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Introduction

We consider the R d -random process X = (X t : t ≥ 0) governed by stochastic differential equation

X t = X 0 + t 0 b(X s )ds + σB H t , t ≥ 0, (1) 
where X 0 is the initial value of X, b : R d → R d is a continuous function, σ is a constant d × d matrix and B H = (B H t : t ≥ 0) is a d-dimensional two-sided 1 fractional Brownian motion with Hurst parameter 0 < H < 1. Even in this nonmarkovian framework (if H = 1/2), the process X can be embedded into an infinite Markovian structure (see [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. This allows us to define, under usual assumptions on the coefficients b and σ, a unique invariant distribution of X which admits a density f : R d → R. In this paper we are interested in the non-parametric estimation of f based on the observation of X at n equally spaced sampling times t 1 = ∆ n , . . . , t n = n∆ n where ∆ n is a non-increasing positive sequence such that n∆ n → ∞.

In the case of diffusion models driven by standard Brownian motion (H = 1 2 ), the problem of non parametric estimation of the invariant density has been extensively studied, in both discrete and continuous time. In the continuous time framework, the process X is observed for all 0 ≤ t ≤ T . [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF] proved that, under some specific assumption on the joint density of (X 0 , X t ), the parametric rate of convergence T -1/2 can be reached. Among other, see also [START_REF] Bosq | Parametric rates of nonparametric estimators and predictors for continuous time processes[END_REF], [START_REF] Kutoyants | Efficient density estimation for ergodic diffusion processes[END_REF], [START_REF] Dalalyan | Estimation non-paramétrique asymptotiquement efficace pour des processus de diffusion ergodiques[END_REF], [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF] and [START_REF] Bosq | Nonparametric statistics for stochastic processes: estimation and prediction[END_REF]. Without this specific assumption, classical non-parametric rates of convergence of the form T -s/(2s+1) can be obtained (see [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] where s is the smoothness parameter of the function f : R → R. The case of discrete observations (which corresponds to our framework) has been studied in a univariate setting in [START_REF] Tribouley | l p adaptive density estimation in a beta mixing framework[END_REF], [START_REF] Comte | Adaptive estimation of the stationary density of discrete and continuous time mixing processes[END_REF] and [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] for integrated risk and in [START_REF] Bertin | Pointwise adaptive estimation of the marginal density of a weakly dependent process[END_REF] for pointwise risk. In these papers, the rate of convergence is proved to depend only on T = n∆ n and (adaptive) minimax rates of convergence are of the form (n∆ n ) -s/(2s+1) (up a a logarithmic term) where s is the smoothness of the density function. See also [START_REF] Bertin | Adaptive density estimation on bounded domains under mixing conditions[END_REF] that consider integrated risk in a multivariate setting. When H = 1/2, nonparametric estimation methods for the model (1) have mainly focused on estimation of the drift term b on the continuous case, see e.g. [START_REF] Mishra | Nonparametric estimation of trend for stochastic differential equations driven by fractional brownian motion[END_REF] (where the authors study the consistency and the rate of convergence of a nonparametric estimator of the whole trend of the solution to a fractional SDE) and [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF] (where the authors the consistency of some Nadaraya-Watson's-type estimators of the drift function in a fractional SDE). Note that these papers only consider the case H > 1/2 in the continuous case. Our goal in this paper is to construct a data-driven procedure to estimate the stationary density f of X in the discrete case for both H < 1/2 and H > 1/2. To this aim, new concentration inequalities are obtained for the "stationary" process, following the strategy of [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF]. In this paper, the idea was to use a pathwise interpretation of the concentration phenomenon by studying the distance between a functional and its average as a sum of differences of "conditioned paths". Then, the result was obtained by making use of the contraction properties of the dynamics (under strong convexity assumptions). In our paper, the novelty with respect to this paper is to assume that ∆ n may depend on n but mostly, that the process is observed in its stationary regime (instead of starting from a given x like in [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF]). Actually, if this modification is easy to overcome in a Markovian setting, here, this is not the case since at time 0, the process has already a past. In other words, an invariant distribution of (1) is a probability on R d × W where W is a functional space (see Section 2.1 for details). In short, proving concentration bounds in stationary regime requires to strongly modify the original proof given in [START_REF] Varvenne | Concentration inequalities for stochastic differential equations with additive fractional noise[END_REF] (see Section 6.1 for more detailed explanations). These tools are used for two purposes. First we obtain rates of convergence for the pointwise risk of classical kernel estimators assuming that f belongs to a Hölder class with a known smoothness parameter s = (s 1 , . . . , s d ) ∈ (0, ∞) d . More precisely, choosing adequately a bandwidth that depends on s, we obtain the rate φ n (s) = (n∆ n ) -βH γ(s) where

