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In order to guarantee the performance or to qualify the risk of nonperformance of cementitious materials over time, a significant
number of experimental data obtained from tests mimicking various degradation mechanisms are required. .e slowness of the
materials’ degradation under environmental service conditions is an issue, and thus, acceleration strategies are required to obtain
reliable and comprehensive results in a shorter time. .e objective of this research work is to provide a generic framework for the
design of optimal accelerated destructive degradation tests (ADDTs) for cementitious materials qualification..e definition of the
optimal design of experiments depends on the capacity to capture the influence of data variability and uncertainty from any
sources; they are extracted either from physical models or from experimental tests. In this research, the evolution of carbonation
depth is characterized with the Wiener process formalism and the random effects related to the material heterogeneity are taken
into account. Once the process parameters are estimated through the maximum likelihood estimation (MLE), associated with the
expectation-maximization (EM) algorithm, we provide a step-by-step and detailed method to investigate the optimal design of
ADDTs..e latter is defined as the one for which we can estimate durability indicators such as mean-time-to-failure with the best
accuracy based on three criteria (D-V-A optimality) considering constraints of time, total number of samples, or limited costs..e
optimal total sample size for the accelerated carbonation test and the optimal sample size allocation proportions for each stress
level are determined, and the effects of the stress level on the objective functions and of test time duration constraint are also
discussed. A comparison of the relative efficiency of optimal three-level versus optimal two-level ADDT completes this work.

1. Introduction

Production and, by extension, qualification of concrete are
based on the EN 206 standard [1]. Considering 18 exposure
classes, this standard prescribes the mix designs in order to
guarantee a 50-year durability for buildings and 100-year
durability for engineering structures. Construction actors
have to consider new challenges such as dealing with en-
vironmental issues, seeking more resistant building mate-
rials, and reducing construction budget. .us, this may lead

to using concrete with a composition that differs from that
recommended in EN 206..is alternative is acceptable if the
new concrete is at least as good as the concrete defined in the
standard, under the specific exposure class for which we
want to qualify the performance of the new concrete. .is
approach called “performance-based” [2], based on the
demonstration of the performance’s equivalency, has gained
large success in many fields [3]. .is demonstration can be
made through three different ways: by using durability in-
dicators, performance tests [4], or a proven physical model.
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Among the durability indicators, general indicators, “gen-
eral” because they are not related to a unique mechanism of
degradation (e.g., water porosity and water permeability),
are distinguished from specific indicators (e.g., carbon di-
oxide or chloride diffusion coefficients). .e performance
test allows assessing directly the degradation process within
the concrete (e.g., carbonation depth evolution in order to
qualify the concrete performance under the XC exposure
class). .e physical model allows modelling the degradation
phenomenon on the concrete. In that case, concrete is
qualified if the model proves that the concrete performs well
for a given environment. In our work, we propose a mixed
approach combining both a physical model and optimally
designed performance tests.

For cementitious materials, the carbonation phenome-
non evolves slowly over time under normal or service use. It
takes time to observe damage on the concrete within a short
test duration. In such a case, an accelerated degradation test
(ADT) by elevating the stress level can be used to obtain the
typical degradation process within an accurate test duration
and then to extrapolate the product’s lifetime information
under normal operating conditions. Generally, most of the
existing concrete durability tests are destructive but there are
also nondestructive tests under development and investi-
gation in order to resolve problems such as test duration and
high cost [5, 6]. In this paper, we focus only on the case of
destructive carbonation tests—which are the most highly
represented for carbonation tests—and we will talk here-
inafter about optimization of accelerated destructive deg-
radation tests (denoted by acronyms ADDT or A(D)DT if
the proposed theoretical developments can be applied either
on ADTor ADDT) which is less straightforward to deal with
ADT (i.e., nondestructive tests).

A(D)DT has become an efficient approach to reliability
assessment or lifetime prediction for degrading products [7].
Depending on the different stress loadings application, A(D)
DTs can be classified into constant-stress A(D)DT (CSA(D)
DT), step-stress A(D)DT (SSA(D)DT), and progressive-
stress A(D)DT (PSA(D)DT). In order to maximize their
efficiency-to-cost ratio, we must carefully design the A(D)
DT to obtain the lifetime information at the service con-
dition..erefore, the optimal design problem of an A(D)DT
experiment received considerable attention from reliability
researchers and engineers [8]. Among them, CSA(D)DT is
the most popular method in practical applications. For
example, Duan and Wang [9] and Tsäı et al. [10] address the
optimal design problems for CSADT-based gamma process.
Liu et al. [11] focus on Inverse Gaussian processes. Tang et al.
[12] and Chen et al. [13] deal with the optimal design for
degradation tests based on a nonlinear generalized Wiener
process with random effects. In a CSA(D)DT, all test samples
are divided into several groups, and each group of samples is
exposed to a severe stress level. Under each stress level, the
corresponding samples are inspected independently, and
their degradation paths are recorded at the prespecified
times. In the CSA(D)DT, the experienced stress level does
not change for each sample, which requires more samples
than for SSA(D)DT [14]. At the same time, the failure
mechanisms affected by stress level do not change, which

makes CSA(D)DT easier to deal with than SSA(D)DT. For
the concrete, since samples are not expensive and can be
easily produced, to choose CSA(D)DT plans rather than
SSA(D)DT ones is definitely relevant.

.is article provides a method for the design of optimal
(with constrained sample sizes, time measures, and costs)
CSADDT used to qualify concrete durability or reliability
indicators under normal service conditions. Additionally,
the data required for the implementation of our method can
come from either performance tests carried out in a labo-
ratory or using physical models, which can help to obtain
prior data in the absence of available experimental data.
Different types of physical models describing concrete
performances exist. .ey can be divided into three main
categories: empirical, semiempirical, and numerical. Among
these models, for the specific case of carbonation process,
which is the subject of the present article, we can mention
Papadakis, Duracrete, Houst–Wittmann, Yang, and Hyvert
models (all described in [15]). In our approach, a physical
model is used to generate data mimicking the degradation
process, while taking into account the uncertainties close to
those observed in reality. .e aim is to find a prior optimal
design plan ADDT but not necessarily to have amodel as fair
as possible; the important point is that the physical models
are merely used to generate prior data, which will be sub-
sequently processed through degradation models whose
formalisms are particularly suited for the design of optimal
ADDT plan. Due to the limited availability of experimental
data for carbonation tests, we went with the Hyvert car-
bonation model in order to simulate data tests. .is model
takes into account the change of CO2 pressure (which will be
the acceleration stress) applied on concrete, and most of its
input parameters have known statistical distribution laws
that allow simulating uncertainty of degradation data
(carbonation depth over time).

.ere are two main formalisms of degradation models:
stochastic process models and general path models. .e
latter models are very easy to use; the theory has been well
established and is more robust than process-based models.
Lu and Meeker [16] and Pettit and Young [17] provide a
general discussion about this approach. .e main issue in
performance tests is that the measured characteristics are
random variables. .is is due to measurement errors, to the
inherent variability of concrete properties, and finally to the
environmental conditions (temperature, humidity, CO2,
etc.) which are random and time dependent. From this view,
both stochastic process models and general path ones can
effectively characterize the uncertainty of the degradation
process [18, 19]. For our generic approach, we use a physical
model to get prior alternative data with a degradation dy-
namic following a square root function of time (see Section
2.1 and equation (1)). It motivates the choice of stochastic
models which are more suitable for the consideration of
physical mechanisms.

In a study about the carbonation behavior of concrete
made of recycled aggregates, Zhang and Xiao [20] have
represented the evolution of degradation in the concrete by a
stochastic process. .e evolution over time of the carbon-
ation depth is followed. .is degradation process is

2 Mathematical Problems in Engineering



monotonic, and they have chosen specifically the Gamma
process for its suitability to model progressive and mono-
tonic increasing damage. Even if it is not formally mono-
tonic, the Wiener process can also be used to model the
evolution of damage because it shows increasing degrada-
tion on average and that the possible negative increment of
degradation modelled for an infinitesimal time interval can
be hold physically accountable to measurements errors or to
the variability between two tested samples. For the latter case
indeed, as the carbonation tests are destructive, there is no
guarantee to observe a monotonic evolution of degradation
between two test times since the measurements are not made
on the same sample (they are destroyed during the test).
.us, this stochastic degradation process is very flexible; it
not only can be used to model monotonic degradation
processes but also can be used to model nonmonotonic
degradation processes. In this regard, the Wiener process is
suitable for the carbonation process..eWiener process has
also many nice properties; e.g., the random effects and
explanatory variables can be flexibly incorporated into the
model. If the distribution of the measured characteristic is
not normal, an “isoprobabilistic transformation,” which
consists in transforming the initial distribution law in an
equivalent normal one (with, for example, the same entropy
and median, or, the same median and a quartile, depending
on the properties we want to retain) can still be applied to
enforce the data to be pseudonormal.

To define precisely its objectives, as already mentioned,
our research work focuses on the development of a “generic”
method for the prescription of optimal CSADDT used to
qualify concrete durability. .is method is called “generic”
since it can be applied for any degradation mechanisms. It
can exploit data either from experimental preliminary tests
or from proven physical models and can deal with any kind
of random degradation data with the nonlinear generalized
Wiener process. To demonstrate the relevancy of our
method, we apply it to the case of the degradation of the
concrete by carbonation. .is is one of the most studied
degradation phenomena on the concrete. Concrete car-
bonation leads to the corrosion of reinforced concrete and
cause damages that destroy the structures. .us, civil en-
gineers conduct many studies in the field of accelerated
carbonation tests, carbonation diffusion, and models in
order to understand this phenomenon and to predict the
lifetime of reinforced concrete structures [21].

