established by the follow-
ing stop criterion,

| − |≤ ,−f ft
m

t
m 1

ε

where ε > 0  is a convenient threshold value. Note 
that when v → ∞  both ft(v) and f vt

m ( )  decreases 
to zero.

4.2 Distribution of failure time

The failure time TF for a structural component is 
defined as the time at which the degradation path 
Gt first crosses a critical level gF for any spatial 
location,

T t G gF t F= > ; ⋅ ≥ ,inf{ ( ) }0

In what follows, the critical level gF is assumed 
deterministic. For some simple path models, the 
distribution of TF defined by F t P T tT F( ) ( ):= <  can 

4



be expressed in a closed form. However, this is not 
always possible and it can be numerically computed 
using Monte Carlo simulations by simulating paths 
of Gt(z). The sample paths of G are monotonic since 
the spatial variability eY is positive, thus the failure 
time cumulative distribution function FT(T) satisfies:

F t P T t f z dzT F

g

t

F

( ) ( ) ( )= − > = − ,∫1 1
0

(17)

where ft is the marginal pdf of Gt given in (15). 
Therefore, using the approximation ft

m  with a con-
venient order m we approximate the distribution FT,

F t f v dvT
m

g

t
m

F

( ) ( )= − ,∫1
0

(18)

The integral (18) can be computed accurately by 
any quadrature formula, for example the Legende-
Gauss quadrature.

The derivative of (17) and (18) with respect to 
the time t provides the probability density function 
of TF and its approximation respectively.

The approximation of the cumulative density 
(18) requires a quite huge cost when t or σ 2  is 
large. In this case one can construct an estimation 
of FT by generating a sufficiently large number 
of random sample paths of Gt(z) with estimated 
parameters using Monte-Carlo (MC) simulations.

By fixing Nt desired times, Nz desired loca-
tions and M realisations of spatio-temporal 
paths { ( )}G zt

m
ji

 for i & Nt= ,1 , j & Nz= ,1 and 
m & M= , ,1 . The estimate TFɶ  of  FT is given by,

T i

j m

N M

G x g

z

F t

I

MN

z

ti

m
j F

ɶ ( )
{ ( ) }

:= ,
,

,

≥∑
 (19)

where IA  represents the characteristic function of 
the set A, i.e IA z( ) =1  if  z A∈  and zero otherwise.

Note that since the random field Gt is homoge-
neous with respect to the spatial variables, the esti-
mate TFɶ  can be computed also using realizations 
of G zt p( )  fixed at any position zp,

T i

m

M

G z g

F t
M

ti

m
p F

ɶ ( )
{ ( ) }

≈ .
∑ ≥

I

 (20)

However the estimation (20) needs to use more 
MC simulations of Gt(z) than (19) since by the 
ergodic property, the spatial average contributes to 
the convergence of TFɶ  to FT.

4.3 Remaining useful lifetime after inspection

In reliability analysis and survival studies, resid-
ual lifetime after inspection is a key indicator. In 
the maintenance decision analysis, the current 

measured degradation is used to predict the 
remaining useful lifetime (RL) of the structure 
[11]. If  t is the current time of inspection, the 
residual lifetime is defined by the random variable:

RL G g G gt t F t t:= > , ≥ | = ,+inf{ }τ
τ

0

where gF is the critical level and gt is the measured 
degradation at given time t, implicitly g gt F< . 
When we suppose that a component has survived 
to a given time t and we have not any information 
or measure about the current degradation path 
Gt, then a conditional reliability function gives an 
evaluation of the remaining lifetime:

R T t P T t T t

f y dy

f y dy

F F F
g

t

g

t

F

F

( ) ( )

( )

( )

τ τ

τ

| > := ≥ + | >

= .
∫
∫

+
0

0

(21)

When the current degradation measure path of Gt 
is available, then by conditioning of the failure time 
would give a more accurate prediction than (21), i.e 
the probability that the unit survival after the time 
t + τ  given its actual state G gt t=  at time t is:

P RL P G g G g
P G g g G g

t t F t t

t F t t t

( ) ( )
( )

> = < | =
= < − | = ,

+τ

δ
τ

τ

(22)

where we define the increment δ
τ τ
G G Gt t t:= −+ . If  

we note by f G Gt tδτ |  the conditional marginal density 
of the process δ

τ
Gt  given the event { }G gt t= , then 

we compute the probability cumulative distribution 
F P RLRL t:= ≤( )τ  of the residual lifetime by:

P RL P G g g G g

f y dy

t t F t t t
g g

G G

F t

t t

( ) ( )

( )

≤ = − < − | =

= − .
−

|∫
τ δ

δτ

1

1
0

(23)