γ(s) = s 2 1 + 1 minj sj s + 2 and β H = 2 -max(2H, 1). ( 2 
)
Here s =

d i=1 1/s i -1
denotes a classical parameter in multivariate nonparametric estimation that can be viewed as the effective smoothness of f . Next, we propose a data-driven procedure based on the ideas developed by Goldenshluger and Lepski (see Goldenshluger andLepski, 2011a, 2014, andreferences therein) to select the bandwidth. The concentration tools we develop in this paper allow us to prove an oracle-type inequality. This ensures that our data-driven procedure performs almost as well as the best estimator in a given family of estimators. As a direct consequence, our procedure is proved to be adaptive: assuming that f is Hölder with unknown smoothness s, it converges at the rate φ n (s) up to a log(n∆ n ) factor.

The paper is organized as follows. We first present the model and the new concentration inequalities in Section 2. We introduce the statistical framework in Section 3. Section 4 is devoted to the description of our estimation procedures and their theoretical properties are stated in Section 5. The proofs are postponed to Section 6 (for the concentration inequalities) and 7 (for the properties of statistical procedures).

Model and Probabilistic background 2.1 Model

We recall that in the non-Markovian setting given by (1), the well definition of "the" invariant distribution of the process X requires the embedding of the dynamics into an infinite-dimensional Markovian structure. More precisely, the Markovian process above the dynamics, called Stochastic Dynamical System (SDS) can be realized as a map on the space R d × W where W denotes an appropriate space of Hölder functions from (-∞, 0] to R d , equipped with the Wiener measure. This construction is strongly based on the Mandelbrot Van-Ness representation of the fBm:

∀t ∈ R, B H t = c H R (t -s) H-1/2 + -(-s) H-1/2 + dW s , (3) 
where (W t ) t∈R is a two-sided d-dimensional Brownian motion and c H > 0.

We denote by (Q t (x, w)) t≥0,(x,w)∈R d ×W the related semi-group (for details on regularity properties of the SDS, see [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]).

For this type of dynamics, an initial condition is given by a couple (X 0 , W -), where W -= (W t ) t≤0 and X 0 ∈ R d . In other words, an initial condition is a distribution µ on R d × W such that the projection on the second coordinate is

P W -.
Then, an invariant distribution ν for (Q t (x, w)) t≥0,(x,w)∈R d ×W is an initial condition which is such that the distribution P X ν of the process (X ν t ) t≥0 built with this initial condition is invariant by a time-shift. We say that the invariant distribution is unique if P X ν is unique. Finally, if the invariant distribution exists, we will denote by ν, its first marginal: ν(dx) = W ν(dx, dw). Such a distribution (on R d ) will be usually called "marginal invariant distribution". We will denote by f the density of ν with respect to the Lebesgue measure on R d (denoted by λ d in the sequel) when exists. In Proposition 1 below, we recall some sufficient conditions which ensure existence, uniqueness of the invariant distribution and absolute continuity of ν with respect to the Lebesgue measure. To this end, let us first state the assumptions used throughout our paper: (H 1 ) (stability) The function b : R d → R is continuous and there exists a constant α > 0 such that: For every x, y ∈ R d , we have

b(x) -b(y), x -y ≤ -α|x -y| 2 (H 2 ) (strong regularity) For every x, y ∈ R d , |b(x) -b(y)| ≤ L|x -y|.
(H 3 ) (nondegeneracy) The matrix σ is invertible.