.e remainder of the paper is arranged as follows.
Section 2 will present the physical and stochastic carbon-
ation process modelling. Hyvert model, used in the first stage
of data generation, will be detailed before the presentation of
the nonlinear generalized Wiener process. .e second stage
of our generic method consists in the maximum likelihood
estimations (MLEs) of parameters completed by the Ex-
pectation-Maximization (EM) algorithm (Section 3.1). .e
third stage of durability estimation is developed in Section
3.2. Section 4 describes the fourth stage of the generic
method: how to design optimal CSADDTfor the destructive
test..e proportion of units allocated to each stress level and
test stress levels will be determined based on three opti-
mization criteria. In subsequent Section 5, we propose to
apply our method to the case of the qualification of concrete
durability under carbonation, with the aim to show the
performance of the proposed methods. Section 6 concludes
the paper.

A graphical abstract is proposed to assist in the un-
derstanding of our approach (Figure 1).

2. Carbonation Process Modelling

As illustrated in Figure 1, the very first stage of our approach
is to collect data from degradation tests or from physical laws
and to model these data using a stochastic process formalism
suitable for the optimization of ADDT.

2.1. Probabilized Physical Model. As already mentioned,
availability of comprehensive experimental carbonation tests
data is limited. Use of a carbonation physical model can be
an option to get prior alternative data (stage 1 of the
graphical abstract). In the following, we have used the
Hyvert carbonation model in order to simulate data tests.
.is model provides the value of the carbonation depth Ydata
as a function of time t. It explicitly involves the influence of
the CO2 pressure at the concrete surface P0, which will be the
acceleration stress. .e reason of the choice of the Hyvert
model is not only based on a criterion of accuracy, but it
relies more specifically on the fact that its main input pa-
rameters have known statistical distribution laws that allow
simulating uncertainty effect on the simulation of carbon-
ation depth value Ydata(t). .is carbonation depth can be
estimated as

Ydata(t) �

�������������������������������������������������������

2.err1 Do
CO2/Q1( 􏼁ref( 􏼁 · Q1 · P0 · t · ke · kp

R.T. 1 + 23.5C2′ · P0/Patm( 􏼁
0.67

􏼐 􏼑 C2′/0.67 + 1 · P0/Patm( 􏼁
0.67

+ Q1􏼐 􏼑

􏽶
􏽴

, (1)

with (Do
CO2/Q1)ref � 6.44 · 10− 13 · (36.4 · e− 0.04fcm,28)2 when

Do
CO2 is not available.
.e meanings of the model parameters, their charac-

teristic values, and distribution statistical laws, if available,
used for the prior database generation are reported in
Table 1.

2.2. Degradation Processes. .e key point of the first stage
consists in modelling data through a formalism suitable for
optimization. Stochastic processes, with their capacity to
characterize the uncertainty and dynamics of the degrada-
tion process, have been used for this purpose. Stochastic
processes are increasingly used by engineers to predict the
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reliability of products. .ere are different types of stochastic
models in the literature. Among them, the Wiener process
has received widespread attention in degradation data
analysis and performs well. .e primary reason why we
select the Wiener process to model the carbonation depth
evolution is that from the physical standpoint, the degra-
dation phenomena can be viewed as an accumulation of
additive and irreversible damages caused by a sequence of
internal and external random shocks. Wiener process is very
suitable to model this.

We propose here to analyze the degradation by using a
nonlinear generalized Wiener process, which can be
expressed as

Ymod(t) � ηΛ(t) + σBB(Λ(t)). (2)

where η is the degradation rate, which represents the speed
of product change from normal to failure. Generally
speaking, the greater the stress condition, the larger the η.
Λ(t) is the function of time, which is specified according to
degradation physics or empirical observations. For the

Concrete: EN 206/new formulation
Objective : qualification of new mix

Qualification test: carbonation accelerated test
Objective : acceleration of test and data collection

Building a database of carbonation degradation
Objective : provide date for stochastic process modeling

Collect data from
laboratory tests

Generate data from a probabilized

Is comprehensive experimental database available ?
Yes

Stage 1

No

Objective : derive the parameters of a stochastic process

Sub-stage 2.1 : maximum likelihood estimation of parameters
with explicit expressions

Sub-stage 2.2 : expectation - maximization algorithm for
estimation of complementary parameters

Durability estimation (
Objective : derive the mean-time-to-failure and its confidence interval

Sub-stage 3.1 : estimation of durability indicators (mean-time-to-failure,
guaranteed value of lifetime @ specified risk level)

Sub-stage 3.2 : interval estimation

Optimal and robust design of constant-stress ADT (CSADT)
Objective : find samples allocation, number, and frequencies of measures for an
optimal estimation of durability indicators. 

Sub-stage 4.1 : optimization of a 2-level CSADT with study of the
effect of stress levels

Sub-stage 4.2 : robustness and sensitivity analysis

Stage 2

Stage 3

Stage 4

Statistical inference (

physical model cf section 2.1

cf section 3.1)

cf section 3.1.1

cf section 3.1.2

cf section 3.2)

cf section 3.2.1

cf section 3.2.2

cf section 4 for theoretical aspects and section 5.2, 5.3, and 5.5 for applications

cf section 5.4

Figure 1: Graphical abstract to illustrate the optimization of an accelerated carbonation test of cementitious materials.
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concrete, the mechanism of concrete carbonation is studied
by several well-established models [22, 23] which demon-
strates that Λ(t) �

�
t

√
.

According to the definition of Wiener process,
Ymod(Λ(t)) may decrease between two consecutive times
while, in fact, degradation process is constantly increasing
and monotonic. But, as we explain in the introduction, the
Wiener process can be applied to model the evolution of
damage because it shows increasing degradation on average
and that the possible decrease between two times can be used
to take into account the measurement errors and the var-
iability between two tested samples. Moreover, when ηΛ(t)

is “large” compared with σB

����
Λ(t)

􏽰
, e.g., ηΛ(t)≫ σB

����
Λ(t)

􏽰
;

therefore, the probability that degradation increment is
negative becomes small and can be ignored. .is is the case
in our situation. .is tendency is enhanced when Λ(t)

increases over time [24]. .erefore, Wiener process can be
used to model the degradation path whether the degradation
process is monotonous or not.

2.3. Accelerated Carbonation Test. .e accelerated stress is
the factor that accelerates the studied degradation phe-
nomenon. In our case, the stress used is the CO2 concen-
tration P0 and it is kept constant to be compliant with the
different standards on accelerated carbonation tests. .e
optimization work will consist, among other parameters to
adjust, in determining the number of stress levels and
samples for each level in order to provide a better estimates’
accuracy under constraints of total sample size, total du-
ration of tests, or total costs.

In the model (equation (2)), η denotes the degradation rate
which obviously should change when the acceleration stress is
different. .e link function between the degradation rate and
stress level can follow one of the three functions as follows:

(i) Power law relation: η(Sk) � ξ0Sk
ϑ

(ii) Arrhenius relation: η(Sk) � ξ0e− ϑ/Sk

(iii) Exponential relation: η(Sk) � ξ0eϑSk

Here, ξ0 and ϑ are the constants to be determined and Sk is
the kth level of stress, stress considered here to be the CO2
pressure P0.

Prior standardization of Sk can be applied to obtain a
unique form of the degradation rate:

η sk( 􏼁 � αe
βsk , (3)

where sk represents the kth standardized stress level, which is
defined as

sk �

ln Sk − ln S0

ln Smax − ln S0
, for the power law relation,

1/Sk( 􏼁 − 1/S0( 􏼁

1/Smax( 􏼁 − 1/S0( 􏼁
, for the Arrhenius relation,

Sk − S0

Smax − S0
, for the exponential relation,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where S0 and Smax, respectively, are the normal or service stress
and the maximum physically allowable stress, respectively.
Under the standardization, s0 � 0<s1< · · · <sk< · · · <smax � 1.

For the concrete, due to design tolerances,
manufacturing variation, and other uncertainties, reliability
of the same type of concrete may have inherent difference
called heterogeneity. In order to get a more accurate reli-
ability assessment result, it is necessary to incorporate the
heterogeneity into the degradation assessment model. .is
measure has a theoretical value and practical engineering
significance, which has been confirmed by many studies
[16, 25]. In our case, the parameter α is assumed to follow
normal distribution and it is s-independent from stress
levels. After the transformation, the model can be expressed
as

Ymod(t) � αeβskΛ(t) + σBB(Λ(t)),

α ∼ N μα, σ2α( 􏼁,Λ(t) �
�
t

√
,

⎧⎨

⎩ (5)

Table 1: Input parameters for the Hyvert model to generate data (from [15]).

Parameters Units Description
Characteristic

values
(mean-variance)

Standard
deviation

Statistic
distribution

err1 — Error estimation of (Do
CO2

/Q1)ref 0.84 0.52 Lognormal
D0

CO2
m2/S Diffusion coefficient out of porous zone 114.10− 7 182.10− 8 Normal

Q1 Mol/l Quantity of Portlandite Ca (OH)2 2.19 — Deterministic
fcm,28 MPa Compressive strength of the concrete 35 2 Lognormal
P0 Pa CO2 pressure on the concrete surface 30 — Deterministic

Ke — Parameter taking into account environmental
conditions 1 0.1 Normal

Kp — Parameter taking into account thermal treatment 0.49 — Deterministic
Patm Pa .e atmospheric pressure 105 — Deterministic
T K .e temperature in Kelvin 293 — Deterministic
R J/K·mol .e perfect gases constant 8.31 — Deterministic
C2′ mol/l .e quantity of CSH-hydrated calcium silicate 2.34 — Deterministic
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where the unknown parameters of the process are
Θ � (μα, σ2α, β, σ2B).

