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Abstract

We build and study a data-driven procedure for the estimation of the

stationary density f of an additive fractional SDE. To this end, we also

prove some new concentrations bounds for discrete observations of such

dynamics in stationary regime.
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1 Introduction

We consider the R
d-random process X = (Xt : t ≥ 0) governed by stochastic

differential equation

Xt = X0 +

∫ t

0

b(Xs)ds+ σBH
t , t ≥ 0, (1)

where X0 is the initial value of X , b : Rd → R
d is a continuous function, σ is

a constant d × d matrix and BH = (BH
t : t ≥ 0) is a d-dimensional two-sided
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fractional Brownian motion with Hurst parameter 0 < H < 1. Even in this non-
markovian framework (if H 6= 1/2), the process X can be embedded into an
infinite Markovian structure (see Hairer, 2005). This allows us to define, under
usual assumptions on the coefficients b and σ, a unique invariant distribution
of X which admits a density f : Rd → R. In this paper we are interested in
the non-parametric estimation of f based on the observation of X at n equally
spaced sampling times t1 = ∆n, . . . , tn = n∆n where ∆n is a non-increasing
positive sequence such that n∆n → ∞.

In the case of diffusion models driven by standard Brownian motion (H = 1
2 ),

the problem of non parametric estimation of the invariant density has been ex-
tensively studied, in both discrete and continuous time. In the continuous time
framework, the process X is observed for all 0 ≤ t ≤ T . Castellana and Lead-
better (1986) proved that, under some specific assumption on the joint density
of (X0, Xt), the parametric rate of convergence T−1/2 can be reached. Among
other, see also Bosq et al. (1997), Kutoyants (1998), Dalalyan (2001), Comte
and Merlevède (2005) and Bosq (2012). Without this specific assumption, clas-
sical non-parametric rates of convergence of the form T−s/(2s+1) can be obtained
(see Comte and Merlevède, 2002) where s is the smoothness parameter of the
function f : R → R. The case of discrete observations (which corresponds to our
framework) has been studied in a univariate setting in Tribouley and Viennet
(1998), Comte and Merlevède (2002) and Schmisser (2013) for integrated risk
and in Bertin and Klutchnikoff (2017) for pointwise risk. In these papers, the
rate of convergence is proved to depend only on T = n∆n and (adaptive) min-
imax rates of convergence are of the form (n∆n)

−s/(2s+1) (up a a logarithmic
term) where s is the smoothness of the density function. See also Bertin et al.
(2018) that consider integrated risk in a multivariate setting. When H 6= 1/2,
nonparametric estimation methods for the model (1) have mainly focused on
estimation of the drift term b on the continuous case, see e.g. Mishra and
Prakasa Rao (2011) (where the authors study the consistency and the rate of
convergence of a nonparametric estimator of the whole trend of the solution to
a fractional SDE) and Comte and Marie (2018) (where the authors the con-
sistency of some Nadaraya-Watson’s-type estimators of the drift function in a
fractional SDE). Note that these papers only consider the case H > 1/2 in the
continuous case.

Our goal in this paper is to construct a data-driven procedure to estimate the
stationary density f of X in the discrete case for both H < 1/2 and H > 1/2.
To this aim, new concentration inequalities are obtained for the “stationary”
process, following the strategy of Varvenne (2019). In this paper, the idea was
to use a pathwise interpretation of the concentration phenomenon by study-
ing the distance between a functional and its average as a sum of differences
of “conditioned paths”. Then, the result was obtained by making use of the
contraction properties of the dynamics (under strong convexity assumptions).
In our paper, the novelty with respect to this paper is to assume that ∆n may
depend on n but mostly, that the process is observed in its stationary regime
(instead of starting from a given x like in Varvenne (2019)). Actually, if this
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modification is easy to overcome in a Markovian setting, here, this is not the
case since at time 0, the process has already a past. In other words, an invariant
distribution of (1) is a probability on R

d×W where W is a functional space (see
Section 2.1 for details). In short, proving concentration bounds in stationary
regime requires to strongly modify the original proof given in Varvenne (2019)
(see Section 6.1 for more detailed explanations).

These tools are used for two purposes. First we obtain rates of convergence for
the pointwise risk of classical kernel estimators assuming that f belongs to a
Hölder class with a known smoothness parameter s = (s1, . . . , sd) ∈ (0,∞)d.
More precisely, choosing adequately a bandwidth that depends on s, we obtain
the rate φn(s) = (n∆n)

−βHγ(s) where

γ(s) =
s̄

2
(
1 + 1

minj sj

)
s̄+ 2

and βH = 2−max(2H, 1). (2)

Here s̄ =
(∑d

i=1 1/si

)−1

denotes a classical parameter in multivariate nonpara-

metric estimation that can be viewed as the effective smoothness of f . Next, we
propose a data-driven procedure based on the ideas developed by Goldenshluger
and Lepski (see Goldenshluger and Lepski, 2011a, 2014, and references therein)
to select the bandwidth. The concentration tools we develop in this paper al-
low us to prove an oracle-type inequality. This ensures that our data-driven
procedure performs almost as well as the best estimator in a given family of
estimators. As a direct consequence, our procedure is proved to be adaptive:
assuming that f is Hölder with unknown smoothness s, it converges at the rate
φn(s) up to a log(n∆n) factor.

The paper is organized as follows. We first present the model and the new
concentration inequalities in Section 2. We introduce the statistical framework
in Section 3. Section 4 is devoted to the description of our estimation procedures
and their theoretical properties are stated in Section 5. The proofs are post-
poned to Section 6 (for the concentration inequalities) and 7 (for the properties
of statistical procedures).

2 Model and Probabilistic background

2.1 Model

We recall that in the non-Markovian setting given by (1), the well definition
of “the” invariant distribution of the process X requires the embedding of the
dynamics into an infinite-dimensional Markovian structure. More precisely, the
Markovian process above the dynamics, called Stochastic Dynamical System
(SDS) can be realized as a map on the space R

d × W where W denotes an
appropriate space of Hölder functions from (−∞, 0] to R

d, equipped with the
Wiener measure. This construction is strongly based on the Mandelbrot Van-
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Ness representation of the fBm:

∀t ∈ R, BH
t = cH

∫

R

(t− s)
H−1/2
+ − (−s)H−1/2

+ dWs, (3)

where (Wt)t∈R is a two-sided d-dimensional Brownian motion and cH > 0.
We denote by (Qt(x,w))t≥0,(x,w)∈Rd×W the related semi-group (for details on
regularity properties of the SDS, see Hairer (2005)).

For this type of dynamics, an initial condition is given by a couple (X0,W
−),

where W− = (Wt)t≤0 and X0 ∈ R
d. In other words, an initial condition is a

distribution µ on R
d ×W such that the projection on the second coordinate is

PW− .

Then, an invariant distribution ν for (Qt(x,w))t≥0,(x,w)∈Rd×W is an initial con-
dition which is such that the distribution PXν of the process (Xν

t )t≥0 built
with this initial condition is invariant by a time-shift. We say that the invariant
distribution is unique if PXν is unique. Finally, if the invariant distribution
exists, we will denote by ν̄, its first marginal: ν̄(dx) =

∫
W ν(dx, dw). Such a

distribution (on R
d) will be usually called “marginal invariant distribution”. We

will denote by f the density of ν̄ with respect to the Lebesgue measure on R
d

(denoted by λd in the sequel) when exists. In Proposition 1 below, we recall
some sufficient conditions which ensure existence, uniqueness of the invariant
distribution and absolute continuity of ν̄ with respect to the Lebesgue measure.
To this end, let us first state the assumptions used throughout our paper:

(H1) (stability) The function b : R
d → R is continuous and there exists a

constant α > 0 such that: For every x, y ∈ R
d, we have

〈b(x)− b(y), x− y〉 ≤ −α|x− y|2

(H2) (strong regularity) For every x, y ∈ R
d,

|b(x)− b(y)| ≤ L|x− y|.

(H3) (nondegeneracy) The matrix σ is invertible.

Proposition 1. Assume (H1) and (H2). Then, existence holds for the invari-
ant distribution ν. If (H3) is also fulfilled, then uniqueness holds for ν (unique
in the sense of Hairer, 2005). Furthermore, if b is C1, then the marginal invari-
ant distribution ν̄ admits a density f with respect to λd.

Existence and uniqueness are consequences of Hairer (2005). For the exis-
tence of density for ν̄, we rely on the one hand, on (Hairer, 2005, Theorems
1.2, 1.3), which state that (Xx

t ) converges in total variation distance towards
ν̄ and, on the other hand, to the fact that, under (H3), the distribution of
(Xx

t ) has a density with respect to the Lebesgue measure for any t > 0 (see
e.g. (Besalú et al., 2016, Theorem 1.2) or (Baudoin and Hairer, 2007, Theorem
4.3) when H > 1/2). The combination of these two properties implies that ν̄ is
absolutely continuous w.r.t. to the Lebesgue measure (or equivalently that the
density exists).
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Remark 1. ⊲ For the existence of the invariant distribution, Assumption (H1)
could be alleviated. More precisely, the contraction assumption may be only as-
sumed out of a compact set. However, we chose to recall the result only under
this assumption since, in the sequel, we will need (H1) to obtain concentration
properties.

⊲ In this paper, we do not discuss about the smoothness of f . This problem is
out of the scope of the paper. However, we can expect that the smoothness of f
strongly relies on the one of b. For instance, in the setting of gradient diffusions
dxt = −∇U(xt)+σ0dWt (where σ0 is a positive number) , it is well-known that

the density is given by f(x) = 1
ZU,σ0

exp
(
−U(x)

2σ2
0

)
. This involves that in this

particular case, when b is of class Cr+α (α ∈ (0, 1]), then f is of class Cr+1+α.
We conjecture that this property is still true in our setting.