Proposition 1. Assume (H 1 ) and (H 2 ). Then, existence holds for the invariant distribution ν. If (H 3 ) is also fulfilled, then uniqueness holds for ν (unique in the sense of [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. Furthermore, if b is C 1 , then the marginal invariant distribution ν admits a density f with respect to λ d .

Existence and uniqueness are consequences of [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]. For the existence of density for ν, we rely on the one hand, on [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], Theorems 1.2, 1.3), which state that (X x t ) converges in total variation distance towards ν and, on the other hand, to the fact that, under (H 3 ), the distribution of (X x t ) has a density with respect to the Lebesgue measure for any t > 0 (see e.g. (Besalú et al., 2016, Theorem 1.2) or (Baudoin and Hairer, 2007, Theorem 4.3) when H > 1/2). The combination of these two properties implies that ν is absolutely continuous w.r.t. to the Lebesgue measure (or equivalently that the density exists).

Remark 1. ⊲ For the existence of the invariant distribution, Assumption (H 1 ) could be alleviated. More precisely, the contraction assumption may be only assumed out of a compact set. However, we chose to recall the result only under this assumption since, in the sequel, we will need (H 1 ) to obtain concentration properties.

⊲ In this paper, we do not discuss about the smoothness of f . This problem is out of the scope of the paper. However, we can expect that the smoothness of f strongly relies on the one of b. For instance, in the setting of gradient diffusions dx t = -∇U (x t ) + σ 0 dW t (where σ 0 is a positive number) , it is well-known that the density is given by f

(x) = 1 ZU,σ 0 exp -U(x) 2σ 2 0
. This involves that in this particular case, when b is of class C r+α (α ∈ (0, 1]), then f is of class C r+1+α . We conjecture that this property is still true in our setting.

Concentration inequalities for stationary solution

Let n ∈ N * . We denote by d n the following L 1 -distance:

∀(x, y) ∈ (R d ) n × (R d ) n , d n (x, y) := n k=1 |x i -y i |, (4) 
where | . | stands for the Euclidean norm on R d . For a given d × d-matrix A with real entries, we also denote by . a given matrix-norm, subordinated to the Euclidean norm.

Theorem 1. Let H ∈ (0, 1). Assume (H 1 ), (H 2 ) and (H 3 ) and denote by (X t ) t≥0 the stationary solution associated to (1). Let n ∈ N * and ∆ n > 0 such that n∆ n ≥ 1. Let d n be the metric defined by (4). Then, there exists some positive constant

C = C(H, L, α, |b(0 R d )|, σ ) such that for all Lipschitz function F : (R d ) n , d n → (R, | • |) and for all λ > 0, E [exp (λ(F X -E[F X ]))] exp C F 2 Lip λ 2 n aH ∆ -βH n .
where a H := max{2H, 1}, β H := min{1, 2 -2H} and F X := F (X t1 , . . . , X tn ). Moreover, we deduce from the previous inequality that

P (F X -E[F X ] > r) exp -r 2 4Cn aH ∆ -βH n F 2 Lip .
Corollary 1. Let the assumptions of Theorem 1 be in force. Let F X :=

1 n n k=1 g(X t k ) where g : (R d , | • |) → (R, | • |) is a given Lipschitz function. We have F 2 Lip = n -2 g 2
Lip and then there exists some positive constant

C = C(H, L, α, |b(0 R d )|, σ ) such that P 1 n n k=1 (g(X t k ) -E[g(X t k )]) > r exp -r 2 n βH ∆ βH n 4C g 2 Lip (5) since 2 -a H = β H .
Remark 2. ⊲ In Theorem 1, assumption (H 3 ) ensures the uniqueness of the stationary solution (X t ) t≥0 but the concentration result remains true for every stationary solution to (1) when (H 3 ) does not hold. ⊲ In the above results, the constant 

C = C(H, L, α, |b(0 R d )|, σ ) can be chosen in such a way that (L, α, b 0 , q) → C(H, L, α, b 0 , q) is bounded on every compact set of R + × R * + × R + × R + (