Once the parameters are determined, theWiener process
can be used, for example, to find the statistical distribution of
the carbonation depth for a set value of time, or of the
duration for an allowable carbonation depth (see Sections
3.2 and 4.1, for the latter). But its main use will be to design
an optimal ADDT (see Sections 4 and 5).

2.4. Notations and Assumptions. To use Wiener process for
the purposes mentioned above, initial choices and as-
sumptions have to be put forward:

(1) We will use CSADDT for its operational conve-
nience..e number of stress levels is denoted by “d,”
and, thus, sk, k � 1, 2, . . . , d. .e test is destructive,
i.e., a unit can only be tested once.

(2) .e total number of units available for the test is N;
Nk of them are allocated to the stress level sk, such
that 􏽐

d
k�1 Nk � N. Using a different unit allocation at

all levels of an accelerating variable is recommended
by Meeker et al. [8].

(3) Let mk and fk, respectively, represent the number
and frequency of measurements for units at the stress
level sk. Transformed time is Λ(tkj), such that
Λ(tkj) �

���
jfk

􏽰
. And the corresponding number of

samples is nkj, such that 􏽐
mk

j�1 nkj � Nk. We assume
the same number of samples at each test time
nk1 � nk2 �, . . . , � nkmk

� nk, such that mknk � Nk.
And set pkj � (nkj/N) � pk, j � 1, 2, . . . , mk, such
that 􏽐

d
k�1 􏽐

mk

j�1 pkj � 􏽐
d
k�1 pkmk � 1.

(4) Under each stress level sk, k � 1, . . . , d, the degra-
dation characteristic ykji of the ith unit
(i � 1, . . . , nk) follows normal distribution with
mean αkjie

βskΛ(tkj) and variance σ2BΛ(tkj) given that
the value of α is αkji. Since the test is destructive and
the initial degradation measurement is 0, then
degradation increment Δykji � ykji.

(5) A unit is assumed to fail at time t∗ when its deg-
radation Ymod(t∗) crosses a predetermined failure
threshold ω.

3. Process Parameters and
Durability Estimation

3.1. Parameter Estimation

3.1.1. Maximum Likelihood Estimation (MLE). .e MLE
corresponds to substage 2.1 in the graphical abstract. It aims
in deriving process parameters with explicit expressions.

.e unknown parameters of the nonlinear generalized
Wiener process have to be estimated from data provided by
actual (experiments) or simulated (Hyvert model)
accelerated carbonation tests. Following the argument in the
assumptions, given the value of αkji, the PDF f(ykji | αkji) of
degradation data ykji is normally distributed with mean
αkjie

βskΛ(tkj) and variance σ2BΛ(tkj). .erefore, the likeli-
hood function of the proposed model is

L � 􏽙
d

k�1
􏽙

mk

j�1
􏽙

nkj

i�1
􏽚
∞

− ∞
f ykji

􏼌􏼌􏼌􏼌􏼌 αkji􏼒 􏼓 × f αkji􏼐 􏼑dαkji. (6)

.en, the log-likelihood function of Θ, up to a constant,
is

l � ln L � −
1
2

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

B2
2kji

Λ tkj􏼐 􏼑B1kj

+ lnΛ tkj􏼐 􏼑 + lnB1kj
⎛⎝ ⎞⎠,

(7a)

where B1kj � σ2B + σ2αe2βskΛ(tkj) and B2kji � ykji − eβskμα
Λ(tkj).

In the particular case of partially CSADDT (where the
lower stress level used is the nominal standardized condition
s0), the log-likelihood function can be written:

l � ln L � −
1
2

B2
2ji/s0( )

Λ t j/s0( )􏼒 􏼓

+ lnΛ t j/s0( )􏼒 􏼓 + lnB 1j/s0( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1
2

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

B2
2kji

Λ tkj􏼐 􏼑B1kj

+ lnΛ tkj􏼐 􏼑 + lnB1kj
⎛⎝ ⎞⎠.

(7b)

where t(j/s0) corresponds to the specific time sequence of
tests at nominal standardized conditions s0, y(ji/s0) are the
associated i degradation data obtained at t(j/s0) under s0,
B1j/s0 � σ2B + σ2αΛ(t(j/s0)), and B(2ji/s0) � y(ji/s0) − μαΛ(t(j/s0)).

.e MLEs of unknown parametersΘ can be obtained by
maximizing log-likelihood function (7). But, generally
speaking, there are no explicit expressions for these un-
known parameters. Although the MLEs can be obtained
numerically, the log-likelihood function is rather sensitive to
parameter β; thus, the estimates can substantially fluctuate.
At the same time, according to the recommendations given
by Mc Lachlan and Krishnan [26], the EM algorithm can
effectively provide the estimates of parameters and offer a
simpler framework for computation of the MLEs. .erefore,
the EM algorithm is adopted to obtain the MLEs of un-
known parameters.

3.1.2. EM Algorithm. .is section corresponds to substage
2.2 of the generic approach illustrated in the graphical ab-
stract. .e EM algorithm is an iterative algorithm, which
includes the expectation step (E-Step) and the maximization
step (M-Step). .e E-step gives the Q-function by taking the
expectation of complete-data log-likelihood function. .e
M-step maximizes the Q-function to update the parameter
estimates, which often have a simple closed form. .e EM
algorithm is efficient in finding theMLEs when computation
of the expectation and the maximization is easy to perform
[26].

.e joint PDF of ykji and αkji is f(ykji, αkji) �

f(ykji | αkji) · f(αkji). .en, the conditional distribution of
αkji can be obtained by integrating ykji out of the joint PDF,
which yields f(αkji | ykji) that follows normal distribution
with mean μkjiy ≜ (μασ2B + σ2αeβsk ykji)/(σ2B + σ2αe2βskΛ(tkj))
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and variance σ2kjiy≜(σ
2
ασ

2
B)/(σ2B + σ2αe2βskΛ(tkj)). .erefore,

E(αkji | ykji) � μkjiy and E(α2kji | ykji) � μ2kjiy + σ2kjiy which
can be used to calculate the Q-function at the E-step of the
EM algorithm.

Based on the observed degradation data, as well as the
random effect αkji, the complete-data log-likelihood func-
tion, up to a constant, is

lC � −
1
2

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1
ln σ2B + lnΛ tkj􏼐 􏼑 +

ykji − αkjie
βskΛ tkj􏼐 􏼑􏼐 􏼑

2

σ2BΛ tkj􏼐 􏼑

⎡⎢⎢⎢⎣

+ ln σ2α +
αkji − μα􏼐 􏼑

2

σ2α
⎤⎥⎥⎥⎦.

(8)

In the following, the EM algorithm is used to compute
the estimator of the model parameter vector:

E-step: calculate the Q-function, which is the expec-
tation of lC. Assume that the current value of the model
parameter vector isΘ(h) � (μ(h)

α , σ2(h)
α , β(h), σ2(h)

B ); then,
the Q-function is

Q Θ |Θ(h)
􏼐 􏼑 � −

1
2

N ln σ2B + 􏽘
d

k�1
􏽘

mk

j�1
nkj lnΛ tkj􏼐 􏼑⎡⎢⎢⎣ + 􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

y2
kji

σ2BΛ tkj􏼐 􏼑

+ 􏽘
d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

e2βskΛ tkj􏼐 􏼑E α2kji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓

σ2B
− 􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

2ykjie
βsk E αkji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓

σ2B

+ N ln σ2α + 􏽘
d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

E α2kji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓

σ2α
−
2μα
σ2α

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1
E αkji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓 +
Nμ2α
σ2α

⎤⎥⎥⎦.

(9)

M-step: compute the first derivative of Q(Θ |Θ(h)) with
respect to Θ, and set its value to be zero. .en, Θ(h+1)

can be derived from the following system of equations:

􏽢μ(h+1)
α �

1
N

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1
E αkji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓, (10)

􏽢σ2(h+1)
α �

1
N

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1
E α2kji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓 − 􏽢μ(h+1)
α􏼐 􏼑

2
, (11)

􏽘

d

k�1
ske

􏽢β
(h+1)

sk Ak1 − e
􏽢β

(h+1)

sk Ak2􏼠 􏼡 � 0, (12)

􏽢σ2(h+1)
B �

1
N

􏽘

d

k�1
􏽘

mk

j�1
􏽘

nkj

i�1

y2
kji

Λ tkj􏼐 􏼑
− 2ykjie

􏽢β
(h+1)

sk E αkji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓⎡⎢⎣

+ Λ tkj􏼐 􏼑e
2􏽢β

(h+1)

sk E α2kji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓,

(13)

where Ak1 � 􏽐
mk

j�1 􏽐
nkj

i�1 ykjiE(αkji | ykji) and Ak2 � 􏽐
mk

j�1 􏽐
nkj

i�1
Λ(tkj)E(α2kji | ykji), k � 1, 2.

.e parameter β can be obtained according to the
MATLAB function “fzero” or be approximately estimated as

􏽢βM �
1
d

􏽘

d

k�1

1
sk

ln 􏽘

mk

j�1
􏽘

nkj

i�1
ykjiE αkji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓⎛⎝ ⎞⎠⎡⎢⎢⎣

− ln 􏽘

mk

j�1
􏽘

nkj

i�1
Λ tkj􏼐 􏼑E α2kji

􏼌􏼌􏼌􏼌􏼌 ykji􏼒 􏼓⎛⎝ ⎞⎠⎤⎥⎥⎦.