2.2 Concentration inequalities for stationary solution

Let n ∈ N
∗. We denote by dn the following L1–distance:

∀(x, y) ∈ (Rd)n × (Rd)n, dn(x, y) :=

n∑

k=1

|xi − yi|, (4)

where | . | stands for the Euclidean norm on R
d. For a given d × d-matrix A

with real entries, we also denote by ‖ . ‖ a given matrix-norm, subordinated to
the Euclidean norm.

Theorem 1. Let H ∈ (0, 1). Assume (H1), (H2) and (H3) and denote by
(Xt)t≥0 the stationary solution associated to (1). Let n ∈ N

∗ and ∆n > 0
such that n∆n ≥ 1. Let dn be the metric defined by (4). Then, there exists
some positive constant C = C(H,L, α, |b(0Rd)|, ‖σ‖) such that for all Lipschitz
function F :

(
(Rd)n, dn

)
→ (R, | · |) and for all λ > 0,

E [exp (λ(FX −E[FX ]))] 6 exp
(
C‖F‖2Lipλ2naH∆−βH

n

)
.

where aH := max{2H, 1}, βH := min{1, 2− 2H} and FX := F (Xt1 , . . . , Xtn).
Moreover, we deduce from the previous inequality that

P (FX −E[FX ] > r) 6 exp

(
−r2

4CnaH∆−βH
n ‖F‖2Lip

)
.

Corollary 1. Let the assumptions of Theorem 1 be in force. Let FX :=
1
n

∑n
k=1 g(Xtk) where g : (Rd, | · |) → (R, | · |) is a given Lipschitz function.

We have ‖F‖2Lip = n−2‖g‖2Lip and then there exists some positive constant
C = C(H,L, α, |b(0Rd)|, ‖σ‖) such that

P

(
1

n

n∑

k=1

(g(Xtk)−E[g(Xtk)]) > r

)
6 exp

(
−r2nβH∆βH

n

4C‖g‖2Lip

)
(5)
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since 2− aH = βH .

Remark 2. ⊲ In Theorem 1, assumption (H3) ensures the uniqueness of the
stationary solution (Xt)t≥0 but the concentration result remains true for every
stationary solution to (1) when (H3) does not hold.
⊲ In the above results, the constant C = C(H,L, α, |b(0Rd)|, ‖σ‖) can be chosen
in such a way that (L, α, b0, q) 7→ C(H,L, α, b0, q) is bounded on every compact
set of R+ × R

∗
+ × R+ × R+ (see Remarks 6 and 8 for more details).

⊲ In Corollary 1, we remark that concentration bounds can be deduced from (5)
if we impose at least that lim

n→+∞
n∆n = +∞, i.e. that lim

n→+∞
tn = +∞.

3 Adaptive framework

Let us recall that ν̄ denotes the marginal invariant distribution and that f
denotes its density w.r.t. the Lebesgue measure λd, which is assumed to exist in
whole the paper (see Proposition 1 for conditions of existence). To measure the
accuracy of an estimator f̃ = f̃(·, Xt1 , . . . , Xtn) of f , we define the pointwise
risk

Rn(f̃ , f) =
(
E

∣∣∣f̃(x0)− f(x0)
∣∣∣
p)1/p

where p ≥ 1 is fixed. Let F be a subset of C(Rd,R). In what follows, we will
consider specific Hölder classes. The maximal risk of f̃n over F is defined by:

Rn(f̃ ,F) = sup
f∈F

Rn(f̃ , f).

We say that an estimator f̃ converges at the rate of convergence φn(F) over F if

lim sup
n→∞

φ−1
n (F)Rn(f̃ ,F) <∞ (6)

Note that such estimator may depend on the class F. Moreover (6) ensures a
specific behavior of the estimator f̃ over F but the same estimator can perform
poorly over another functional space. The problem of adaptive estimation con-
sists in finding a single estimation procedure with a good behavior over a scale
of functional classes. More precisely, given a family {Fλ : λ ∈ Λ} of subsets
of C(Rd,R), the goal is to construct f∗

n such that Rn(f
∗
n,Fλ) is asymptotically

bounded, up to a small multiplicative factor (for example a constant or a log-
arithmic term), by φn(Fλ) for any λ ∈ Λ. One of the main tools to prove that
an estimation procedure is adaptive over a scale of functional classes is to prove
an oracle-type inequality that guarantees that this procedure performs almost
as well as the best estimator in a rich family of estimators. Ideally, we would
like to have an inequality of the following form:

Rn(f
∗, f) ≤ inf

η∈H
Rn(f̂η, f), (7)

where {f̂η : η ∈ H} is a family of estimators satisfying: for any λ ∈ Λ, there

exists η(λ) such that f̂η(λ) converges at the rate φn(Fλ) over the class Fλ. In
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general, obtaining such an inequality is not possible. However in many situa-
tions, (7) can be relaxed and a weaker inequality of the following type can be
proved:

Rn(f
∗, f) ≤ Υ1 inf

η∈H
R∗

n(f, η) + Υ2δ(n), (8)

where Υ1 and Υ2 are two positive constants, R∗
n(f, η) is an appropriate quantity

to be determined that can be viewed as a tight upper bound on Rn(f̂η, f) and
δ(n) is a reminder term. Inequalities of the form (8) are called oracle-type
inequalities.

4 Estimation procedure

To estimate f we construct a procedure defined through classical kernel density
estimators. It is well known that the accuracy of these estimators is mainly de-
termined by the bandwidth vector. Thus, obtaining a data-driven choice of this
parameter is the central problem in our model. In this section, after introducing
a family of kernel density estimators, we define a selection procedure based on
the ideas developed in Goldenshluger and Lepski (2011b).

4.1 Kernel density estimators

In this paper a function K : R → R is called a kernel if the support of K is
included into [−1, 1], K is a Lipschitz function with Lipschitz constant LK > 0
and K satisfies

∫
R
K(u)du = 1. Following Rosenblatt et al. (1956) and Parzen

(1962), we consider kernel density estimators f̂h defined, for h = (h1, . . . , hd) ∈
(0,+∞)d, by:

f̂h(x0) =
1

n

n∑

i=1

Kh(x0 −Xti), (9)

where, for (u1, . . . , ud) ∈ R
d, we define Kh(u1, . . . , ud) =

∏d
i=1 h

−1
i K(h−1

i ui).
We say that a kernel K is of order M ∈ N if for any 1 ≤ ℓ ≤ M , we have∫
R
K(x)xℓdx = 0. In the following paragraph, we propose a data-driven proce-

dure to select the bandwidth h in the finite subset H of (0, 1)d.

4.2 Bandwidth selection

Our procedure depends on a hyperparameter K > 0. We refer the reader to
Section 5 for detailed comments on the impact of the choice of this parameter.
For any bandwidth vector h = (h1, . . . , hd) ∈ (0, 1)d, we define:

Vh = min(h1, . . . , hd)

d∏

i=1

hi and ϕn(h) =

(
4dL2

K

V 2
h (n∆n)βH

)1/2

, (10)
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where βH is defined by (2). We consider the following subset of (0, 1)d

H =

{
(e−l1 , . . . , e−ld) : li = 0, . . . ,

⌊
βH
2

log (n∆n)

⌋}
∩ H̃

where ⌊·⌋ denotes the integer part and

H̃ =

{
h ∈ (0, 1)d : Vh ≥

(
1

n∆n

)βH/2
}
.

Without loss of generality, we assume that (n∆n)
βH ≥ e, which implies in

particular that H is not empty.

Following Goldenshluger and Lepski (2011b), we define for h and h in H the
following quantities

Mn(h, h) =Mn(h) +Mn(h ∨ h) with Mn(h) = ϕn(h)
√

Kp| logVh| (11)

and
B(h, x0) = max

h∈H

{∣∣∣f̂h∨h(x0)− f̂h(x0)
∣∣∣−Mn(h, h)

}

+
.

Here {y}+ = max(0, y) denotes the nonnegative part of y ∈ R and h ∨ h de-
notes the component-wise maximum of the bandwidth h and h. Our procedure
consists of selecting a bandwidth ĥ(x0) such that

ĥ(x0) = argmin
h∈H

(B(h, x0) +Mn(h)) . (12)

The final estimator of f(x0) is then defined as the plugin estimator:

f̂(x0) = f̂ĥ(x0)
(x0).

This selection rule follows the principles and the ideas developed by Gold-
enshluger and Lepski. The quantity Mn(h), called a majorant, is a penalized

version of the standard deviation of the estimator f̂h while the quantity B(h, x0)
is, in some sense, closed to its bias term. Finding tight majorants is the key
point of the method since ĥ(x0) is chosen in (12) in order to realize an empirical
trade-off between these two quantities.

5 Results

We first recall the definition of Hölder balls Σd(s,L). For two d-tuples of positive
reals s = (s1, . . . , sd) and L = (L1, . . . , Ld),

Σd(s,L) =
{
f : Rd → R s.t. ∀ 1 ≤ i ≤ d

∥∥∥∥
∂mf

∂xmi

∥∥∥∥
∞

≤ Li, m = 0, . . . , ⌊si⌋

and for all t ∈ R

∥∥∥∥∥
∂⌊si⌋f

∂x
⌊si⌋
i

(·+ tei)−
∂⌊si⌋f

∂x
⌊si⌋
i

(·)
∥∥∥∥∥
∞

≤ Li|t|si−⌊si⌋
}

where for any i, ⌊si⌋ = max{l ∈ N : l < si} and ei is the vector where all
coordinates are null except the i-th one which is equal to 1.
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5.1 Properties of the kernel estimators

The two following propositions give upper-bounds of the bias and the stochastic
term of the estimator f̂h .