Adaptive framework

Let us recall that ν denotes the marginal invariant distribution and that f denotes its density w.r.t. the Lebesgue measure λ d , which is assumed to exist in whole the paper (see Proposition 1 for conditions of existence). To measure the accuracy of an estimator f = f (•, X t1 , . . . , X tn ) of f , we define the pointwise risk

R n ( f , f ) = E f (x 0 ) -f (x 0 ) p 1/p where p ≥ 1 is fixed. Let F be a subset of C(R d , R).
In what follows, we will consider specific Hölder classes. The maximal risk of fn over F is defined by:

R n ( f , F) = sup f ∈F R n ( f , f ).
We say that an estimator f converges at the rate of convergence φ n (F) over

F if lim sup n→∞ φ -1 n (F)R n ( f , F) < ∞ (6)
Note that such estimator may depend on the class F. Moreover (6) ensures a specific behavior of the estimator f over F but the same estimator can perform poorly over another functional space. The problem of adaptive estimation consists in finding a single estimation procedure with a good behavior over a scale of functional classes. More precisely, given a family

{F λ : λ ∈ Λ} of subsets of C(R d , R), the goal is to construct f * n such that R n (f * n , F λ )
is asymptotically bounded, up to a small multiplicative factor (for example a constant or a logarithmic term), by φ n (F λ ) for any λ ∈ Λ. One of the main tools to prove that an estimation procedure is adaptive over a scale of functional classes is to prove an oracle-type inequality that guarantees that this procedure performs almost as well as the best estimator in a rich family of estimators. Ideally, we would like to have an inequality of the following form:

R n (f * , f ) ≤ inf η∈H R n ( fη , f ), (7) 
where { fη : η ∈ H} is a family of estimators satisfying: for any λ ∈ Λ, there exists η(λ) such that fη(λ) converges at the rate φ n (F λ ) over the class F λ . In general, obtaining such an inequality is not possible. However in many situations, ( 7) can be relaxed and a weaker inequality of the following type can be proved:

R n (f * , f ) ≤ Υ 1 inf η∈H R * n (f, η) + Υ 2 δ(n), (8) 
where Υ 1 and Υ 2 are two positive constants, R * n (f, η) is an appropriate quantity to be determined that can be viewed as a tight upper bound on R n ( fη , f ) and δ(n) is a reminder term. Inequalities of the form ( 8) are called oracle-type inequalities.

Estimation procedure

To estimate f we construct a procedure defined through classical kernel density estimators. It is well known that the accuracy of these estimators is mainly determined by the bandwidth vector. Thus, obtaining a data-driven choice of this parameter is the central problem in our model. In this section, after introducing a family of kernel density estimators, we define a selection procedure based on the ideas developed in [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF].

Kernel density estimators

In this paper a function [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] and [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], we consider kernel density estimators fh defined, for h = (h 1 , . . . , h d ) ∈ (0, +∞) d , by:

K : R → R is called a kernel if the support of K is included into [-1, 1], K is a Lipschitz function with Lipschitz constant L K > 0 and K satisfies R K(u)du = 1. Following
fh (x 0 ) = 1 n n i=1 K h (x 0 -X ti ), (9) 
where, for (u 1 , . .

. , u d ) ∈ R d , we define K h (u 1 , . . . , u d ) = d i=1 h -1 i K(h -1 i u i ). We say that a kernel K is of order M ∈ N if for any 1 ≤ ℓ ≤ M , we have R K(x)
x ℓ dx = 0. In the following paragraph, we propose a data-driven procedure to select the bandwidth h in the finite subset H of (0, 1) d .

Bandwidth selection

Our procedure depends on a hyperparameter K > 0. We refer the reader to Section 5 for detailed comments on the impact of the choice of this parameter. For any bandwidth vector h = (h 1 , . . . , h d ) ∈ (0, 1) d , we define:

V h = min(h 1 , . . . , h d ) d i=1 h i and ϕ n (h) = 4dL 2 K V 2 h (n∆ n ) βH 1/2 , ( 10 
)
where β H is defined by (2). We consider the following subset of (0, 1) d H = (e -l1 , . . . , e -l d ) :

l i = 0, . . . , β H 2 log (n∆ n ) ∩ H
where ⌊•⌋ denotes the integer part and

H = h ∈ (0, 1) d : V h ≥ 1 n∆ n βH /2 .
Without loss of generality, we assume that (n∆ n ) βH ≥ e, which implies in particular that H is not empty.