(14)

It is worth noting that equation (12) is a one-dimensional
equation-solved problem. Hence, it is easier than the direct
solving of the likelihood function in equation (7).

To sum up and detail substage 2.2 of our generic method,
the solution process of the EM algorithm is as follows
(Algorithm 1):

3.2. Durability Estimation

3.2.1. Estimation of MTTF. .e third stage of our generic
method consists in the estimation of durability indicators
from the stochastic process modelling.

To guarantee the durability of the concrete, it is im-
portant to know the failure time (substage 3.1 in the
graphical abstract)..e concept of first passage time (FPT) is
often used to get the failure time. .e durability of the
concrete can be defined as the first time at which the car-
bonation reaches the steel rebars depth ω, a critical value
representing the distance between the concrete surface and
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the reinforcements. .e first passage time represents the
durability (T) of the concrete and is defined by

T � inf t | Ymod(t)>ω􏼈 􏼉. (15)

.e durability T conditioning on α under a stress level sk

follows a transformation-inverse Gaussian distribution.
Considering random effects in accelerated model (4), that is,
α ∼ N(μα, σ2α), the PDF of T by integrating α out of
transformation-inverse Gaussian distribution becomes

fT(t) �
ω

�����������������������

2π e2βskΛ4(t)σ2α + Λ3(t)σ2B( 􏼁

􏽱 exp −
ω − μαeβskΛ(t)( 􏼁

2

2 e2βskΛ2(t)σ2α + Λ(t)σ2B( 􏼁

⎧⎨

⎩

⎫⎬

⎭. (16)

.en, the durability of the concrete under normal
conditions of carbonation is

TMTTF ≈
2ω2

σ2α
D

μα�
2

√
σα

􏼠 􏼡􏼢 􏼣

2

, (17)

where D(z) � exp(− z2) 􏽒
z

0 exp(u2)du is the Dawson inte-
gral for all real z. According to the approximate property of
Dawson integral, for large z, D(z) ≈ (1/(2z)). .erefore,
when (μα/

�
2

√
σα) is large enough, TMTTF can be approxi-

mated as TMTTF ≈ (ω2/μ2α).
.e MLE 􏽢TMTTF,M of the durability for the concrete can

be obtained by substituting estimated parameters 􏽢ΘM into
equation (17).

3.2.2. Interval Estimation. Once the MLE is carried out, the
confidence interval of TMTTF can be obtained using its as-
ymptotic normality. Unfortunately, it is not easy to carry out
due to the complexity of Fisher information matrix. A more
attractive alternative is to use the bootstrap method [27].

To sum up substage 3.2 of our generic method, the
detailed procedure of the percentile bootstrap (PB) method
and the bias-corrected percentile bootstrap (BCPB) method
are outlined below in seven steps:

Step 1: generate n samples α1, α2, . . . , αn from normal
distribution N(􏽢μα, 􏽢σ2α).
Step 2: substitute αi into the model (2), and use the
property of independent increments to generate n

simulated degradation paths.
Step 3: use the n simulated degradation paths to esti-
mate the parameters of model (5). Denote the bootstrap
estimates of parameters as 􏽢ΘB (where “B” index cor-
responds to the current Bootstrap repetition).
Step 4: substitute the bootstrap estimates 􏽢ΘB into (8)
and then obtain the bootstrap estimate of durability
􏽢TMTTF,B � TMTTF( 􏽢ΘB).
Step 5: repeat B (B is a large number, e.g. B � 3000
times from step 1 to step 4)
Step 6: sort 􏽢TMTTF,B from small to large, and denote as
􏽢TMTTF,B,(1),

􏽢TMTTF,B,(2), . . . , 􏽢TMTTF,B,(B).
Step 7: the confidence interval of approximate 100(1 −

ζ)% for the PB method and the BCPB method are,
respectively, expressed as

PB 􏽢TMTTF,B,LPB, 􏽢TMTTF,B,UPB􏽨 􏽩 � 􏽢TMTTF,B,(ζ∗B),
􏽢TMTTF,B,(B− ζ∗B)􏽨 􏽩,

BCPB 􏽢TMTTF,B,LPCPB, 􏽢TMTTF,B,UBCPB􏽨 􏽩 � 􏽢TMTTF,B,(l),
􏽢TMTTF,B,(u)􏽨 􏽩,

⎧⎪⎨

⎪⎩
(18)

where l � B ×Φ(2Φ− 1(p∗) +Φ− 1(ζ/2)), u � B× Φ(2Φ− 1

(p∗) +Φ− 1(1 − (ζ/2))), and p∗ is the proportion of the B

values 􏽢TMTTF,B that are less than 􏽢TMTTF,M.

3.3. Sample Size Estimation. It is supposed that the sample
size N is determined by using the following condition:

P (1 − ε)TMTTF ≤ 􏽢TMTTF,M ≤ (1 + ε)TMTTF􏽮 􏽯≥ϕ, (19)

Step 1: set the initial value of the parameters (μ(0)
α , σ(0)

α , β(0), σ2(0)
B ) and number of iterations Niter

Step 2: obtain 􏽢μ(0)
α according to equation (10)

Step 3: put 􏽢μ(h+1)
α into equation (11) to obtain 􏽢σ2(h+1)

α

Step 4: 􏽢β
(h+1)

can be obtained by solving equation (12), or can be approximated by using (14)
Step 5: put 􏽢β

(h+1)
into equation (13) to obtain 􏽢σ2(h+1)

B

Step 6: repeat Niter time from steps 2 and 5

ALGORITHM 1: Solution process of the EM algorithm.
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where ε is a positive constant, which can be assimilated to
obtain accuracy, and satisfied 0< ε< 1, and ϕ which cor-
responds to the confidence level and is also a positive
constant (see Figure 2 for a better understanding of pa-
rameters ε and ϕ).

Since 􏽢TMTTF,M can be approximated as a normal dis-
tribution with mean TMTTF and variance Avar(􏽢TMTTF,M),
therefore, we have

P − z(1− ϕ)/2 ≤
􏽢TMTTF,M − TMTTF�������������
Avar 􏽢TMTTF,M􏼐 􏼑

􏽱 ≤ z(1− ϕ)/2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≥ϕ, (20)

where z((1− ϕ))/2 is the ((1 − ϕ)/2)th quantile of the standard
normal distribution (in other words, (1 − ϕ)/2 is the con-
fidence level).

Comparing equations (19) and (20), the minimum
sample size can be approximately determined as

N
∗ ≈

H′G− 1(Θ)H z(1− ϕ)/2􏼐 􏼑
2

ε2 TMTTF( 􏼁
2 , (21)

where H′ � ((zTMTTF/zμα), (zTMTTF/zσ2α), (zTMTTF/zβ),

and (zTMTTF/zσ2B))′ and G(Θ) � (1/N)I(Θ), which is the
Fisher information matrix, whose detailed expressions are
listed in the Appendix.

According to (17), H′ can be expressed as

zTMTTF

zμα
�
2

�
2

√
ω2

σ3α
D

μα�
2

√
σα

􏼠 􏼡 −
2μα
σ2α

TMTTF,

zTMTTF

zσ2α
�
μ2α
σ4α

TMTTF −
1
σ2α

TMTTF −

�
2

√
μαω2

σ5α
D

μα�
2

√
σα

􏼠 􏼡,

zTMTTF

zβ
�

zTMTTF

zσ2B
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

4. Optimal Design of Accelerated Carbonation
Destructive Test Plan

Following the argument in the assumptions (see Section 2.4),
for 1≤ k≤d, nk indicates the number of units assigned to the
stress level sk and pk � (nk/N) denotes the proportion of test
units that is allocated to sk, where 􏽐

d
k�1 nk � N. .e number

of measurements is mk under stress level sk. .ere are nkj

units assigned to the test time Λ(tkj), such that
􏽐

mk

j�1 nkj � nk. A unit can only be tested only once, since the
test is destructive. .e total time on test (TTT) is mkfk,
where fk is the inspection frequency under stress level sk

and satisfies fk � Λ(tkj) − Λ(tk(j− 1)).
In this section, we consider the optimization problem of

determining the allocation of the units (n1, n2, . . . , nd) or the
proportion (p1, p2, . . . , pd), the inspection frequency (fk),
and the number of measurements (mk) according to opti-
mization criteria under normal operating conditions subject
to a prefixed budget.

4.1. Constraints

(1) .e test time tkmk
, k � 1, . . . , d should not exceed the

specified test duration tA

(2) .e sample size 􏽐
d
k�1 nk � N should not exceed the

number of test units available NA

(3) .e total test cost TC should not exceed the prefixed
budget Cb

.e total cost of conducting a CSADT can be expressed
as

TC n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁 � Cop 􏽘

d

k�1
fkmk + Cmea + Cd( 􏼁 􏽘

d

k�1
nkmk, (23)

where Cop denotes the operation cost of a unit per time, Cmea
denotes the unit cost for each measurement, and Cd denotes
the unit cost for each sample.

4.2.OptimizationCriteria. A-, D-, andV-optimality are three
commonly used optimality criteria based on the Fisher in-
formation matrix I(Θ) (see detailed expression in Appendix).
.ese criteria optimize the objective function from different
theoretical perspectives. We will see below that A-optimality
and D-optimality emphasize the estimation accuracy of the
model parameters from the perspective of variance and
confidence interval, respectively. V-optimality focuses on the
accuracy of the estimated durability by minimizing the

asymptotic variance of the estimated durability. V-optimality
is most used in engineering applications where we are in-
terested more in estimating a reliability indicator (such as
MTTF, a p-quantile), a probability of failure, or to guarantee a
performance/a lifetime with a given level of risk.