Proposition 2. Let s = (s1, . . . , sd) ∈ (0,+∞)d and L = (L1, . . . , Ld) ∈
(0,+∞)d. Assume that f ∈ Σd(s,L) and assume that K is a kernel of or-
der greater than maxi⌊si⌋. Under (H1), (H2) and (H3), we have for all h ∈ H

∣∣∣Ef̂h(x0)− f(x0)
∣∣∣ ≤

d∑

i=1

Lih
si
i

⌊si⌋!

∫

R

∣∣vsiK(v)
∣∣dv (13)

and

Eh(x0) = max
h∈H

∣∣∣Ef̂h∨h(x0)−Ef̂h(x0)
∣∣∣ ≤ 2

d∑

i=1

Lih
si
i

⌊si⌋!

∫

R

∣∣vsiK(v)
∣∣dv. (14)

Proposition 3. Under (H1), (H2) and (H3), we have for all h ∈ H
(
E

∣∣∣f̂h(x0)−Ef̂h(x0)
∣∣∣
p)1/p

≤
(
pΓ

(
p+ 1

2

))1/p

C1/2ϕn(h). (15)

Remark 3. ⊲ Note that the control of the bias term obtained in Proposition 2
is the same as those obtained for the problem of density estimation in an i.i.d.
context. The control of the stochastic term, see Proposition 3, relies on the
concentration inequality obtained in Corollary 1. The right hand side of (15)
depends on the additional assumptions made on our model through the constant
C.
⊲ This result is valid for a large class of functional (only a Lipschitz condition
is required) and under weak assumptions on the process. For H = 1/2, the
concentration inequality is optimal, see Saussereau (2012) and Djellout et al.
(2004). However, under strongest assumptions—for example on the joint dis-
tribution of (X0, Xt), Bernstein-type inequalities can be used to derive a bet-
ter upper bound on the stochastic term of order (nh1 . . . hd)

−1, see Bertin and
Klutchnikoff (2017) for d = 1.

Using the above propositions we derive, over any Hölder balls Σd(s,L), the
rate of convergence achieved by a kernel estimator defined in (9) with a specific
choice of bandwidth that depend on the smoothness parameter s.

Theorem 2. Let s = (s1, . . . , sd) ∈ (0,+∞)d and L = (L1, . . . , Ld) ∈ (0,+∞)d.
Assume that f ∈ Σd(s,L) and assume that K is a kernel of order greater than

maxi⌊si⌋. Under (H1), (H2) and (H3), the estimator f̂h(s) defined through the
bandwidth h(s) = (h1(s), . . . , hd(s)) where for any i = 1, . . . , d

hi(s) =

(
1

(n∆n)βH

) γ(s)
si

with γ(s) =
s̄

2
(
1 + 1

minj sj

)
s̄+ 2

∈ (0, 1/2)

9



and satisfies

Rn(f̂h(s), f) ≤ (Λ1 + Λ2) (n∆n)
−βHγ(s)

,

where

Λ1 =

d∑

i=1

Li

⌊si⌋!

∫

R

∣∣vsiK(v)
∣∣dv, Λ2 = 2

√
dC

(
pΓ

(
p+ 1

2

))1/p

LK .

To our best knowledge few papers deal with nonparametric rate of conver-
gence in our model. Only Comte and Marie (2018) have considered the estima-
tion of the trend function b based on continuous observations when d = 1 and
H > 1/2. They obtain the same rates of convergence only in the case s = 1
assuming a Lipschitz condition on the function b.

5.2 Properties of the data-driven procedure

The estimator f̂ , defined in Section 4.2 using the hyperparameter K and the
family of bandwidths H satisfies the following oracle inequality.

Theorem 3. Under (H1), (H2) and (H3), if K > C, we have:

Rn(f̂ , f) ≤ min
h∈H

{
Rn(f̂h, f) + 4Mn(h) + 3Eh(x0)

}
+ C0(n∆n)

−βH/2 (16)

with

C0 = 6Λ2

(
ep(

K

C
−1)

ep(
K

C
−1) − 1

)d/p

Remark 4. ⊲ The validity of this result depends on the hyperparameter K of
our procedure. Using Remark 2, for a given value of K, Theorem 3 can be applied
for a wide class of models, as soon as the constant C, which depends on H, L,
α, b(0Rd) and ‖σ‖ is less than K.

The oracle inequality allows us to obtain upper bound for the rates of con-
vergence over Hölder balls Σd(s,L) in an adaptive framework.

Theorem 4. Let M be a nonnegative integer and assume that K is a kernel
of order greater than M . Set s ∈ (0,M + 1]d and L ∈ (0,+∞)d. Asume that
f ∈ Σd(s,L), then under (H1), (H2) and (H3) we have:

Rn(f̂ , f) ≤ C1

(
(n∆n)

−βH log
(
(n∆n)

βH
))γ(s)

(17)

where
C1 = 8

√
Kd(d + 3/2)pLK + 7eM+1Λ1 + Λ2 + C0.

Remark 5. ⊲ This result ensures that the estimator f̂ achieves the rate of
convergence obtained in Theorem 2 up to a logarithmic factor. Such behavior
is well-known for pointwise adaptive estimation, see Lepskĭı (1990); Tsybakov
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(1998); Klutchnikoff (2014) among others.
⊲ If we let the hyperparameter K depend on n (e.g. K = log(n)) then the pro-
cedure is also asymptotically adaptive with respect to the values of L, α, b(0Rd)
and ‖σ‖. In the case K = log(n), the rate of convergence in (17) is multiplied
by (logn)1/2.

6 On concentration inequalities for fractional SDEs

in stationary regime

6.1 Sketch of proof of Theorem 1

We denote by (Ω,F ,P) the probability space on which the fBm is defined. Let
(Ft)t>0 be the natural filtration associated to the two-sided Brownian motion
(Wt)t∈R induced by the Mandelbrot-Van Ness representation (see (3)). As in
Varvenne (2019), let us first introduce the following decomposition. For all
k ∈ N, set

Mk := E[FX | Fk] (18)

where we recall that FX = F (Xt1 , . . . , Xtn) and (Xt)t≥0 is the stationary solu-
tion of (1). Then, we have:

FX −E[FX ] =M⌈tn⌉ =

⌈tn⌉∑

k=1

Mk −Mk−1 + E[FX | F0]−E[FX ].

Our strategy of proof is decomposed as follows, we show that :

(1) for all 1 ≤ k ≤ ⌈tn⌉, there exists u
(n)
k > 0 (deterministic) such that for all

λ > 0,

E [exp (λ(Mk −Mk−1)) | Fk−1] 6 exp(λ2u
(n)
k ) a.s.

and then

E


exp


λ

⌈tn⌉∑

k=1

(Mk −Mk−1)




∣∣∣∣∣∣
F0


 6 exp


λ2

⌈tn⌉∑

k=1

u
(n)
k


 a.s.

(2) there exists u
(n)
0 > 0 (deterministic) such that for all λ > 0,

E [exp (λ(E[FX | F0]−E[FX ]))] 6 exp(λ2u
(n)
0 ) a.s.

From (1) and (2), we finally get

E [exp (λ(FX −E[FX ]))] 6 exp



λ2
⌈tn⌉∑

k=0

u
(n)
k



 .

11



We are thus reduced to study conditional exponential moments in (1) and
(2). The related results are given in Proposition 4 and 7 (and Theorem 1 easily
follows).

In order to provide such exponential bounds, we rely on the following key lemma
(see Lemma 1.5 in Chapter 1 of Rigollet and Hütter (2017)):

Lemma 1. Let Z be a centered random variable on R such that there exists
ζ > 0 such that for all p ≥ 2,

E[|Z|p] ≤ ζ
p
2 pΓ

(p
2

)
.

Then, for all λ > 0, we have

E[exp(λZ)] ≤ exp(2λ2ζ).

6.2 Part 1: sum of martingale increments

In this subsection, our purpose is to prove the following result :

Proposition 4. Assume (H1) and (H2). Let H ∈ (0, 1). There exists K =
K(H,L, α, ‖σ‖) > 0 such that for all λ > 0,

E



exp



λ




⌈tn⌉∑

k=1

Mk −Mk−1









∣∣∣∣∣∣
F0



 6 exp



Kλ2‖F‖2Lip
⌈tn⌉∑

k=1

ψ2
n,k



 a.s.

where

ψn,k :=

⌊
k

∆n

⌋
−
⌈
k − 1

∆n

⌉
+

n∑

i=⌈ k
∆n

⌉
u
H−3/2
i ,

ui := ti − k + 1 = i∆n − k + 1 and Mk is defined by (18) .
Moreover, there exists c = c(H) > 0 such that

⌈tn⌉∑

k=1

ψ2
n,k ≤ c

{
n∆−1

n if H ∈ (0, 1/2)
n2H∆2H−2

n if H ∈ (1/2, 1).

Remark 6. Following carefully the constants in the proof of this proposition,
one easily checks that (L, α, s) 7→ K(H,L, α, s) is bounded on every compact set
of R+ × R

∗
+ × R+.

Through equation (1) and the fact that b is Lipschitz continuous, for all
t > 0, Yt can be seen as a functional of the time t, the initial condition X0 and
the Brownian motion (Ws)s≤t. Denote by Φ : R+ × R

d × C(R,Rd) → R
d this

functional, we then have

∀t > 0, Xt := Φt(X0, (Ws)s≤t).

12



Now, let k > 1, we have

|Mk −Mk−1|
= |E[FX |Fk]−E[FX |Fk−1]|

6 ‖F‖Lip
∫

Ω

∑

ti≥k−1

∣∣Φti

(
X0, (Ws)s≤k ⊔ w̃[k,ti]

)
− Φti

(
X0, (Ws)s≤k−1 ⊔ w̃[k−1,ti ]

)∣∣PW (dw̃).