Following [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF], we define for h and h in H the following quantities

M n (h, h) = M n (h) + M n (h ∨ h) with M n (h) = ϕ n (h) Kp| log V h | (11) and B(h, x 0 ) = max h∈H fh∨h (x 0 ) -fh (x 0 ) -M n (h, h) + .
Here {y} + = max(0, y) denotes the nonnegative part of y ∈ R and h ∨ h denotes the component-wise maximum of the bandwidth h and h. Our procedure consists of selecting a bandwidth ĥ(x 0 ) such that ĥ

(x 0 ) = arg min h∈H (B(h, x 0 ) + M n (h)) . (12) 
The final estimator of f (x 0 ) is then defined as the plugin estimator:

f (x 0 ) = fĥ (x0) (x 0 ).
This selection rule follows the principles and the ideas developed by Goldenshluger and Lepski. The quantity M n (h), called a majorant, is a penalized version of the standard deviation of the estimator fh while the quantity B(h, x 0 ) is, in some sense, closed to its bias term. Finding tight majorants is the key point of the method since ĥ(x 0 ) is chosen in (12) in order to realize an empirical trade-off between these two quantities.

Results

We first recall the definition of Hölder balls Σ d (s, L). For two d-tuples of positive reals s = (s 1 , . . . , s d ) and

L = (L 1 , . . . , L d ), Σ d (s, L) = f : R d → R s.t. ∀ 1 ≤ i ≤ d ∂ m f ∂x m i ∞ ≤ L i , m = 0, . . . , ⌊s i ⌋ and for all t ∈ R ∂ ⌊si⌋ f ∂x ⌊si ⌋ i (• + te i ) - ∂ ⌊si⌋ f ∂x ⌊si⌋ i (•) ∞ ≤ L i |t| si-⌊si⌋
where for any i, ⌊s i ⌋ = max{l ∈ N : l < s i } and e i is the vector where all coordinates are null except the i-th one which is equal to 1.

Properties of the kernel estimators

The two following propositions give upper-bounds of the bias and the stochastic term of the estimator fh .

Proposition 2. Let s = (s 1 , . . . , s d ) ∈ (0, +∞) d and L = (L 1 , . . . , L d ) ∈ (0, +∞) d . Assume that f ∈ Σ d (s, L)
and assume that K is a kernel of order greater than max i ⌊s i ⌋. Under (H 1 ), (H 2 ) and (H 3 ), we have for all h ∈ H

E fh (x 0 ) -f (x 0 ) ≤ d i=1 L i h si i ⌊s i ⌋! R v si K(v) dv (13) 
and

E h (x 0 ) = max h∈H E fh∨h (x 0 ) -E fh (x 0 ) ≤ 2 d i=1 L i h si i ⌊s i ⌋! R v si K(v) dv. ( 14 
)
Proposition 3. Under (H 1 ), (H 2 ) and (H 3 ), we have for all h ∈ H

E fh (x 0 ) -E fh (x 0 ) p 1/p ≤ pΓ p + 1 2 1/p C 1/2 ϕ n (h). ( 15 
)
Remark 3. ⊲ Note that the control of the bias term obtained in Proposition 2 is the same as those obtained for the problem of density estimation in an i.i.d. context. The control of the stochastic term, see Proposition 3, relies on the concentration inequality obtained in Corollary 1. The right hand side of (15) depends on the additional assumptions made on our model through the constant C. ⊲ This result is valid for a large class of functional (only a Lipschitz condition is required) and under weak assumptions on the process. For H = 1/2, the concentration inequality is optimal, see [START_REF] Saussereau | Transportation inequalities for stochastic differential equations driven by a fractional brownian motion[END_REF] and [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]. However, under strongest assumptions-for example on the joint distribution of (X 0 , X t ), Bernstein-type inequalities can be used to derive a better upper bound on the stochastic term of order (nh 1 . . . h d ) -1 , see [START_REF] Bertin | Pointwise adaptive estimation of the marginal density of a weakly dependent process[END_REF] for d = 1.