In essence, the A-, D-, and V-optimality criteria cannot
be judged as good or bad. It depends on what we focus on. If
we are interested to guarantee an indicator related to du-
rability, we can choose V-optimality. If we focus on the
accuracy of the model, for example, to find a maintenance
strategy, we can choose D-optimality or A-optimality.

In the first simulations we will carry out, we compare the
results given by the three criteria for the optimal CSADDT
plans (see Section 5.2.1). But, since we focus mainly on a
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durability indicator in our case, only V-optimality will be
considered for the following simulations (from Section 5.2.2
up to the end).

Before proceeding further, we briefly review the defi-
nitions of these commonly used optimality criteria.

Criterion 1 (A-Optimality). .is criterion is based on the
minimization of the inverse Fisher information matrix trace.
A-optimality focuses on the accuracy of parameters esti-
mation, which is the same as the D-optimality. Unlike
D-optimality, A-optimality uses the variance of parameters
estimation as the accuracy. Due to the fact that the inverse of
Fisher information matrix is the asymptotic variance-co-
variance matrix, to minimize this trace is equivalent to
minimize total variance of the parameter estimates. .e
A-optimization problem can be formulated as follows:
Min trace I− 1 Θ | n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁( 􏼁,

subject to TC n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁≤Cb,

n≤NA, tk,mk
≤ tA, k � 1, . . . , d.

(24)

Criterion 2 (D-Optimality). .is second criterion is based
on the maximization of the Fisher information matrix de-
terminant. Actually, we first need to estimate the parameters
of the model when we analyze the reliability of concrete. .e
accuracy of model parameter estimation will affect the ac-
curacy of concrete reliability. D-optimality focuses on the
accuracy of parameter estimation. .e principle of this
criterion is based on the fact that the overall volume of the
asymptotic joint confidence region of Θ � (μα, σ2α, β, σ2B) is
proportional to |I− 1(Θ)|(− 1/2) [28, 29]. Motivated by this,
maximizing the determinant of the Fisher information
matrix is equivalent to minimizing asymptotic joint confi-
dence ellipsoid ofΘ and then maximizing the joint precision

of the estimators of Θ. .e D-optimization problem can be
formulated as follows:
Max det I Θ | n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁( 􏼁,

subject to TC n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁≤Cb,

n≤NA, tk,mk
≤ tA, k � 1, . . . , d.

(25)

Criterion 3 (V-Optimality). .is optimality criterion is
based on the minimization of the asymptotic variance of the
estimated durability at use condition. For the concrete, the
durability is an important index. We need to estimate the
durability at the normal or service stress level with maxi-
mum precision. .erefore, we can use the asymptotic var-
iance of durability at normal or service stress as the
optimality criterion. .e asymptotic variance of durability
can be obtained by using the delta method, and the for-
mulation can be expressed as

Avar 􏽢TMTTF
􏼌􏼌􏼌􏼌 n1, . . . , nd, f1, . . . , fd, m1, . . . , md􏼐 􏼑 � H′I− 1

(Θ)H.

(26)

.erefore, the V-optimization problem can be formu-
lated as follows:

Min Avar 􏽢TMTTF
􏼌􏼌􏼌􏼌 n1, . . . , nd, f1, . . . , fd, m1, . . . , md􏼐 􏼑,

subject to TC n1, . . . , nd, f1, . . . , fd, m1, . . . , md( 􏼁≤Cb,

n≤NA, tk,mk
≤ tA, k � 1, . . . , d.

(27)

It is difficult to obtain the analytic expression of the
optimal solution since there are random effects. Consider the
feature that the variables nk, fk, and mk are integers. We can
obtain the optimal solution after finite number of steps
(Algorithm 2).
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Figure 2: Illustration of the relationship between 􏽢TMTTF,M, ε, and ϕ (see equation (19)). (a) Illustration of varying ϕ with a constant value of ε.
(b) Illustration of varying εwith a constant value of ϕ (values taken as ϕ1 � 0.9 and ε1 � 10%, have been chosen here only for illustrative purpose).
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.e detailed algorithm for this section is given in Al-
gorithm 2.

5. Application to Carbonation Degradation

.e Wiener process is used to analyze the durability of
concrete. .e influence of stress level, detection frequency,
and number of detections on the optimal solution is dis-
cussed. We first generate the degradation path based on the
physical model. And then, the parameter estimates are
obtained by using the EM algorithm. Subsequently, the
interval estimation can be obtained according to the
bootstrap method. At last, we set the cost constraint, time
constraint, and sample constraint. .e optimal designs are
obtained according to algorithm 2.

5.1. Durability Estimate. .e concrete used is composed of
CEM I cement that can be used in prefabrication (52.5N)
with a water-to-equivalent binder (W/Equivalent Bind-
er� 0.55), compressive strength� 35MPa, and binder
equivalent content� 300 (kg/m3). All parameters necessary
for the generation of data are given in Table 1.

.e nominal stress (CO2 pressure “P0”) corresponds to
its normal concentration in the ambient air (∼0.03%); thus,
the lower bound of applied stress is P0 � 30 Pa. .e French
standard for accelerated carbonation tests XP P18-458 [30]

prescribes to use a concentration of CO2 equal to 50%..us,
the maximum level of applied stress will be P0 � 50, 000 Pa.

In the first demonstration of our generic CSADDT
optimization approach, we will take two intermediary stress
levels, S1 � 300 Pa and S2 � 20,000 Pa, between the normal
stress (30 Pa) and the maximum stress level (50,000 Pa).
Using the physical model, we generate several degradation
paths (for example, in our application, repeatability is sat-
isfactory for 200 paths) at S1 and S2, respectively. Figure 3
shows the degradation data at two stress levels. In the actual
carbonization test, the test is destructive. .erefore, we
suppose that a unit can only be tested once.

A distribution analysis shows that the depth of car-
bonation is lognormally distributed. .us, a prior iso-
probabilistic transformation is needed to work in a
normalized space of the depths of carbonation. We remind
that the generic formalism of the Wiener process assumed
that data are normally distributed.

Subsequently, we estimate the parametersΘ by using the
EM algorithm. .e estimated parameters are 􏽢μα �

0.0048358, 􏽢σα � 0.0015086, 􏽢β � 1.6325, and 􏽢σB � 0.0005178.
Figure 4 shows the estimated mean degradation paths for
each of the two levels used in the degradation test. From this
figure, we observe that the proposed Wiener model with
random effect does provide a good fit for the carbonization
process. In what follows, we take the MLE of parameters, 􏽢θ,

(1) Set nmax � min((Cb − 2 dCop)/(2 d(Cmea + Cd)), (NA/(2 d))), x is the floor of x, and nmax is the largest possible number for nk

when fk � 1 and mk � 2 for ∀k
(2) for n1 � nmin: nmax do
(3) . . .

(4) for nd � nmin: nmax do
(5) Set fmax � min(((Cb − 2(Cmea + Cd) 􏽐

d
k�1 nk)/2Cop) − d + 1, tA/2), where fmax is the largest possible number of fk when

nk is fixed and mk � 2 for ∀k
(6) for f1 � 1: fmax do
(7) . . .

(8) for fd � 1: fmax do
(9) for m1 � 2: (tA/f1) do
(10) . . .

(11) for md � 2: (tA/fd) do
(12) if TC≤Cb, 􏽐

d
k�1 nkmk ≤NA then

(13) if det(I(Θ))≥ Imax (D-optimality) then
(14) PlanD � (n1, . . . , nd, f1, . . . , fd, m1, . . . , md);
(15) end
(16) if Avar(􏽢TMTTF)≤Avarmin (V-optimality) then
(17) PlanV � (n1, . . . , nd, f1, . . . , fd, m1, . . . , md)

(18) end
(19) if trace(I− 1(Θ))≤ tracemin(I− 1(Θ)) (A-optimality) then
(20) PlanA � (n1, . . . , nd, f1, . . . , fd, m1, . . . , md)

(21) end
(22) end
(23) end
(24) end
(25) end
(26) end
(27) end
(28) end

ALGORITHM 2: .e algorithm to solve the optimal solution.
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as the true model parameters and then describe the con-
struction of the optima design for the carbonization test.

Considering parameters 􏽢θ and substituting threshold
w � 0.035m (which corresponds to a rather conventional
value of concrete cover) into equation (17), we estimate an
average value of mean-time-to-failure 􏽢TMTTF equals to 69.5
years. A complementary interval estimation of 􏽢TMTTF can be
provided with a value of confidence level taken at 0.05 (i.e.,
ϕ� 0.9). Using the percentile bootstrap (PB) method, we
compute a confidence interval of [59.5, 81.3] years. .e
corresponding interval length is 21.8 years. By using the bias-
percentile bootstrap (BPB) method, we compute CI� [60.0,
81.4] years. .e corresponding interval length is 21.4 years,
which is less than that from the PBmethod..e BPBmethod
will be considered to have a higher accuracy than the PB one.

5.2.Applicationof theMethodon theOptimalDesignof2-Level
ADDT

5.2.1. Comparison of Two Scenarios. In this section, two
scenarios are compared. In the first scenario denoted as SI1,
S1 � 300 Pa and S2 � 20,000 Pa. In the second scenario
denoted as SI2, S1 � S0 � 30 Pa and S2 � Smax � 50, 000 Pa.
We will assume the following: cost factors Cb � 1100 units of
cost (UC), Cmea � 2UC/measurement, Cop � 8UC/unit
time (here, the unit of time is 1month, and, of course, it can
be modified and expressed in days or weeks, etc.),
Cd � 15UC/unit sample, NA is 60 samples, tmax is 12
months, and nmin is 3 samples. .e costs’ figures have no
actual meaning, and they essentially reflect the relative
importance of cost types. .is minimum value of samples, at
each test time under each stress level, is set at 3 so that, if one
of the three measures fails, then two samples still remain to
give a sense to the calculation of the averaged degradation at
these test times. Table 2 sums up the optimal solutions
provided following the V-optimality, D-optimality, and
A-optimality conditions. According to Table 2, we have the
same situation for A-optimality criteria, and for V- and
D-optimality, the total number of concrete specimens is
almost the same, but the repartition is different.