Let us introduce now some notations. First, for all t > k−1 set u := t−k+1,
then for all u > 0, we define

Yu :=

{
Φu+k−1

(
X0, (Ws)s≤k ⊔ (w̃s)s∈[k,u+k−1]

)
if u > 1

Φu+k−1 (X0, (Ws)s≤u+k−1) otherwise,

and
Ỹu := Φu+k−1

(
X0, (Ws)s≤k−1 ⊔ (w̃s)s∈[k−1,u+k−1]

)
.

By using equation (1), we then have

Yu − Ỹu =

∫ u

0

b(Ys)− b(Ỹs)ds+ cHσ

∫ 1∧u

0

(u− s)H− 1
2d(W (k) − w̃(k))s.(19)

where we have set (W
(k)
s )s>0 := (Ws+k−1 −Wk−1)s>0 which is a Brownian mo-

tion independent from Fk−1 and (w̃
(k)
s )s>0 := (w̃s+k−1 − w̃k−1)s>0.

Finally, we have the following inequality for all k ≥ 1:

|Mk −Mk−1| ≤ ‖F‖Lip
∫

Ω

∑

ui≥0

∣∣∣Yui
− Ỹui

∣∣∣PW (dw̃) (20)

where ui := ti − k + 1 = i∆n − k + 1.

In the next section, we proceed to a control of the quantity |Yu − Ỹu|.

6.2.1 Control lemma

Lemma 2. We have the two following inequalities:

(i) for all u ∈ [0, 1], there exists K = K(H,L, α, ‖σ‖) > 0 such that,

|Yu − Ỹu| 6 K sup
v∈[0,2]

∣∣∣G(k)
v (W − w̃)

∣∣∣

where

G(k)
v (W − w̃) :=

∫ 1∧v

0

(v − s)H− 1
2d(W (k) − w̃(k))s,

13



(ii) for all u ≥ 1, there exists K = K(H,L, α, ‖σ‖) > 0 such that,

|Yu − Ỹu| 6 K uH− 3
2 sup
s∈[0,1]

|W (k)
s − w̃(k)

s |

Proof. ⊲ First case: let u ∈ [0, 1].
By the triangle inequality and assumption (H2), we have in (19)

|Yu − Ỹu| 6 L

∫ u

0

|Ys − Ỹs|ds+ cH‖σ‖
∣∣∣∣
∫ 1∧u

0

(u− s)H− 1
2d(W (k) − w̃(k))s

∣∣∣∣

Then, from Gronwall’s lemma, we deduce the following

|Yu − Ỹu|

6 cH‖σ‖
∣∣∣∣
∫ 1∧u

0

(u− s)H− 1
2d(W (k) − w̃(k))s

∣∣∣∣

+ cH‖σ‖L
∫ u

0

∣∣∣∣
∫ 1∧v

0

(v − s)H− 1
2 d(W (k) − w̃(k))s

∣∣∣∣ e
L(u−v)dv

6 cH‖σ‖ sup
v∈[0,2]

∣∣∣∣
∫ 1∧v

0

(v − s)H− 1
2d(W (k) − w̃(k))s

∣∣∣∣
(
1 +

[
−eL(u−v)

]u
0

)

6 cH‖σ‖e2L sup
v∈[0,2]

∣∣∣∣
∫ 1∧v

0

(v − s)H− 1
2 d(W (k) − w̃(k))s

∣∣∣∣ .

and Lemma 2 is shown for u ∈ [0, 1].

⊲ Second case: let u > 1.
First, if u ∈ [1, 2], we have |Yu − Ỹu| 6 KH sup

s∈[0,1]

|W (k)
s − w̃

(k)
s | by the first part

of this proof combined with the following inequality :

∣∣∣∣
∫ 1∧v

0

(v − s)H− 1
2 d(W (k) − w̃(k))s

∣∣∣∣

=

∣∣∣∣(v − 1 ∧ v)H− 1
2 (W

(k)
1∧v − w̃

(k)
1∧v) + (H − 1/2)

∫ 1∧v

0

(v − s)H− 3
2 (W (k)

s − w̃(k)
s )ds

∣∣∣∣

6 KH sup
s∈[0,1]

|W (k)
s − w̃(k)

s |.

Now, let us treat the case u ≥ 2. In the following inequalities, we use as-
sumption (H1) on the function b and the elementary Young inequality 〈a, b〉 6
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1
2

(
ε|a|2 + 1

ε |b|2
)
with ε = 2α.

d

du
|Yu − Ỹu|2

= 2〈Yu − X̃u, b(Yu)− b(Ỹu)〉+ cH(2H − 1)〈Yu − Ỹu, σ

∫ 1

0

(u− s)H− 3
2 d(W (k) − w̃(k))s〉

6 −2α|Yu − Ỹu|2 + α|Yu − Ỹu|2 +
c2H(2H − 1)2‖σ‖2

4α

∣∣∣∣
∫ 1

0

(u− s)H− 3
2d(W (k) − w̃(k))s

∣∣∣∣
2

6 −α|Yu − Ỹu|2 +
c2H(2H − 1)2‖σ‖2

4α

∣∣∣∣
∫ 1

0

(u − s)H− 3
2 d(W (k) − w̃(k))s

∣∣∣∣
2

.

We then apply Gronwall’s lemma to obtain

|Yu−Ỹu|2 6 e−α(u−2)|Y2−Ỹ2|2+αH

∫ u

2

e−α(u−v)

∣∣∣∣
∫ 1

0

(v − s)H− 3
2d(W (k) − w̃(k))s

∣∣∣∣
2

dv

(21)

with αH :=
c2H(2H−1)2‖σ‖2

4α .

Now, we set ϕk(v) :=
∫ 1

0 (v−s)H− 3
2d(W (k)−w̃(k))s and we apply an integration

by parts to ϕk taking into account that W
(k)
0 = w̃

(k)
0 = 0:

ϕk(v) = (v − 1)H− 3
2 (W

(k)
1 − w̃

(k)
1 )− (3/2−H)

∫ 1

0

(v − s)H− 5
2 (W (k)

s − w̃(k)
s )ds.

And then
∫ u

2

e−α(u−v) |ϕk(v)|2 dv

6 2|W (k)
1 − w̃

(k)
1 |2

∫ u

2

(v − 1)2H−3e−α(u−v)dv

+ 2(3/2−H)2
∫ u

2

e−α(u−v)

∣∣∣∣
∫ 1

0

(v − s)H− 5
2 (W (k)

s − w̃(k)
s )ds

∣∣∣∣
2

dv

6 2|W (k)
1 − w̃

(k)
1 |2

∫ u

2

(v − 1)2H−3e−α(u−v)dv

+ 2(3/2−H)2
∣∣∣∣
∫ 1

0

(W (k)
s − w̃(k)

s )ds

∣∣∣∣
2 ∫ u

2

(v − 1)2H−5e−α(u−v)dv(22)

Lemma 3. Let α, β > 0. Then, for all u > 2,

e−αu

∫ u

2

(v − 1)−βeαvdv 6 max
(
e−α(u−2)(u− 1), (u− 1)−β+1

)
.

In the right hand side of (22), we apply an integration by parts on the first
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term and then we use Lemma 3:
∫ u

2

(v − 1)2H−3e−α(u−v)dv

=
1

α

(
(u− 1)2H−3 − e−α(u−2) + (3− 2H)e−αu

∫ u

2

(v − 1)2H−4eαvdv

)

6
1

α

(
(u− 1)2H−3 − e−α(u−2) + (3− 2H)max

(
e−α(u−2)(u− 1), (u − 1)2H−3

))

6 C′
H(u− 1)2H−3

where C′
H > 0 is some constant. Finally, by using Lemma 3 also on the second

term in (22), we finally get the existence of a constant C′′
H > 0 such that:

∫ u

2

e−α(u−v) |ϕk(v)|2 dv 6 C′′
H(u − 1)2H−3 sup

s∈[0,1]

|W (k)
s − w̃(k)

s |2. (23)

Now, putting inequality (23) into (21) and taking the square root, we finally
get:

|Yu − Ỹu| 6 e−
α
2 (u−2)|Y2 − Ỹ2|+ C

(3)
H (u− 1)H− 3

2 sup
s∈[0,1]

|W (k)
s − w̃(k)

s |. (24)

On the one hand, we can note that e−
α
2 (u−2) 6 C′uH− 3

2 for all u > 2. On the

other hand, we have |Y2 − Ỹ2| 6 KH sup
s∈[0,1]

|W (k)
s − w̃

(k)
s |.

These two facts combined with (24) conclude the proof.

6.2.2 Conditional exponential moments of the martingale increments

Proposition 5. Assume (H1) and (H2). Let H ∈ (0, 1). There exists K =
K(H,L, α, ‖σ‖) > 0 and ζ > 0 such that for all k ∈ N

∗ and for all p > 2,

E[|Mk −Mk−1|p|Fk−1] 6 Cp‖F‖pLipψ
p
n,kζ

p/2pΓ
(p
2

)
a.s.

where

ψn,k :=

⌊
k

∆n

⌋
−
⌈
k − 1

∆n

⌉
+

n∑

i=⌈ k
∆n

⌉
u
H−3/2
i ,

ui := ti − k + 1 = i∆n − k + 1 and Mk is defined by (18).

Proof. Let k ∈ N
∗ and p ≥ 2. By combining inequality (20) with the technical

lemma 2, we immediately get that there exists K = K(H,L, α, ‖σ‖) > 0 such
that:

|Mk −Mk−1|p

≤ Kp‖F‖pLipψp
n,k

(∫

Ω

sup
v∈[0,2]

∣∣∣G(k)
v (W − w̃)

∣∣∣+ sup
s∈[0,1]

|W (k)
s − w̃(k)

s |PW (dw̃)

)p
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The end of the proof consists in proving that

E

[(∫

Ω

sup
v∈[0,2]

∣∣∣G(k)
v (W − w̃)

∣∣∣+ sup
s∈[0,1]

|W (k)
s − w̃(k)

s |PW (dw̃)

)p ∣∣∣∣∣ Fk−1

]

≤ ζp/2pΓ
(p
2

)
.