Using the above propositions we derive, over any Hölder balls Σ d (s, L), the rate of convergence achieved by a kernel estimator defined in (9) with a specific choice of bandwidth that depend on the smoothness parameter s.

Theorem 2. Let s = (s 1 , . . . , s d ) ∈ (0, +∞) d and L = (L 1 , . . . , L d ) ∈ (0, +∞) d . Assume that f ∈ Σ d (s, L)
and assume that K is a kernel of order greater than max i ⌊s i ⌋. Under (H 1 ), (H 2 ) and (H 3 ), the estimator fh(s) defined through the bandwidth h(s) = (h 1 (s), . . . , h d (s)) where for any i = 1, . . . , d

h i (s) = 1 (n∆ n ) βH γ(s) s i with γ(s) = s 2 1 + 1 minj sj s + 2 ∈ (0, 1/2)
and satisfies

R n ( fh(s) , f ) ≤ (Λ 1 + Λ 2 ) (n∆ n ) -βH γ(s) ,
where

Λ 1 = d i=1 L i ⌊s i ⌋! R v si K(v) dv, Λ 2 = 2 √ dC pΓ p + 1 2 1/p L K .
To our best knowledge few papers deal with nonparametric rate of convergence in our model. Only [START_REF] Comte | Nonparametric estimation in fractional sde[END_REF] have considered the estimation of the trend function b based on continuous observations when d = 1 and H > 1/2. They obtain the same rates of convergence only in the case s = 1 assuming a Lipschitz condition on the function b.

Properties of the data-driven procedure

The estimator f , defined in Section 4.2 using the hyperparameter K and the family of bandwidths H satisfies the following oracle inequality.

Theorem 3. Under (H 1 ), (H 2 ) and (H 3 ), if K > C, we have: R n ( f , f ) ≤ min h∈H R n ( fh , f ) + 4M n (h) + 3E h (x 0 ) + C 0 (n∆ n ) -βH /2 (16) 
with

C 0 = 6Λ 2 e p( K C -1) e p( K C -1) -1 d/p
Remark 4. ⊲ The validity of this result depends on the hyperparameter K of our procedure. Using Remark 2, for a given value of K, Theorem 3 can be applied for a wide class of models, as soon as the constant C, which depends on H, L, α, b(0 R d ) and σ is less than K.

The oracle inequality allows us to obtain upper bound for the rates of convergence over Hölder balls Σ d (s, L) in an adaptive framework.

Theorem 4. Let M be a nonnegative integer and assume that K is a kernel of order greater than M . Set s ∈ (0, M + 1] d and L ∈ (0, +∞) d . Asume that f ∈ Σ d (s, L), then under (H 1 ), (H 2 ) and (H 3 ) we have:

R n ( f , f ) ≤ C 1 (n∆ n ) -βH log (n∆ n ) βH γ(s) ( 17 
)
where

C 1 = 8 Kd(d + 3/2)pL K + 7e M+1 Λ 1 + Λ 2 + C 0 .
Remark 5. ⊲ This result ensures that the estimator f achieves the rate of convergence obtained in Theorem 2 up to a logarithmic factor. Such behavior is well-known for pointwise adaptive estimation, see [START_REF] Lepskiȋ | A problem of adaptive estimation in Gaussian white noise[END_REF]; Tsybakov (1998); [START_REF] Klutchnikoff | Pointwise adaptive estimation of a multivariate function[END_REF] among others. ⊲ If we let the hyperparameter K depend on n (e.g. K = log(n)) then the procedure is also asymptotically adaptive with respect to the values of L, α, b(0 R d ) and σ . In the case K = log(n), the rate of convergence in (17) is multiplied by

(log n) 1/2 .
6 On concentration inequalities for fractional SDEs in stationary regime 6.1 Sketch of proof of Theorem 1

We denote by (Ω, F , P) the probability space on which the fBm is defined. Let (F t ) t 0 be the natural filtration associated to the two-sided Brownian motion (W t ) t∈R induced by the Mandelbrot-Van Ness representation (see ( 3)). As in Varvenne ( 2019), let us first introduce the following decomposition. For all k ∈ N, set