Furthermore, in order to compare different optimality
criteria, we calculate the corresponding confidence interval
of 􏽢TMTTF under the optimal scheme. .e confidence level is
0.05 (i.e., ϕ� 0.9). .e results are described in Table 3. In
both scenarios SI1 and SI2, the interval length of 􏽢TMTTF
under V-optimality is shorter than that of D-optimality and
A-optimality. Moreover, the length of the interval in case SI2
is shorter than the length of the interval in case SI1. .ese
conclusions can be explained by asymptotic normality.
According to asymptotic normality, the confidence interval
of TMTTF is [􏽢TMTTF,M − z1− (ϕ/2)

�������������

Avar(􏽢TMTTF,M)

􏽱

, 􏽢TMTTF,M+

z1− (ϕ/2)

�������������

Avar(􏽢TMTTF,M)

􏽱

]. .e interval width is proportional
to the variance, and the V-optimality objective is to mini-
mize this variance. .erefore, the interval width under the
V-optimality is the smallest. Considering the absolute value
of accuracy ε, we must admit that it is rather important. .is
is due to the high variability of lifetime since the degradation
curves almost reach an asymptote at high value of time. We
can observe it by drawing a horizontal line for an allowable
preset level of degradation in Figure 1 as an illustration. .is
is an important point as it may suggest to try to find the
sample size that satisfies both a small confidence level (high
value of ϕ) and a good accuracy (e.g. ε≤10%) is not a
relevant strategy. For instance, for situation SI2, if we set ϕ to
0.95 and ε to 10%, the sample size should be made of about
1600 samples, whichmakes no sense from an industrial view.

According to Table 2 and information from the confi-
dence interval in Table 3, we can conclude, and it makes
sense, that the best optimal plan is SI2 (i.e., with S1 � 30 Pa
and S2 � 50,000 Pa (SI2)). Indeed, intuitively, we can un-
derstand that the more distant the two stress levels are from
each other, the better the estimation of durability indicators
will be (the points allowing the "regression" are distant). It
will be confirmed in Section 5.2.2.

Example of preset level of
allowable degradation
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Figure 3: Simulated degradation data.
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Figure 4: Estimated mean degradation paths.
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5.2.2. Effects of Lower and Upper Bound Values of Stress
Levels. As our optimization objective is related to the
minimization of the asymptotic variance of lifetime indi-
cators and that the V-optimality proves its better relevancy,
we limit the analysis of the bound values of stress levels to
this optimality criterion in the following.

In the first analysis, we study the effect of the CSADDT
lower stress level. Here, the upper bound is set constant at
S2 � 20, 000 Pa and the lower bound S1 is increased from 30
to 300 Pa. When S1 � 30 Pa, we are in the case of a partially
CSADDT (“partially,” because the lower stress level of the
two levels applied corresponds to nominal or service con-
ditions). Partially, ADDTs are often used when stress-life
relationship is not known or cannot be assumed to be
known, but the formalism of our model with the stan-
dardization of the stress level (i.e., standardized value of S1 is
s1 � s0 � 0) is sufficiently generic to consider the test in the
nominal condition as a special case of our model.

In the following calculations, the cost parameters are the
same as in Section 5.2.1. In Table 4 and Figure 5, we observe
that the value of V-optimality indicator increases as the
lower bound increases, and the optimal plan changes with
different lower stress levels (i.e., values of fi, mi, and ni are
different). .ese observations confirm those given in Ta-
bles 2 and 3 and lead us to conclude that optimality is
obtained for the smaller lower bound S1 � Smin � 30 Pa.
From a practical point of view, these results allow us to
conclude that the use of a partially constant-stress ADDT
should be preferred.

We complete the analysis of the bound values of stress
levels by the study of the effect of CSADDTupper stress level.
.e lower bound is set constant at S1 � 300 Pa and the upper

bound S2 is increased from 20,000 to 50,000 Pa. .e results
are summed up in Table 5. We observe that V-optimality
indicator values decrease as the upper bound increases.
Compared with the last row of Table 4 (corresponding to
S1 � 300 Pa), we note that the value of the upper bound does
not affect the characteristics of optimal plan (f1 � 1, f2 � 4,
m1 � 3, m2 � 2, n1 � 13, and n2 �10). .ese results with those
of Table 4 confirm that a P-CSADDT with the highest
possible upper bound—the degradation mechanisms must
be the same as under nominal conditions—should be
chosen. Figure 6 gives a presentation of the optimal test plan.

5.2.3. Effects of Time Constraint. Results of test plan opti-
mization above show that total test duration ranges from 6 to
8months. But even if accelerated, these tests could be
considered too long regarding industrial time constraints. In
Section 5.2.3, we study the effect of the reduction of test time.
.is time will range from 4 to 24 weeks; the cost parameters
and the sample size constraint (60 samples) are the same as
initial. Specifically, we want to see if, for a shorter test time
constraint, there will be a change of lower and upper bounds
from the optimal values S1 � 30 Pa and S2 � 50,000 Pa found
with a larger time constraint above. Table 6 sums up the
results. .e most significant observation is that if test time
duration decreases, the optimal lower bound is no longer the
nominal or service stress level as suggested for longer test
duration. .e partially CSADDT is no more the optimal
plan. Indeed, for short test time, tests carried out at nominal
conditions do not give enough information about the
degradation process because this latter barely starts at low
stress level for short time..is is why it seemsmore logical to

Table 2: Optimal solution under different optimality criteria.

Stress S1 � 300 Pa, S2 � 20,000 Pa (SI1) S1 � 30 Pa, S2 � 50,000 Pa (SI2)
Criteria V-optimality D-optimality A-optimality V-optimality D-optimality A-optimality
N1(p1) 39 (66.1%) 30 (51.7%) 32 (54.2%) 35 (59.3%) 26 (44.1%) 32 (54.2%)
N2(p2) 20 (33.9%) 28 (48.3%) 27 (45.8%) 24 (40.7%) 33 (55.9%) 27 (45.3%)
Sample size 59 58 59 59 59 59
f1 1 1 1 1 1 1
f2 4 6 1 2 3 1
m1 3 2 8 7 2 8
m2 2 2 3 2 3 3
n1 13 15 4 5 13 4
n2 10 14 9 12 11 9
Total test duration 8 months 12m 8m 7m 9m 8m
Cost 1091 1098 1091 1091 1091 1091

Table 3: Comparison of different optimization criteria.

Stress level Optimality criteria Avar(􏽢TMTTF) det(I(Θ)) trace(I− 1(Θ)) CI∗ Accuracy ε (%)

S1 � 300 Pa, S2 � 20,000 Pa (SI1)
V-optimality 186.8 5.68e+ 32 2.26e − 2 [42.7, 96.2] year 38.6
D-optimality 198.8 7.67e+ 32 2.11e − 2 [41.8, 97.1] y 39.8
A-optimality 201.8 3.46e+ 32 1.98e − 2 [41.6, 97.3] y 40.1

S1 � 30 Pa, S2 � 50,000 Pa (SI2)
V-optimality 115.7 9.14e+ 33 6.73e − 3 [48.4, 90.5] y 30.4
D-optimality 123.4 1.70e+ 34 7.01e − 3 [47.7, 91.2] y 31.3
A-optimality 115.9329 9.697e+ 33 0.00656 [48.4, 90.6] y 30.4

∗CI: confidence interval for ϕ� 0.9.
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increase the low stress level in order to capture more sig-
nificant information about the degradation process.

5.3. Sample Size. As shown in equation (21) and discussed at
the end of Section 5.2.1, a relationship exists between the
sample size (and, consequently, the constraint on the
number of test units available, NA), the accuracy ε, and the
confidence level (1 − ϕ)/2. In the present section, we want to
quantify the influence of the optimality indicator and of the
upper and lower bounds of stress levels on the sample size
for a constant accuracy and a constant level of confidence. In
other words, we relaxed the constraint on the number of
tests units available NA. We consider, as an illustration, the

SI1 scenario (S1 � 300 Pa and S2 � 20,000 Pa), an accuracy ε of
20%, and a confidence level of 0.05 (ϕ� 0.9). .e test du-
ration TA is set here at 12 months.

From Table 7, we see that the use of V-optimality cri-
terion prescribes the smaller number of samples. It is logical
regarding that for the same number of samples, V-optimality
has shown that it gives the best accuracy (see Section 5.2.1
and Table 3). In Table 8, we show the influence of lower
bound value ranging from 30 to 300 Pa with a constant value
of S2 set to 20,000 Pa, for the unique case of V-optimality. As
the time constraint is high (TA � 12 months), the partially
CSADDT plan is optimal (see Section 5.2.3). In this situa-
tion, an increase in the lower bound value of stress level has a
negative effect; this means that sample size increases when

Table 4: Solution under V-optimality for different lower bounds (upper bound S2 � 50,000 Pa).