We have

E [|Mk −Mk−1|p|Fk−1]

≤ 2p−1E

[(∫

Ω

sup
v∈[0,2]

∣∣∣G(k)
v (W − w̃)

∣∣∣PW (dw̃)

)p∣∣∣∣∣ Fk−1

]

+ 2p−1E

[(∫

Ω

sup
s∈[0,1]

|W (k)
s − w̃(k)

s |PW (dw̃)

)p ∣∣∣∣∣ Fk−1

]

≤ 2p−1E

[(∫

Ω

sup
v∈[0,2]

∣∣∣G(k)
v (W − w̃)

∣∣∣PW (dw̃)

)p]

+ 2p−1E

[(∫

Ω

sup
s∈[0,1]

|W (k)
s − w̃(k)

s |PW (dw̃)

)p]
(25)

where the last inequality is obtained by using thatW (k) = (Ws+k−1−Wk−1)s≥0

is independent from Fk−1. Now, if we denote by F (k) the natural filtration
associated to W (k), then the right hand side terms of (25) are just expectations

of conditional expectations with respect to F (k)
1 , so we finally get

E [|Mk −Mk−1|p|Fk−1] ≤ 2p−1E

[
sup

v∈[0,2]

∣∣∣G(k)
v (W − W̃ )

∣∣∣
p
]

+ 2p−1E

[
sup

s∈[0,1]

|W (k)
s − W̃ (k)

s |p
]
.

Since W (k) and W̃ (k) are i.i.d. and have the same law as W (1), we can replace
W (k) − W̃ (k) by

√
2W (1), which gives

E [|Mk −Mk−1|p|Fk−1]

≤ 2p−1
√
2E

[
sup

v∈[0,2]

∣∣∣G(1)
v (W )

∣∣∣
p
]
+ 2p−1

√
2E

[
sup

s∈[0,1]

|W (1)
s |p

]
.

To conclude the proof, we only have to prove that supv∈[0,2]

∣∣∣G(1)
v (W )

∣∣∣ and
sups∈[0,1] |W (1)

s | are sub-Gaussian. The proof of this result follows the lines of
Varvenne (2019) Appendices A and B and we leave it to the patient reader.

With Lemma 1 in hand, we finally get :
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Proposition 6. Assume (H1) and (H2). Let H ∈ (0, 1). Let k ∈ N
∗. There

exists K = K(H,L, α, ‖σ‖) > 0 (independent of k) such that for all λ > 0,

E[exp(λ(Mk −Mk−1)) | Fk−1] 6 exp
(
Kλ2‖F‖2Lipψ2

n,k

)
a.s.

where

ψn,k :=

⌊
k

∆n

⌋
−
⌈
k − 1

∆n

⌉
+

n∑

i=⌈ k
∆n

⌉
u
H−3/2
i ,

ui := ti − k + 1 = i∆n − k + 1 and Mk is defined by (18).

6.2.3 Proof of Proposition 4

Proof. The inequality on the conditional Laplace transform of
∑⌈tn⌉

k=1 Mk −
Mk−1 easily follows from Proposition 6. We thus have to prove the bound

on
∑⌈tn⌉

k=1 ψ
2
n,k.

Let us begin by the estimation of ψn,k for all k ∈ {1, . . . , ⌈tn⌉}. First, we easily
get that ⌊

k

∆n

⌋
−
⌈
k − 1

∆n

⌉
≤ ∆−1

n . (26)

Secondly, let us consider the second part of ψn,k, we have

n∑

i=⌈ k
∆n

⌉
(i∆n − k + 1)H−3/2

≤ 1 +

∫ n

⌈k∆−1
n ⌉

(t∆n − k + 1)H−3/2dt

= 1 +∆H−3/2
n

[
(t− (k − 1)∆−1

n )H−1/2

H − 1/2

]n

⌈k∆−1
n ⌉

= 1 +
∆

H−3/2
n

H − 1/2

[
(n− (k − 1)∆−1

n )H−1/2 −
(⌈
k∆−1

n

⌉
− (k − 1)∆−1

n

)H−1/2
]

≤ 1 + ∆H−3/2
n ×

{
1

H−1/2

(
n− (k − 1)∆−1

n

)H−1/2
if H > 1/2

1
1/2−H

(⌈
k∆−1

n

⌉
− (k − 1)∆−1

n

)H−1/2
if H < 1/2

≤ 1 + ∆H−3/2
n ×

{
1

H−1/2

(
n− (k − 1)∆−1

n

)H−1/2
if H > 1/2

1
1/2−H

(
1 + ∆−1

n

)H−1/2
if H < 1/2.

(27)

From (26) and (27), we thus deduce that there exists c1 = c1(H) > 0 such that

ψn,k ≤ ∆−1
n + 1 + c1

{
∆−1

n (tn − (k − 1))
H−1/2

if H > 1/2
∆−1

n if H < 1/2.
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We can now move on the estimation of
∑⌈tn⌉

k=1 ψ
2
n,k. From the inequality above,

it follows that there exists c2 = c2(H) > 0 such that

⌈tn⌉∑

k=1

ψ2
n,k ≤ c2(∆

−2
n + 1)⌈tn⌉

+ c2

{
∆−2

n

∑⌈tn⌉
k=1 (tn − (k − 1))

2H−1
if H > 1/2

∆−2
n ⌈tn⌉ if H < 1/2.

(28)

It remains to estimate
∑⌈tn⌉

k=1 (tn − (k − 1))
2H−1

when H > 1/2. It is readily
checked that

⌈tn⌉∑

k=1

(tn − (k − 1))2H−1 ≤
⌈tn⌉∑

k=1

(⌈tn⌉ − (k − 1))2H−1 =

⌈tn⌉∑

k=1

k2H−1 ≤ ⌈tn⌉2H .

(29)
Finally, from (28) and (29), we get the existence of c3 = c3(H) > 0 and c4 =
c4(H) > 0 such that

⌈tn⌉∑

k=1

ψ2
n,k ≤ c3

{
∆−2

n ⌈tn⌉+∆−2
n ⌈tn⌉2H if H > 1/2

∆−2
n ⌈tn⌉ if H < 1/2

≤ c4

{
∆−2

n ⌈tn⌉2H if H > 1/2
∆−2

n ⌈tn⌉ if H < 1/2.

This concludes the proof since tn = n∆n.

6.3 Part 2: E[FX | F0]−E[FX ]

We now turn to the bound of E[FX | F0]−E[FX ]. First, let us remark that

E[E[FX | F0]−E[FX ]] = 0

so that we can use again Lemma 1 in order to deduce exponential bounds. The
related result is stated in Proposition 7.

We introduce notations related to the conditioning with respect to F0. Let
(Wt)t∈R denote the two-sided Brownian Motion induced by Mandelbrot-Van
Ness representation (see (3)) and set W− = (Wt)t≤0. For ε ∈ (0, 1/2) and
ε′ > 0, set

Ω− :=
{
w : (−∞, 0] → R

d; w(0) = 0 , lim
t→−∞

w(t)

|t| 12+ε′
= 0 and

w is (
1

2
− ε)-Hölder continuous on compact intervals

}
.

Owing to some classical properties on the Wiener process, this subspace is
of Wiener measure 1 for any fixed ε ∈ (0, 1/2) and ε′ > 0. In other words,
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PW−(Ω−) = 1. Then, for any w ∈ Ω−,

L((BH
t )t≥0|W− = w) = L((Zt +Dt(w))t≥0)

where Z0 = D0(w) = 0 and for all t > 0,

Zt = cH

∫ t

0

(t− s)H− 1
2 − (−s)H− 1

2 dWs

and

Dt(w) = αH

∫ 0

−∞

(t− s)H− 1
2 − (−s)H− 1

2 dws.

(Zt)t≥0 and (Dt(w))t≥0 are continuous processes on [0,+∞) (see Lemma 4
below) and for any w ∈ Ω−, the (additive) SDE

dYt = b(Yt)dt+ σ(dZt + dDw
t ) (30)

has a unique solution denoted by (Xx,w
t )t≥0.

Since F is Lipschitz continuous with respect to dn, we can also remark that

|E[FX | F0]−E[FX ]| ≤ ‖F‖Lip
n∑

k=1

∫

Rd×Ω−

|XX0,W
−

tk −Xy,w
tk |ν(dy, dw), (31)

where ν = L(X0,W
−) is an initial condition for the dynamical system which is

such that the process is stationary. This involves that we will use bounds on

|Xx,W−

t −Xy,w
t | to deduce the result for E[FX | F0]− E[FX ]. To this end, we

first state a technical result about D(w):

Lemma 4. Let w ∈ Ω− with ε ∈ (0, H) and ε′ ∈ (0, 1−H). Then, (Dt(w))t≥0

is continuous on [0,∞) and differentiable on (0,+∞). Furthermore, for any
δ1 ∈ (0, 1 − H − ε′] and δ2 ∈≤ H − 1 − ε, there exist some positive constants
Cδ1 and Cδ2 such that for any t > 0,

|D′
t(w)| ≤ Φε,ε′(w)

(
Cδ1t

−δ11t>1 + Cδ2 t
−δ21t∈(0,1]

)

with Φε,ε′(w) = sup
r∈(0,1]

|w(−r)|
r

1
2−ε

+ sup
r>1

|w(−r)|
r

1
2+ε′

.
(32)

Proof. Let w ∈ Ω−. By an integration by parts, one checks that the process
(Dt(w)) is well-defined for any t > 0 and admits the following alternative rep-
resentation:

Dt(w) = αH

(
H − 1

2

)∫ 0

−∞

(
(t− r)H− 3

2 − (−r)H− 3
2

)
w(r) dr if t ∈ (0, 1]

It easily follows that (Dt(w))t>0 is smooth on (0,+∞] and that for all t > 0,

D′
t(w) = αH

(
H − 1

2

)(
H − 3

2

)∫ 0

−∞

(t− r)H− 5
2w(r) dr.
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On the one hand, for any ε̄ ∈ [ε′, 1−H),

|
∫ −1

−∞

(t− r)H− 5
2w(r) dr| ≤ sup

r>1

|w(−r)|
r

1
2+ε̄

∫ −1

−∞

(t− r)H− 5
2 r

1
2+ε̄dr

≤ Φε,ε′(w)

∫ −1

−∞

(t− r)H−2+ε̄dr ≤ Φε,ε′(w)(1 + t)H−2+ε̄.