Using the independence of the increments of 
Gamma process, we compute the conditional den-
sity of δ

τ
Gt  given G gt t=  by,

f u
u g f u g

B t u g
G G

t
t

t t

t
t tδ

δ α α

τ

τ

α ττ

τ

δ α α
|

− −
+

+
=

+

, +
( )

( )

( ( ))( )

( )

( (

1 1

tt
t tf g) ) ( )−1

(24)

where we set δ α α τ α
τ

:= + −( ) ( )t t , ft is the marginal 
density of Gt given in (15) and B x y

x y

x y
( )

( ) ( )

( )
, =

+

Γ Γ

Γ
 is the 

beta function. It follows that FRL ( )τ  is given by,

F f u duRL

g g

G G g

F t

t t t
( ) ( )τ

δτ
= − .

−

| =∫1
0

 (25)

By using an appropriate approximations of den-
sities f u gt

m
t+ +

τ
( )  and f gt

m
t( )  we get f uG G g

m

t t tδτ | = ( )  
an approximate of the conditional probability den-
sity in (24) and then an approximation of FRL ( )τ .
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Note that when t = 0  and gt = 0 , equation (24) 
is not definite and the cumulative probability func-
tion FRL is the function FT given in (17).

The derivative of (23) with respect to the vari-
able τ  provides the probability density function 
of the Residual lifetime RL.

5 NUMERICAL ILLUSTRATION

In this section we simulate the degradation model 
through Monte Carlo simulations to validate the 
inference process and the approximation of the 
quantities of interest.

We consider M = , ,110 100  sample paths of the 
field ( )G j

j
M

=1 , each trajectory Gj being simulated 
at Nt equidistant periods on the interval time [0, 
30] (in years) and Nz equidistant locations in one
dimensional and two dimensions space.

The model is stationary with respect to time, 
i.e the shape parameter is linear α ( )t at= , the
deterministic contribution of the scale random 
field is given by η µ= e  where µ = /2 3  (mean of 
Y), σ 2 0 6= .  (variance of Y), lc = 1  (correlation 
length) and ν = 2  (smoothness parameter of Y).

The Gaussian random field is defined on the 
interval [0, L] where L = 100. We use the method of 
circulant matrix [4] to simulate Y with exact discre-
tization in Nz equidistant spatial positions.

In what follows, for simplicity, a fixed value of 
the smoothness parameter ν = 2  is selected (i.e 
the paths of G are one time derivative in quadratic 
norm).

Figure 1 (left) plots one realization of the model 
Gt(z) and compares (right) its experimental vari-
ogram with exact one of the Gaussian field Y. The 
experimental variogram is computed using the spa-
tial trajectory of the logarithm log G zt( ( ))  at time 
t = 30.

Method of moments (MOM) Step 1

The first step of MOM consists in estimating spa-
tial parameters, variance σ 2  and correlation length 

lc. The quality of the estimation is measured by the 
mean absolute errors which is given by the average 
of absolute difference between the exact parameter 
and 10 estimated values calculated across MOM.

Table  1  gives estimates of those parameters 
obtained by MOM where we minimize equation 
(8) with ν = 2  and three values of M. (Mean abso-
lute errors in brackets).

From Table 1, the estimation of the correlation 
length lc depends strongly on the number of spa-
tial positions Nz, obviously because lc is very small 
with respect to the length L =100 . In contrast of 
lc, the estimate of the variance σ 2  is largely accept-
able even with small number of positions and with 
only one realization of Gt ( )⋅  ( M Nz= , =1 40 ). 
However, the estimation of quantities of interest 
depends strongly on the variance σ 2 , so an accu-
rate estimate of σ 2  is needed to forecast reliable 
predictions.

Method of moments Step 2

Once spatial parameters are estimated, the second 
step of the MOM consists in estimating the tempo-
ral parameters, which are given by (13). An estima-
tion of the variance σ 2  is inserted in (13) for each 
case of M and Nz. Table 2 summarizes estimations 
of temporal parameters a and η . Results show 
that their accuracy depends strongly on the total 
inspection times Nt and on the total number of 
positions Nz. An acceptable accuracy is reached for 
small number of realizations M (M = 10) when Nt 
and Nz are significatively large ( N Nt z= , =60 40 ). 
In particular, estimate of η  depends significatively 
on the number of locations Nz since it contains the 
stochastic contribution of the random field Y.

Figure 2 illustrate the convergence of the MOM 
for temporal parameters α  and η , where we 
consider a database with size M N Nz t× ×  of  the 

Figure 1. Left: example of one realization of Gt ( )⋅ , 
right: variogram ( lc = , = , = .1 2 0 62

ν σ ).