S1(Pa) N1(p1%) N2(p2%) Sample size N f1 f2 m1 m2 n1 n2 Total test duration Cost (UC) Avar (􏽢TMTTF) Accuracy ε (%)

30 35 (59.3) 24 (40.7) 59 1 2 7 2 5 12 7 months 1091 117.2 30.5
60 35 (59.3) 24 (40.7) 59 1 3 5 2 7 12 6 1091 126.5 31.7
90 35 (59.3) 24 (40.7) 59 1 3 5 2 7 12 6 1091 135.2 32.8
120 35 (59.3) 24 (40.7) 59 1 3 5 2 7 12 6 1091 143.5 33.8
150 35 (59.3) 24 (40.7) 59 1 3 5 2 7 12 6 1091 151.5 34.7
180 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 158.7 35.5
210 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 165.7 36.3
240 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 172.8 37.1
270 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 179.8 37.8
300 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 186.8 38.6
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Figure 5: Representation of the effects of upper and lower bounds of stress levels on the estimate accuracy ε.

Table 5: Solution under V-optimality for different upper bounds (lower bound S1 � 300 Pa).

S2(Pa) N1(p1%) N2 Sample size N f1 f2 m1 m2 n1 n2 Total test duration Cost (UC) Avar (􏽢TMTTF) Accuracy ε (%)

20,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 186.8 38.6
25,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 181.1 38.0
30,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 177.02 37.5
35,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 173.9 37.2
40,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 171.3 36.9
45,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 169.3 36.7
50,000 39 (66.1) 20 (33.9) 59 1 4 3 2 13 10 8 1091 167.5 36.5
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lower bound increases. In Table 9, we show the influence of
the upper bound value ranging from 20,000 to 50,000 Pa.We
see that the higher the value of S2 is, the lower the sample size
is.

.ese two tables lead us to conclude (or to confirm) that
for high test duration, a partially CSADDT with the higher
feasible upper bound of stress level is the optimal plan.

5.4. Sensitivity Analysis. In practice, the estimated param-
eters 􏽢ΘM may differ from the true value Θ. .erefore, it is
necessary to investigate the influences of these parameters

on the optimal CSADDT plan. With this aim, we compare
the different V-optimal two-stress CSADDT plans obtained
under various combinations of these parameters,
(1 + ε1)μα, (1 + ε2)σ2α, (1 + ε3)β, and (1 + ε4)σ2B, where
ε1, ε2, ε3, and ε4 denote the estimation errors for
μα, σ2α, β, and σ2B. Ten different combinations of errors are
studied according to the L9(34) orthogonal array (see the
four first columns of Table 10). .e same cost factors
(Cb, Cmea, Cop, Cd) � (1100, 2, 8, 15) are kept between the
ten different combinations..e results are summed up in the
remaining columns of Table 10. .e optimally designed
values of f1, . . ., n2 and the cost and sample size do not vary
from the original design plan (with no estimation errors εi).
It demonstrates the robustness of the optimized CSADDT
plan and also confirms the relevancy of our approach.

5.5. Discussion on Optimal 3-Level ADDT

5.5.1. Comparison of 2-Level vs 3-Level Scenarios. We study
in the following, once again, only the V-optimality criterion.

Table 8: Sample size under different lower bounds for
S2 � 20, 000 Pa.

Lower
stress 30 90 150 210 270 300

(N1, N2)
(57,
40)

(66,
46)

(75,
51)

(91,
47)

(98,
51)

(102,
53)

N 97 112 126 138 149 155
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Cost : 1091 units
Total sample size : 59

Test duration : 7 months
Accuracy : 30.5%

Figure 6: Timeline of the optimal two-level CSADT (with cost factors Cb � 1100UC, Cmea � 2UC/measurement, Cop � 8UC/unit time,
Cd � 15UC/unit sample, NA � 60 samples, tmax � 12 months, and nmin � 3 samples).

Table 6: Optimal bounds for varying test time constraints tA.

tA(w.) f1 f2 m1 m2 Total test duration n1 n2 Sample size N S1 (Pa) S2 (Pa) Avar(􏽢TMTTF) Accuracy ε (%)

4 1 1 4 4 4 7 7 56 600 50,000 412.1 52.9
6 1 1 6 4 6 6 6 60 200 50,000 401.0 52.6
8 1 1 8 6 8 5 3 58 100 50,000 389.9 52.2
12 1 2 12 6 12 4 2 60 60 50,000 367.7 51.4
16 1 2 12 6 16 4 2 60 30 50,000 345.5 50.5
20 1 3 12 6 18 4 2 60 30 50,000 323.3 49.3
24 1 4 12 6 24 4 2 60 30 50,000 301.1 48.0

Table 7: Sample size under three common optimality criteria.

Optimality criteria V-optimality D-optimality A-optimality
Stress Stress 1 Stress 2 Stress 1 Stress 2 Stress 1 Stress 2
Sample distribution (N1, N2) 102 53 85 80 89 76
Total sample size N 155 165 165
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We compare three scenarios: SI1 (S1 � 300 Pa,
S2 � 20,000 Pa, S3 � 40,000 Pa); SI2 (S1 � 30 Pa,
S2 � 25,000 Pa, S3 � 50,000 Pa); SI3 (S1 � 30 Pa, S2 � ∅,
S3 � 50,000 Pa). .e third scenario is the reference two-
level P-CSADDT. We suppose that the cost factors
Cb � 1100UC, Cmea � 2UC/measurement, Cop � 8UC/
unit time, and Cd � 15UC/unit sample, the unit time is 1
month, NA is 60 samples, tA is 12 months, and nmin is 3
samples. From Table 11, it is obvious that a three-level
scenario is better than a two-level one and that the larger
the range between lower and upper bounds is, the better
the accuracy is. As an illustration, between the two-level
scenario SI3 and the best three-level scenario SI2, the
accuracy is improved by about 36%. It may also be noted
that the test duration is also slightly reduced for the three-
level scenarios. But a question remains about the choice of
the optimal value of the intermediary value of stress. It is
addressed in the next section.

5.5.2. Research of Optimal Intermediate Stress Level for a 3-
Level CSADDT Plan. Here, the lower bound and the upper
bound are kept constant and set at S1 � Smin � 30 Pa and
S3 � Smax � 50, 000 Pa, respectively. .e intermediate stress
level S2 � Sint increases from 30 Pa to 50,000 Pa. .e optimal
solutions are summed up in Table 12. Only the values of
Avar(􏽢TMTTF) and of accuracy ε are shown here. Indeed, all
the characteristics of the optimal plans (f1, etc., cost) remain
constant with a changing value of S2. Figure 7 completes this
analysis. We see that an optimal value of intermediary stress
level can be found..is optimal value is around 10,000 Pa; it
provides an accuracy of about 19%, which is improved by
about 60% (and, with the same cost, sample size and test
duration) and 18% compared, respectively, to initial sce-
narios SI3 (2-level P-CSADDT) and SI2 (3-level P-CSADDT
with the intermediary stress level equidistant to the lower
and upper bounds). Figure 8 gives the timeline of the best 3-
level P-CSADDT.

Table 9: Sample size under different upper bounds for S1 � 300 Pa.

Upper stress 20,000 25,000 30,000 35,000 40,000 45,000 50,000
(N1, N2) (102, 53) (99, 51) (97, 50) (95, 49) (94, 48) (93, 48) (92, 47)
N 155 150 147 144 142 141 139

Table 10: Optimal CSADDT plans under various combinations by using V-optimality.

ε1 (%) ε2 (%) ε3 (%) ε4 (%) f1 f2 m1 m2 Total test duration n1 n2 Sample size Cost (UC) Avar(􏽢TMTTF) Accuracy ε (%)

5 5 5 5 1 4 3 2 8 13 10 59 1091 207.7 40.6
5 0 0 0 1 4 3 2 8 13 10 59 1091 192.1 39.1
5 − 5 − 5 − 5 1 4 3 2 8 13 10 59 1091 177.1 37.6
0 5 0 − 5 1 4 3 2 8 13 10 59 1091 202.0 40.0
0 0 − 5 5 1 4 3 2 8 13 10 59 1091 188.2 38.7
0 − 5 5 0 1 4 3 2 8 13 10 59 1091 171.5 37.0
− 5 5 − 5 0 1 4 3 2 8 13 10 59 1091 197.3 39.6
− 5 0 5 − 5 1 4 3 2 8 13 10 59 1091 180.0 37.9
− 5 − 5 0 5 1 4 3 2 8 13 10 59 1091 167.7 36.6
0 0 0 0 1 4 3 2 8 13 10 59 1091 186.8 38.6

Table 11: Optimal solution under different two- or three-level scenarios.

Stress SI1 (S1 � 300 Pa,
S2 � 20,000 Pa, S3 � 40,000 Pa)

SI2 (S1 � 30 Pa,
S2 � 25,000 Pa, S3 � 50,000 Pa)

SI3 (S1 � 30 Pa, S2 � ∅,
S3 � 50,000 Pa)

N1(p1) 35 (59.3%) 35 (59.3%) 39 (66.1%)
N2(p2) 6 (10.2%) 6 (10.2%) ∅
N3(p3) 18 (30.5%) 18 (30.5%) 20 (33.9%)
f1 1 1 1
f2 1 1 ∅
f3 2 1 4
m1 5 7 3
m2 2 2 ∅
m3 2 3 2
Total duration 5 months 7 months 8 months
n1 7 5 13
n2 3 3 ∅
n3 9 6 10
Sample size 59 59 59
Cost 1091 1099 1091
Avar(􏽢TMTTF) 98.9 58.1 115.7
Accuracy ε (%) 28.2 22.4 30.4
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6. Conclusion

A generic approach, based on a nonlinear generalized
Wiener process, has been developed with the aim to design
constant-stress optimal accelerated carbonation tests and to
estimate the durability of concrete. Here, the acceleration
stress for carbonation is the CO2 pressure at the concrete
surface, which can range from 30 Pa (the nominal or service
value) to 50,000 Pa (the highest value prescribed in French
standard for accelerated carbonation tests [30]).