On the other hand, for any ε̃ ≥ ε,

∫ 0

−1

(t− r)H− 5
2w(r) dr ≤ sup

r∈(0,1]

|w(−r)|
r

1
2−ε̃

∫ 0

−1

(t− r)H−2−ε̃dr ≤ Φε,ε′(w)t
H−1−ε̃.

Inequality (32) easily follows from what precedes. In particular, since ε ∈
(0, H), t 7→ D′

t(w) is integrable near 0 and hence, t 7→ Dt(w) is continuous on
R+.

In view of (31), we now provide a control of the evolution of two paths of the
fractional SDE (30) starting from initial conditions (x, w̃) and (y, w).

Lemma 5. Suppose that assumptions (H1) and (H2) are in force. Let w and
w̃ belong to Ω− with ε ∈ (0, H) and ε′ ∈ (0, 1 − H). Then, there exist some
positive constants C1 = C1(H,L, α, ‖σ‖) and C2 = C2(H,L, α, ‖σ‖) such that
for every t ≥ 0,

|Xx,w̃
t −Xy,w

t |2 ≤ C1e
−αt|x− y|2 + C2Φε,ε′(w̃ − w)(t ∨ 1)2H−2+ε′

where Φε,ε′ is defined by (32).

Proof. For two paths w and w̃ in Ω−,

Bw̃
t −Bw

t = Dt(w̃ − w).

Thus, for any t0 > 0,

Xx,w̃
t −Xy,w

t = Xx,w̃
t0 −Xy,w

t0 +

∫ t

t0

b(Xx,w̃
s )− b(Xx,w−

s )ds+ σDt(w̃ − w).

As a consequence,

eαt|Xx,w̃
t −Xy,w

t |2 = eαt0 |Xx,w̃
t0 −Xy,w

t0 |2

+

∫ t

0

2eαs〈Xx,w̃
s −Xx,w

s ), σD′
s(w̃ − w)〉ds

+

∫ t

0

eαs
(
α|Xx,w̃

s −Xy,w
s |2 + 2〈Xx,w̃

s −Xx,w
s , b(Xx,w̃

s )− b(Xx,w
s )〉

)
ds.

By Assumption (H1),

〈Xx,w̃
s −Xx,w

s , b(Xx,w̃
s )− b(Xx,w

s )〉 ≤ −α|Xx,w̃
s −Xy,w

s |2
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whereas by the elementary inequality |uv| ≤ (ε/2)|u|2 +1/(2ε)|v|2 applied with
ε = α,

2〈Xx,w̃
s −Xx,w

s ), σD′
s(w̃ − w)〉 ≤ α|Xx,w̃

s −Xy,w
s |2 + ‖σ‖2

α
|D′

s(w̃ − w)|2.

Thus, for any ε′ > 0, we have for any t ≥ t0,

eαt|Xx,w̃
t −Xy,w

t |2 ≤ eαt0 |Xx,w̃
t0 −Xy,w

t0 |2 + ‖σ‖2
α

∫ t

t0

eαs|D′
s(w̃ − w)|2ds.

By Lemma 4, we deduce that a positive constant C exists such that:

∫ t

t0

eαs|D′
s(w̃ − w)|2ds ≤ CΦε,ε′(w̃ − w)

(
1 +

∫ t∨1

1

eαss2H−2+2ε′ds

)
.

By an integration by parts, it follows that

e−αt

α

∫ t

t0

eαs|D′
s(w̃ − w)|2ds ≤ CΦε,ε′(w̃ − w)

α

(
e−αt +

∫ t∨1

1

eα(s−t)s2H−2+2ε′ds

)

≤ CΦε,ε′(w̃ − w))(t ∨ 1)2H−2+2ε′ .

Thus,

|Xx,w̃
t −Xy,w

t |2 ≤ e−α(t−t0)|Xx,w̃
t0 −Xy,w

t0 |2+C‖σ‖2Φε,ε′(w̃ − w)(t∨1)2H−2+2ε′ .

Let us finally control |Xx,w̃
t0 − Xy,w

t0 |2. Since b is L-Lipschitz continuous, for
every t ≥ 0,

|Xx,w̃
t −Xy,w

t | ≤ |x− y|+ L

∫ t

0

|Xx,w̃
s −Xy,w

s |ds+ ‖σ‖ sup
s∈(0,t]

|Ds(w̃ − w)|,

and the Gronwall Lemma yields:

|Xx,w̃
t0 −Xy,w

t0 | ≤
(
|x− y|+ ‖σ‖ sup

s∈(0,t0]

|Ds(w̃ − w)|
)
eLt0 .

Now, assume that t0 ∈ (0, 1]. By Lemma 4,

sup
s∈(0,t0]

|Ds(w̃ − w)| ≤
∫ t0

0

|D′
s(w̃ − w)|ds ≤ CΦε,ε′(w̃ − w)tH−ε

0 .

As a consequence,

|Xx,w̃
t0 −Xy,w

t0 |2 ≤ C
(
|x− y|2 +Φε,ε′(w̃ − w)

)
.

The result follows.
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Before stating Proposition 7 (which provides the exponential bound for
E[FX | F0] − E[FX ]), we finally obtain bounds on the moments of Φε,ε′(W

−)
and of the invariant distribution.

Lemma 6. Let ε, ε′ be some positive numbers. Then, there exists Cε′ > 0 such
that for every λ > 0,

E[|Φε,ε′(W
−)|p] ≤ Cp

ε′E[|Z|p]

where Z has N (0, 1)-distribution.

Proof. It is enough to consider the one-dimensional case and by a symmetry
argument, it is certainly equivalent to prove the result for a Brownian motion
on R+. Furthermore, using that for a Brownian motion W on R+, t 7→ tW 1

t

(with initial value equal to 0) is also a Brownian motion, we deduce that we
have only to prove that for any ε′ > 0,

E

[
sup
t≥1

∣∣∣∣
Wt

t
1
2+ε′

∣∣∣∣
p]

≤ Cp
ε′E[|Z|p].

By the Itô formula,

Wt

t
1
2+ε′

=W1 +

∫ t

1

1

s
1
2+ε′

dWs − (
1

2
+ ε′)

∫ t

1

Ws

s
3
2+ε′

ds. (33)

For the first right-hand side term, there is nothing to prove. For the second one,
we remark that it is a Gaussian process and it follows that a Brownian Motion
W̃ exists such that

sup
t≥1

∣∣∣∣
∫ t

1

1

s
1
2+ε′

dWs

∣∣∣∣
(d)
= sup

t∈[0,σ∞)

|W̃t| where σ∞ =

∫ +∞

1

1

s1+2ε′
ds < +∞,

and “
(d)
=” stands for the equality in distribution. But

sup
t∈[0,σ∞)

|W̃t| ≤ sup
t∈[0,σ∞)

W̃t − sup
t∈[0,σ∞)

(−W̃t)

and hence

E[ sup
t∈[0,σ∞)

|W̃t|p] ≤ 2pE[| sup
t∈[0,σ∞)

W̃t|p] ≤ (2
√
σ∞)pE[|Z|p]

since supt∈[0,σ∞) W̃t has the same distribution as
√
σ∞|Z| where Z has N (0, 1)-

distribution. Let us now consider the last term of (33). We have

sup
t≥1

∣∣∣∣
∫ t

1

Ws

s
3
2+ε′

ds

∣∣∣∣ ≤
∫ +∞

1

|Ws|
s

3
2+ε′

ds.
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Hence, by the Jensen inequality applied with the probability measure µε′(ds) =
Cs−(1+ε′)ds, we get:

E

[
sup
t≥1

∣∣∣∣
∫ t

1

Ws

s
3
2+ε′

ds

∣∣∣∣
p
]
≤ C

∫ +∞

1

E

∣∣∣∣
Ws√
s

∣∣∣∣
p

1

s1+ε′
ds.

Thus, by the scaling property, it follows that

E

[
sup
t≥1

∣∣∣∣
∫ t

1

Ws

s
3
2+ε′

ds

∣∣∣∣
p
]
≤ CE[|Z|p]

where Z has N (0, 1)-distribution.

Lemma 7. Assume (H1) and (H2) and let ν̄ denote the marginal invariant
distribution. Then, there exists C = C(H,L, α, |b(0Rd)|, ‖σ‖) > 0 such that for
any p > 1, ∫

Rd

|y|pν̄(dy) ≤ CpE[|Z|p]

where Z denotes a random variable with N (0, 1)-distribution.Furthermore, (L, α, b0, s) 7→
C(H,L, α, b0, s) is bounded on every compact set of R+ × R

∗
+ × R+ × R+.

Remark 7. The dependency of C with respect to H,L, α, b(0Rd) and σ is explicit
and is given in the following proof.