Table 1. Parameters estimation of one dimensional spa-
tial variability by MOM.

Nz = 40

M σ 2 lc

1 0.714(0.114) 0.21(0.791)

10 0.5720 (0.028) 0.81(0.19)

100 0.6048(0.0048) 0.890(0.1024)

Nz = 100

M σ 2 lc

1 0.546(0.053) 1.186(0.186)

10 0.584(0.015) 0.934(0.065)

100 0.6009(0.009) 1.024(0.024)
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simulated model G. The mean absolute error on α  
and η  is given as function of the product N Nz t×  
where Nz = , ,10 40 100  and Nt = , ,10 30 60 .

We remark a strong improvement for the esti-
mation for M > 1 , Nz >10  and Nt >10 . Estimate 
accuracy of α  is nearly independent of the spa-
tial positions unlike η  where accuracy depends on 
Nz and strongly on Nt. An acceptable accuracy is 
reached in the case of one component M = 1 when 
Nt and Nz are quite large ( )N Nt z= , =60 40 . A 
large number of positions Nz does not improve the 
convergence of these temporal parameters unlike 
spatial parameters.

Once parameters estimation of the model is per-
formed, we accurately simulate G at any position 

and time. Therefore, in order to estimate the mar-
ginal cumulative distribution FT of  failure time 
TF by sampling method (19), we perform 103 MC 
simulations of Gt ( )⋅  discretized on Nt =100  times 
and Nz =100  positions. We plot in Figure 3 (left) 
the cdf FT computed by sampling approach with 
exact and estimated parameters and by quadrature 
rule (18) with m = 30  Gaussian knots.

Figure 3 (right) compares marginal density of Gt 
by sampling and by quadrature given in (16) at sev-
eral times t with a convergence criterion ε ≈ −10 3 . 
We note that the required order of the quadrature 
rule increases with time t.

Figure 4 (left) illustrates the effect of condition-
ing the current state on the failure prediction at the 
current time of inspection ti =10  for several meas-
ured degradations levels from 0.75 to 1.6.

The survival function depends on the current 
state and gives more prediction than the reliability 
function ( gti  is unknown, blue curve). The curves 
highlight how the reliability function underesti-
mates or overestimates the time to failure under 
thevalue of gti . In Figure 4 (right), we draw several 
failure curves of the remaining lifetime FRLti

( )τ

with several times of inspection ti with the same 
condition state gti = .1 25.  This figures highlight 
an obvious result, the more the time for observing 
given condition state, the more the residual lifetime.

Table 2. Parameters estimation of temporal variability 
using MOM.

Nz = 40, Nt = 30

M a η

1 0.79(0.21) 1.487(0.46)

10 0.947(0.053) 2.157(0.21)

100 1.012(0.012) 1.986(0.038)

Nz = 40, Nt = 60

M A η

1 0.902(0.098) 1.617(0.33)

10 1.027(0.027) 2.087(0.14)

100 1.01(0.009) 1.97(0.022)

Nz = 100, Nt = 30

M a η

1 0.817(0.18) 2.377(0.43)

10 1.057(0.057) 1.837(0.11)

100 1.012(0.012) 2.015(0.068)

Nz = 100, Nt = 60

M a η

1 1.01(0.1) 1.567(0.38)

10 1.029(0.029) 1.817(0.13)

100 1.01(0.009) 2.973(0.026)

Figure 2. Mean absolute error on α (left) and η (right).

Figure 3. Left: estimate of the failure time distribution 
FT, right: marginal density by sampling and quadrature 
approach.

Figure 4. Left: Distribution of predictive time of 
inspection to failure, right: reliability and remaining life-
time function.
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6 CONCLUSION

In this paper, we have developed a spatio-tem-
poral degradation model that incorporates the 
spatial variability and heterogeneity across struc-
tural component. It is based on the basic gamma 
process with a scale parameter modeled with non-
negative spatial random field. The temporal paths 
of the process are monotonic with conditionally 
independent increments, the positive random field 
scale follows a log-normal distribution as limit of 
independent positive variables.

The quantities of interest that are useful in reli-
ability analysis and in maintenance, namely the 
distribution of failure time and the distribution of 
remaining useful lifetime are computed. A Method 
of moments is carried out to infer the spatial and 
temporal parameters of the model. Monte Carlo 
simulations illustrate the advantage of the pro-
posed model. The advantages of the proposed 
model are that uncertainties are reduced and the 
accuracy of the inference is improved by exploiting 
with batter manner the spatial data.

An interesting extension of the current model 
can consider the bivariate modeling based on the 
state dependent Gamma process.
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