M k := E[F X | F k ] (18) 
where we recall that F X = F (X t1 , . . . , X tn ) and (X t ) t≥0 is the stationary solution of (1). Then, we have:

F X -E[F X ] = M ⌈tn⌉ = ⌈tn⌉ k=1 M k -M k-1 + E[F X | F 0 ] -E[F X ].
Our strategy of proof is decomposed as follows, we show that :

(1) for all 1 ≤ k ≤ ⌈t n ⌉, there exists u

(n) k > 0 (deterministic) such that for all λ > 0, E [exp (λ(M k -M k-1 )) | F k-1 ] exp(λ 2 u (n) k ) a.s.
and then

E   exp   λ ⌈tn⌉ k=1 (M k -M k-1 )   F 0   exp   λ 2 ⌈tn⌉ k=1 u (n) k   a.s.
(2) there exists u

(n) 0 > 0 (deterministic) such that for all λ > 0, E [exp (λ(E[F X | F 0 ] -E[F X ]))] exp(λ 2 u (n) 0 ) a.s.
From (1) and (2), we finally get

E [exp (λ(F X -E[F X ]))] exp   λ 2 ⌈tn⌉ k=0 u (n) k   .
We are thus reduced to study conditional exponential moments in (1) and (2). The related results are given in Proposition 4 and 7 (and Theorem 1 easily follows).

In order to provide such exponential bounds, we rely on the following key lemma (see Lemma 1.5 in Chapter 1 of [START_REF] Rigollet | High dimensional statistics[END_REF]):

Lemma 1. Let Z be a centered random variable on R such that there exists ζ > 0 such that for all p ≥ 2,

E[|Z| p ] ≤ ζ p 2 pΓ p 2 .
Then, for all λ > 0, we have

E[exp(λZ)] ≤ exp(2λ 2 ζ).

Part 1: sum of martingale increments

In this subsection, our purpose is to prove the following result :

Proposition 4. Assume (H 1 ) and (H 2 ). Let H ∈ (0, 1). There exists K = K(H, L, α, σ ) > 0 such that for all λ > 0,

E   exp   λ   ⌈tn⌉ k=1 M k -M k-1     F 0   exp   Kλ 2 F 2 Lip ⌈tn⌉ k=1 ψ 2 n,k   a.s.
where

ψ n,k := k ∆ n - k -1 ∆ n + n i=⌈ k ∆n ⌉ u H-3/2 i , u i := t i -k + 1 = i∆ n -k + 1 and M k is defined by (18) . Moreover, there exists c = c(H) > 0 such that ⌈tn⌉ k=1 ψ 2 n,k ≤ c n∆ -1 n if H ∈ (0, 1/2) n 2H ∆ 2H-2 n if H ∈ (1/2, 1).
Remark 6. Following carefully the constants in the proof of this proposition, one easily checks that (L, α, s)

→ K(H, L, α, s) is bounded on every compact set of R + × R * + × R + .
Through equation ( 1) and the fact that b is Lipschitz continuous, for all t 0, Y t can be seen as a functional of the time t, the initial condition X 0 and the Brownian motion (W s ) s≤t . Denote by Φ :

R + × R d × C(R, R d ) → R d this functional, we then have ∀t 0, X t := Φ t (X 0 , (W s ) s≤t ). Now, let k 1, we have |M k -M k-1 | = |E[F X |F k ] -E[F X |F k-1 ]| F Lip Ω ti≥k-1 Φ ti X 0 , (W s ) s≤k ⊔ w[k,ti] -Φ ti X 0 , (W s ) s≤k-1 ⊔ w[k-1,ti] P W (d w).
Let us introduce now some notations. First, for all t k-1 set u := t-k+1, then for all u 0, we define

Y u := Φ u+k-1 X 0 , (W s ) s≤k ⊔ ( ws ) s∈[k,u+k-1] if u 1 Φ u+k-1 (X 0 , (W s ) s≤u+k-1 )
otherwise,

and

Ỹu := Φ u+k-1 X 0 , (W s ) s≤k-1 ⊔ ( ws ) s∈[k-1,u+k-1] .
By using equation ( 1), we then have

Y u -Ỹu = u 0 b(Y s ) -b( Ỹs )ds + c H σ 1∧u 0 (u -s) H-1 2 d(W (k) -w(k) ) s .( 19 
)
where we have set (W

(k) s ) s 0 := (W s+k-1 -W k-1
) s 0 which is a Brownian motion independent from F k-1 and ( w(k) s ) s 0 := ( ws+k-1wk-1 ) s 0 .