Proof. The proof uses some arguments of (Hairer, 2005, Proposition 3.12) by
controlling the distance between the solution to the SDE with the one of a
Ornstein-Uhlenbeck process for which the announced property holds. For the
sake of completeness, let us give some details. Let (Ut)t≥0 denote a solution to
dUt = −Utdt+ σdBH

t and (Xt)t≥0 a solution to (1). Assume that U and X are
built with the same fBm and start from the same starting point x. Then,

Xt − Ut =

∫ t

0

b(Xs)− Usds

so that

|Xt − Ut|2 = 2

∫ t

0

〈b(Xs)− Us, Xs − Us〉ds.

For any x and u ∈ R
d,

〈b(x) − u, x− u〉 = 〈b(x)− b(u), x− u〉+ 〈b(u)− u, x− u〉.

Now, by (H1) and (H2) (which implies that |b(u)| ≤ (|b(0Rd)| ∨L)(1+ |u|)), we
get

〈b(x)− u, x− u〉 ≤ −α
2
|x− u|2 + (|b(0Rd)| ∨ L+ 1)2

α
(1 + |u|2).
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Thus, with similar arguments as in the proof of Lemma 5 (based on Gronwall-
type arguments), we deduce that for any t ≥ 0,

|Xt − Ut|2 ≤ 2(|b(0Rd)| ∨ L+ 1)2

α

∫ t

0

eα(s−t)(1 + |Us|2)ds.

Thus, denoting by ‖.‖p, the Lp-norm we deduce from Jensen inequality that

‖Xx
t ‖pp ≤ 2p−1

(
4(|b(0Rd)| ∨ L+ 1)2

α
×
(
1

α
∨ 1

))p/2 ∫ t

0

eα(s−t)(1+‖Ux
s ‖pp)ds+2p−1‖Ux

t ‖pp.

Denote by ν̄ and πσ the (marginal) invariant distributions of X and U . Owing
to uniform integrability arguments and to the convergence in distribution of
(Xt)t≥0 and (Ut)t≥0 towards ν̄ and πσ, we get:

∫

Rd

|y|pν̄(dy) = lim
t→+∞

‖Xx
t ‖pp ≤ C̄p lim

t→+∞
‖Ux

t ‖pp = C̄p

∫

Rd

|y|pπσ(dy)

where

C̄ := 2

(
4(|b(0Rd)| ∨ L+ 1)2

α
×
(
1

α
∨ 1

))1/2

+ 2.

Finally, let us recall that by a standard integration by parts,

Ut = xe−t + σ

∫ t

0

es−tdBH
s

and it follows that πσ = πId ◦ ϕ−1
σ where ϕσ = σx. Thus,

∫

Rd

|y|pπσ(dy) ≤ ‖σ‖p
∫

|y|pπId(dy).

But by (Hairer, 2005, Proposition 3.12), πId has Gaussian distributionN (0Rd , c0Id)

where c0 ≤ Γ(2H + 1), so that the result follows with C = ‖σ‖(dΓ(2H + 1))
1
2 C̄

(which has the local boundedness property announced in the lemma).

We are now in position to provide an exponential bound for E[FX | F0]−E[FX ]:

Proposition 7. Assume (H1) and (H2). Suppose that n∆n ≥ 1. Then, for
any ε′ ∈ (0, 1−H), a constant C = C(H,L, α, b(0Rd), σ, ε′) exists such that

E[exp (λ(E[FX | F0]−E[FX ]))] ≤ exp
(
λ2u

(n)
0

)
,

where

u
(n)
0 = C‖F‖2Lip

(n∆n)
H+ε′

∆n
.

In particular, with ε′ = 1
2 and ε′ = 1−H

2 when H < 1/2 and H > 1/2 respec-
tively,

u
(n)
0 ≤ C‖F‖2Lip

{
n∆−1

n if H < 1/2,

nH+ 1−H
2 ∆

H−1
2

n if H > 1/2.
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Remark 8. Following carefully the constants involved in the proof below (in-
duced by the previous lemmas), one checks that for every H ∈ (0, 1) and ε′ ∈
(0, 1−H), (L, α, b0, s) 7→ C(H,L, α, b0, s, ε

′) is bounded on every compact set of
R+ ×R

∗
+ ×R+ ×R+. Thus, since the proof of Theorem 1 is obtained as a com-

bination of Propositions 4 and 7, this property combined with Remark 6 implies
that the constant C of Theorem 1 has the local boundedness property announced
in Remark 2.

Remark 9. The above bound easily involves that the contribution of E[FX | F0]−
E[FX ] is always less constraining (up to a multiplicative constant) than the one
obtained in Proposition 4.

Proof. By (31) and Lemma 5, for any p > 1,

|E[FX | F0]−E[FX ]|p ≤ (2C1‖F‖Lip)p
(∫

Rd

|X0 − y|ν̄(dy)
n∑

k=1

e−
α
2 tk

)p

+ (2C2‖F‖Lip)p
(∫ ∣∣Φε,ε′(W

− − w)
∣∣p PW−(dw)

)( n∑

k=1

(tk ∨ 1)H−1+ε′

)p

where ν̄ stands for the “marginal” invariant distribution, i.e. the projection of ν
on the first coordinate and w̃ denotes the p Let us consider the two right-hand
side terms separately. On the one hand, using Jensen inequality, we get

(∫

Rd

|X0 − y|ν̄(dy)
n∑

k=1

e−
α
2 tk

)p

≤
∫

Rd

|X0 − y|pν̄(dy)
(

2

α∆n

)p

.

Thus, using that |X0 − y|p ≤ 2p (|X0|p + |y|p) and Lemma 7, we get

E

(∫

Rd

|X0 − y|ν̄(dy)
n∑

k=1

e−
α
2 tk

)p

≤
(

4

α∆n

)p

CpE[|Z|p]. (34)

On the other hand, since H − 1 + ε′ > −1,

n∑

k=1

(tk ∨ 1)H−1+ε′ ≤ C

(
1

∆n
+ nH+ε′∆n

H−1+ε′
)

≤ C
(n∆n)

H+ε

∆n
.

Furthermore,

E

∫

Ω−

∣∣Φε,ε′(W
− − w)

∣∣p PW−(dw) ≤ 2pE|Φε,ε′(W
−)|p.

Thus, by Lemma 6, it follows that

E

∫

Ω−

∣∣Φε,ε′(W
− − w)

∣∣p PW−(dw)

(
n∑

k=1

(tk ∨ 1)H−1+ε′

)p

≤
(
C
(n∆n)

H+ε

∆n

)p

E[|Z|p].

(35)
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Combining (34), (35) and the fact that E|Z|p ≤ CpΓ
(
p+1
2

)
≤ CppΓ

(
p
2

)
, we

get: there exists a constant C > 0 such that for all p ≥ 2,

E|E[FX | F0]−E[FX ]|p ≤
(
C‖F‖Lip

(n∆n)
H+ε

∆n

)p

pΓ
(p
2

)
.

To conclude, we apply Lemma 1.

7 Proofs of Statistical properties

7.1 Proof of Proposition 2

Step 1. Below we denote x0 = (t1, . . . , td) and we define for h ∈ H and η such
that ηi ∈ {0, hi}:

vi(u) = (t1−η1u1, . . . , ti−1−ηi−1ui−1, ti , ti+1−hi+1ui+1, . . . , td−hdud).

We can write:

f(x0 − h · u)− f(x0 − η · u) =
d∑

i=1

f(vi(u)− hiuiei)− f(vi(u)− ηiuiei)

=
∑

i∈I

f(vi(u)− hiuiei)− f(vi(u)),

where I = {i = 1, . . . , d : ηi = 0}. Now fix i ∈ I.

If ⌊si⌋ = 0 then we obtain:

|f(vi(u)− hiuiei)− f(vi(u))| ≤ Li|hiui|si

which leads to (since f ∈ Σd(s,L))
∣∣∣∣
∫

R

K(ui) (f(vi(u)− hiuiei)− f(vi(u))) dui

∣∣∣∣ ≤ Lih
si
i

∫

R

∣∣usii K(ui)
∣∣dui.

Otherwise, using a Taylor expansion of the function z ∈ R 7→ f(vi(u) + zei)
around 0, we obtain:

f(vi(u)− hiuiei)− f(vi(u)) =

⌊si⌋∑

k=1

Dk
i f(vi(u))

(−hiui)k
k!

+
(−hiui)⌊si⌋

⌊si⌋!

[
∂⌊si⌋f

∂x
⌊si⌋
i

(vi(u)− τhiui)−
∂⌊si⌋f

∂x
⌊si⌋
i

(vi(u))

]
,

where τ ∈ (0, 1). This implies that, using that K is a kernel of order larger than
⌊si⌋ combined with the fact that vi(u) does not depend on ui,

∣∣∣∣
∫

R

K(ui) (f(vi(u)− hiuiei)− f(vi(u))) dui

∣∣∣∣ ≤
Lih

si
i

⌊si⌋!

∫

R

∣∣usii K(ui)
∣∣dui.
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Combining the above results we obtain:
∣∣∣∣∣

∫

Rd

d∏

i=1

K(ui) (f(x0 − h · u)− f(x0 − η · u)) du
∣∣∣∣∣ ≤

∑

i∈I

Lih
si
i

⌊si⌋!

∫

R

∣∣usii K(ui)
∣∣dui.

Step 2. Let h, h ∈ H. Taking η = 0 in step 1 we obtain (13) Taking ηi = 0 if
hi = hi ∨ hi and ηi = hi = hi ∨ hi otherwise, we obtain:
∣∣∣Ef̂h∨h(x0)−Ef̂h(x0)

∣∣∣ ≤
∣∣∣Ef̂h∨h(x0)−Ef̂η(x0)

∣∣∣+
∣∣∣Ef̂η(x0)−Ef̂h(x0)

∣∣∣

≤ 2
∑

i∈I

Lih
si
i

⌊si⌋!

∫

R

∣∣usii K(ui)
∣∣dui

≤ 2

d∑

i=1

Lih
si
i

⌊si⌋!

∫

R

∣∣usii K(ui)
∣∣dui.