.e stochastic Wiener process has been chosen to model
the carbonation depth evolution which is assimilated as a

degradation process. Even if the Wiener process is not
formally dedicated to monotonic degradation, we argue on
its ability to take into account the measurement errors and
the variability between samples. Due to the high sensitivity
of theWiener process formalism and the optimization issues
arising therefrom, the parameters of the process have been
estimated with the maximum likelihood method completed
with the two-step Expectation-Maximization one. Once the
parameters are determined, it is possible to design the op-
timal test plan, providing the best accuracy in the estimation
of durability with the lower cost, sample size, or test time.
Among three optimality criteria (A-, D-, and V-optimality),
we recommend to choose the V- criterion since we seek here
to estimate a durability indicator related to a desired level of
guarantee durability (through the MTTF or a p-quantile of
lifetime) and since V-optimality shows a direct relationship
between durability indicators. On this basis, we have looked
for the optimal configuration for a two-level constant-stress
accelerated degradation test (CSADDT).

We have shown the relevancy of partially (where the lower
stress level is taken at the nominal or service level) constant-
stress accelerated degradation tests (P-CSADDT) in the case of
long test duration. But, for reduced test times, the choice of
P-CSADDT is not so intuitive and we have shown that al-
ternatives with higher lower bounds are optimal.

In the last part of the paper, we have investigated how a
three-level CSADDT would improve the estimation of du-
rability. After showing that an optimal value for the third
intermediary stress level exists, we have underlined that an
improvement of 60% of the estimate accuracy is possible
with the same cost, same sample size, and same test duration.

To conclude, we think that this generic approach can be
very useful for qualification of new concrete mixes by means
of optimized accelerated tests. .is approach can be applied
to concrete subjected to other environments (for example,
environment with chlorides or freeze and thaw).

Table 12: Optimal solution under V-optimality for different intermediate stress levels.

Sint (Pa) 30 2500 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

Avar(􏽢TMTTF) 115.7 69.1 49.5 35.8 37.6 43.5 58.1 74.6 86.0 99.3 109.6 115.7
Accuracy ε (%) 30.4 24.0 21.1 19.0 19.3 20.2 22.4 24.8 26.5 28.2 29.3 30.4

Research of optimal intermediary stress for a three-level PCSADT
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Figure 7: Representation of the effects of intermediary stress on the estimate accuracy ε for a three-level P-CSADT.

Time (months)
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Cost : 1099 units
Total sample size : 59

Test duration : 7 months
Accuracy : 19.0%
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Figure 8: Timeline of the optimal three-level CSADT (with cost
factors Cb � 1100UC, Cmea � 2UC/measurement, Cop � 8UC/
unit time, Cd � 15UC/unit sample, NA � 60 samples, tmax � 12
months, and nmin � 3 samples).
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Appendix

A1. Expression of Fisher Information Matrix

.e expression of Fisher information matrix I(Θ) is

I(Θ) �

E −
z2l

z μα( 􏼁
2
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where E(− (z2l/z(μα)2)) � N 􏽐
d
k�1 􏽐
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A2. Expression of p-Quantile

Conditional on α, the degradation Ymod(t | α) follows a normal
distribution with mean αeβskΛ(t) and variance σ2BΛ(t). Mar-
ginalizingoverα, the unconditional distributionofYmod(t) follows
normal distributionwithmean μαeβskΛ(t) and variance σ2BΛ(t)+

σ2BΛ
2(t). .erefore, the CDF of T can be approximated as

FT(t) � Φ
μαeβskΛ(t) − ω

���������������

σ2BΛ(t) + σ2BΛ
2(t)

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (A.2)

Denote the standard normal quantile Φ− 1(p) as zp.
Inverting (A.2), an approximation of the p-th lifetime quantile is

ξp �
2ωμα + z2

pσ
2
B + zp

��������������������
z2

pσ4B + 4ωμασ2B + 4ω2σ2α
􏽱

2 μ2α − z2
pσ2α􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠

2

.

(A.3)

Data Availability

.e data used to support the findings of this study are in-
cluded within the article. Most of them are deduced from
models described in the article.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.e authors would like to acknowledge great support by the
ANRT (National Association of Research and Technology,
France), ATILH (Technical Association of the Hydraulic
Binder Industry, France), and National Natural Science
Foundation of China (71861011).

References

[1] EN 206 2014, Performance, Production and Conformity,
Concrete-Specification, 2014.

[2] J. A. Bickley, R. D. Hooton, and K. C Hover, “Performance
specifications for durable concrete,” Concrete International,
vol. 28, pp. 51–57, 2006.

[3] E. G. Abdelouafi, K. Benaissa, and K. Abdellatif, “Reliability
analysis of reinforced concrete buildings: comparison be-
tween FORM and ISM,” Procedia Engineering, vol. 114,
pp. 650–657, 2015.

[4] I. Allahyari, Concrete Performance Approach: Towards a Better
Characterization of Sustainability Indicators, Paul Sabatier-
Toulouse University III, Toulouse, France, 2016.

[5] M. Hanifehzadeh, M. Ebad Sichani, B. Gencturk, and
J. E. Padgett, “Destructive and non-destructive evaluation of
reinforced concrete dry casks affected by alkali-silica reactivity
damage,” Structure and Infrastructure Engineering, vol. 15,
no. 10, pp. 1404–1418, 2019.

[6] L. Capozzoli and E. Rizzo, “Combined NDT techniques in
civil engineering applications: laboratory and real test,”
Construction and Building Materials-Virtual Special Issue
Ground-Penetrating Radar and Complementary Non-De-
structive Testing Techniques in Civil Engineering, vol. 154,
pp. 1139–1150, 2017.

[7] Z. Yu, Z. Ren, J. Tao, and X. Chen, “Accelerated testing with
multiple failure modes under several temperature condi-
tions,” Mathematical Problems in Engineering, vol. 2014,
Article ID 839042, 8 pages, 2014.

18 Mathematical Problems in Engineering



[8] W. Q. Meeker, G. Sarakakis, and A. Gerokostopoulos, “More
pitfalls of accelerated tests,” Journal of Quality Technology,
vol. 45, no. 3, pp. 213–222, 2017.

[9] F. Duan and G. Wang, “Optimal design for constant-stress
accelerated degradation test based on gamma process,”
Communications in Statistics-Qeory and Methods, vol. 48,
no. 9, pp. 2229–2253, 2019.

[10] C.-C. Tsai, S.-T. Tseng, and N. Balakrishnan, “Optimal design
for degradation tests based on gamma processes with random
effects,” IEEE Transactions on Reliability, vol. 61, no. 2,
pp. 604–613, 2012.

[11] X. Liu, Z. Wu, D. Cui, B. Guo, and L. Zhang, “A modeling
method of stochastic parameters’ inverse gauss process
considering measurement error under accelerated degrada-
tion test,” Mathematical Problems in Engineering, vol. 2019,
p. 11, 2014.

[12] S. Tang, X. Guo, C. Yu, H. Xue, and Z. Zhou, “Accelerated
degradation tests modeling based on the nonlinear wiener
process with random effects,” Mathematical Problems in
Engineering, vol. 2014, Article ID 560726, 11 pages, 2014.

[13] Z. Chen, S. Li, and E. Pan, “Optimal constant-stress
accelerated degradation test plans using nonlinear generalized
wiener process,” Mathematical Problems in Engineering,
vol. 2016, Article ID 9283295, 11 pages, 2016.

[14] L. Sun, X. Gu, and P. Song, “Accelerated degradation process
analysis based on the nonlinear wiener process with covariates
and random effects,” Mathematical Problems in Engineering,
vol. 2016, Article ID 5246108, 13 pages, 2016.

[15] N. Hyvert, Application of the Probabilistic Approach to the
Sustainability of Prefabricated Concrete Products, Paul
Sabatier-Toulouse III University, Toulouse, France, 2009.

[16] C. J. Lu and W. O. Meeker, “Using degradation measures to
estimate a time-to-failure distribution,” Technometrics,
vol. 35, no. 2, pp. 161–174, 1993.

[17] L. I. Pettit and K. D. S. Young, “Bayesian analysis for inverse
Gaussian lifetime data with measures of degradation,” Journal
of Statistical Computation and Simulation, vol. 63, no. 3,
pp. 217–234, 1999.

[18] X.Wang, P. Jiang, B. Guo, and Z. Cheng, “Real-time reliability
evaluation with a general wiener process-based degradation
model,” Quality and Reliability Engineering International,
vol. 30, no. 2, pp. 205–220, 2014.

[19] H. Qiao, B. Zhu, C. Lu, Q. Feng, M. Zhou, and H. Cao,
“Accelerated life test of concrete based on wiener stochastic
process,” Journal of Building Materials and Structures, vol. 19,
pp. 1023–1027, 2016.

[20] K. Zhang and J. Xiao, “Time-dependent reliability analysis on
carbonation behavior of recycled aggregate concrete based on
gamma process,” Construction and Building Materials,
vol. 158, pp. 378–388, 2018.

[21] R. Neves, F. A. Branco, and J. de Brito, “A method for the use
of accelerated carbonation tests in durability design,” Con-
struction and Building Materials, vol. 36, pp. 585–591, 2012.

[22] A. V. Saetta, B. A. Schrefler, and R. V. Vitaliani, “.e car-
bonation of concrete and the mechanism of moisture, heat
and carbon dioxide flow through porous materials,” Cement
and Concrete Research, vol. 23, no. 4, pp. 761–772, 1993.
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