This implies (14).

7.2 Proof of Proposition 3

We have

E

∣∣∣f̂h(x0)−Ef̂h(x0)
∣∣∣
p

=

∫ ∞

0

P
(∣∣∣f̂h(x0)−Ef̂h(x0)

∣∣∣
p

> t
)
dt.

We now use Corollary 1 with the functional g(u) = Kh(x0−u). We obtain that

E

∣∣∣f̂h(x0)−Ef̂h(x0)
∣∣∣
p

= p

∫ ∞

0

up−1P
(∣∣∣f̂h(x0)−Ef̂h(x0)

∣∣∣ > u
)
du

≤ 2p

∫ ∞

0

up−1 exp

(
−u

2(n∆)βH

4C‖g‖2Lip

)
du

= 2p

(
4C‖g‖2Lip
(n∆n)βH

)p/2 ∫ +∞

0

up−1 exp
(
−u2

)
du

= pΓ

(
p+ 1

2

)(
4C‖g‖2Lip
(n∆n)βH

)p/2

= pΓ

(
p+ 1

2

)
Cp/2

(
4‖g‖2Lip
(n∆n)βH

)p/2

Since ‖g‖Lip ≤
√
dLKV

−1
h , we obtain (15).

7.3 Proof of oracle inequality

We split the proof of Theorem 3 into several steps.
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Step 1. Let h ∈ H be an arbitrary bandwidth. Using triangular inequality
we have:

|f̂(x0)− f(x0)| ≤ |f̂ĥ(x0)− f̂h∨ĥ(x0)|+ |f̂h∨ĥ(x0)− f̂h(x0)|+ |f̂h(x0)− f(x0)|.

Note that

|f̂ĥ(x0)− f̂h∨ĥ(x0)| ≤
{
|f̂ĥ(x0)− f̂h∨ĥ(x0)| −Mn(h, ĥ)

}

+
+Mn(h, ĥ)

≤ max
h∈H

{
|f̂h(x0)− f̂h∨h(x0)| −Mn(h, h)

}

+
+Mn(h, ĥ)

≤ B(h, x0) +Mn(ĥ) +Mn(h).

Applying the same reasoning to the term |f̂h∨ĥ(x0) − f̂h(x0)| and using (12),
this leads to

|f̂(x0)− f(x0)| ≤ B(h, x0) + 2Mn(h) +B(ĥ, x0) + 2Mn(ĥ) + |f̂h(x0)− f(x0)|
≤ 3B(h, x0) + 4Mn(h) + |f̂h(x0)− f(x0)|

This implies that:

Rn(f̂ , f) ≤ 3 (EBp(h, x0))
1/p

+ 4Mn(h) +Rn(f̂h, f)

Step 2. Now, we upper bound B(h, x0). Using basic inequalities we have:

B(h, x0) ≤ max
h∈H

{∣∣∣Ef̂h∨h(x0)−Ef̂h(x0)
∣∣∣
}

+
+max

h∈H

{∣∣∣f̂h(x0)−Ef̂h(x0)
∣∣∣−Mn(h)

}

+

+max
h∈H

{∣∣∣f̂h∨h(x0)−Ef̂h∨h(x0)
∣∣∣ −Mn(h ∨ h)

}

+

≤ Eh(x0) + 2T,

where
T = max

h∈H

{∣∣∣f̂h(x0)−Ef̂h(x0)
∣∣∣−Mn(h)

}

+
.

This leads to:

(EBp(h, x0))
1/p ≤ Eh(x0) + 2 (ET p)

1/p
.

Step 3. We have:

ET p ≤
∑

h∈H

∫ ∞

0

P

(∣∣∣∣∣
1

n

n∑

i=1

ḡh(Xti)

∣∣∣∣∣ ≥Mn(h) + t1/p

)
dt,

where

gh(Xti) = Kh(x0 −Xti) and ḡh(Xti) = gh(Xti)−Egh(Xti).
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We obtain, using Corollary 1:

ET p ≤ p
∑

h∈H

∫ ∞

0

up−1P

(∣∣∣∣∣
1

n

n∑

i=1

ḡh(Xti)

∣∣∣∣∣ ≥Mn(h) + u

)
du

≤ 2p
∑

h∈H

∫ ∞

0

up−1 exp

(
− (u+Mn(h))

2(n∆n)
βH

4C‖gh‖2Lip

)
du

≤ 2p
∑

h∈H

∫ ∞

0

up−1 exp

(
− 1

C

(
u+Mn(h)

ϕn(h)

)2
)
du

≤ 2p
∑

h∈H

∫ ∞

0

up−1 exp

(
− 1

C

(
u

ϕn(h)

)2
)
exp

(
−pK

C
| logVh|

)
du

Since K > C we obtain:

ET p ≤ pΓ

(
p+ 1

2

)∑

h∈H

(
C1/2ϕn(h)Vh

)p
V

p(K

C
−1)

h

≤ pΓ

(
p+ 1

2

)
(4dL2

K)p/2
(

C

(n∆n)βH

)p/2 ∑

h∈H

V
p(K

C
−1)

h

≤ p

(
ep(

K

C
−1)

ep(
K

C
−1) − 1

)d

Γ

(
p+ 1

2

)
(4dL2

K)p/2
(

C

(n∆n)βH

)p/2

Finally we obtain the following upper bound:

(ET p)
1/p ≤ 2LK

√
d


pΓ

(
p+ 1

2

)(
ep(

K

C
−1)

ep(
K

C
−1) − 1

)d



1/p

×
(

C

(n∆n)βH

)1/2

.

This allows us to obtain Theorem 3.

7.4 Proof of Theorem 4

Set s ∈ (0,M + 1]d, L ∈ (0,+∞)d.To prove this result, we construct a specific
bandwidth vector h∗ that belongs to H. This allows to apply Propositions 2
and 3 and to bound, in (16), the minimum over h ∈ H by the value for h = h∗.
Let

l∗i =

⌊
γ(s)

si

(
log
(
(n∆n)

βH
)
− log log

(
(n∆n)

βH
))⌋

.

Since γ(s)/si ≤ 1/2 we have

0 ≤ l∗i ≤ 1

2
log
(
(n∆n)

βH
)
≤ βH

2
log (n∆n) . (36)
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Now, denote for i = 1, . . . , d:

h∗i = e−l∗i and hi(s) =
(
(n∆n)

−βH log
(
(n∆n)

βH
))γ(s)/si

.

Remark that, using these notations we have hi(s) ≤ h∗i ≤ ehi(s). If we consider
h∗ = (h∗1, . . . , h

∗
d) and h(s) = (h1(s), . . . , hd(s)), then:

Vh∗ ≥ Vh(s)

≥
(
(n∆n)

−βH log
(
(n∆n)

βH
))γ(s)(1/s̄+1/smin)

≥
(
(n∆n)

−βH
)γ(s)(1/s̄+1/smin)

=
(
(n∆n)

−βH
)1/2−γ(s)

≥ (n∆n)
−βH/2,

where smin = minj sj and using that (n∆n)
βH ≥ e. This implies, in combination

with (36), that h∗ ∈ H. In (16) we can bound the right hand side by taking
h = h∗. Let us consider each term separately.

First, using Propositions 2 and 3, since 0 < si ≤M + 1 for each i, we have

Rn(f̂h∗ , f) ≤
(
eM+1Λ1 +

Λ2

(log((n∆n)βH ))1/2

)(
log((n∆n)

βH )

(n∆n)βH

)γ(s)

≤
(
eM+1Λ1 + Λ2

)( log((n∆n)
βH )

(n∆n)βH

)γ(s)

.

Secondly, using Proposition 2 we obtain:

Eh∗(x0) ≤ 2eM+1Λ1

(
log((n∆n)

βH )

(n∆n)βH

)γ(s)

.

Finally, using (10) and (11) we have:

Mn(h
∗) =

(
4dL2

K

V 2
h∗(n∆n)βH

)1/2√
Kp| logVh∗ |

≤ 2
√
KdpLK

(
1

V 2
h(s)(n∆n)βH

)1/2 (
| log(ed+1Vh(s))|

)1/2

≤ 2
√
KdpLK

(
log((n∆n)

βH )

(n∆n)βH

)γ(s)
(
| log(ed+1Vh(s))|
log((n∆n)βH )

)1/2

≤ 2
√
KdpLK

(
log((n∆n)

βH )

(n∆n)βH

)γ(s)(
d+ 1 + (1/2− γ(s)) log((n∆n)

βH )

log((n∆n)βH )

)1/2

≤ 2
√
Kd(d + 3/2)pLK

(
log((n∆n)

βH )

(n∆n)βH

)γ(s)
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This allows us to conclude that minh∈H

{
Rn(f̂h, f) + 4Mn(h) + 3Eh(x0)

}
is

bounded up to a multiplicative constant by
(

log((n∆n)
βH )

(n∆n)βH

)γ(s)
. To conclude,

only note that (n∆n)
−βH/2 ≤ (n∆n)

−γ(s)βH since γ(s) ≤ 1/2.
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Besalú, M., Kohatsu-Higa, A., and Tindel, S. (2016). Gaussian-type lower
bounds for the density of solutions of SDEs driven by fractional Brownian
motions. Ann. Probab., 44(1):399–443.

Bosq, D. (2012). Nonparametric statistics for stochastic processes: estimation
and prediction, volume 110. Springer Science & Business Media.

Bosq, D. et al. (1997). Parametric rates of nonparametric estimators and predic-
tors for continuous time processes. The Annals of Statistics, 25(3):982–1000.

Castellana, J. and Leadbetter, M. (1986). On smoothed probability density es-
timation for stationary processes. Stochastic processes and their applications,
21(2):179–193.

Comte, F. and Marie, N. (2018). Nonparametric estimation in fractional sde.
arXiv preprint arXiv:1806.00115.
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