Finally, we have the following inequality for all k ≥ 1:

|M k -M k-1 | ≤ F Lip Ω ui≥0 Y ui -Ỹui P W (d w) ( 20 
)
where

u i := t i -k + 1 = i∆ n -k + 1.
In the next section, we proceed to a control of the quantity |Y u -Ỹu |.

Control lemma

Lemma 2. We have the two following inequalities:

(i) for all u ∈ [0, 1], there exists K = K(H, L, α, σ ) > 0 such that, |Y u -Ỹu | K sup v∈[0,2] G (k) v (W -w)
where

G (k) v (W -w) := 1∧v 0 (v -s) H-1 2 d(W (k) -w(k) ) s ,
(ii) for all u ≥ 1, there exists K = K(H, L, α, σ ) > 0 such that,

|Y u -Ỹu | K u H-3 2 sup s∈[0,1] |W (k) s -w(k) s | Proof. ⊲ First case: let u ∈ [0, 1].
By the triangle inequality and assumption (H 2 ), we have in ( 19)

|Y u -Ỹu | L u 0 |Y s -Ỹs |ds + c H σ 1∧u 0 (u -s) H-1 2 d(W (k) -w(k) ) s
Then, from Gronwall's lemma, we deduce the following

|Y u -Ỹu | c H σ 1∧u 0 (u -s) H-1 2 d(W (k) -w(k) ) s + c H σ L u 0 1∧v 0 (v -s) H-1 2 d(W (k) -w(k) ) s e L(u-v) dv c H σ sup v∈[0,2] 1∧v 0 (v -s) H-1 2 d(W (k) -w(k) ) s 1 + -e L(u-v) u 0 c H σ e 2L sup v∈[0,2] 1∧v 0 (v -s) H-1 2 d(W (k) -w(k) ) s .
and Lemma 2 is shown for u ∈ [0, 1].

⊲ Second case: let u 1. First, if u ∈ [1, 2], we have |Y u -Ỹu | K H sup s∈[0,1] |W (k) s - w(k)
s | by the first part of this proof combined with the following inequality :

1∧v 0 (v -s) H-1 2 d(W (k) -w(k) ) s = (v -1 ∧ v) H-1 2 (W (k) 1∧v - w(k) 1∧v ) + (H -1/2) 1∧v 0 (v -s) H-3 2 (W (k) s -w(k) s )ds K H sup s∈[0,1] |W (k) s -w(k) s |.
Now, let us treat the case u ≥ 2. In the following inequalities, we use assumption (H 1 ) on the function b and the elementary Young inequality a, b

1 2 ε|a| 2 + 1 ε |b| 2 with ε = 2α. d du |Y u -Ỹu | 2 = 2 Y u -Xu , b(Y u ) -b( Ỹu ) + c H (2H -1) Y u -Ỹu , σ 1 0 (u -s) H-3 2 d(W (k) -w(k) ) s -2α|Y u -Ỹu | 2 + α|Y u -Ỹu | 2 + c 2 H (2H -1) 2 σ 2 4α 1 0 (u -s) H-3 2 d(W (k) -w(k) ) s 2 -α|Y u -Ỹu | 2 + c 2 H (2H -1) 2 σ 2 4α 1 0 (u -s) H-3 2 d(W (k) -w(k) ) s 2 .
We then apply Gronwall's lemma to obtain

|Y u -Ỹu | 2 e -α(u-2) |Y 2 -Ỹ2 | 2 +α H u 2 e -α(u-v) 1 0 (v -s) H-3 2 d(W (k) -w(k) ) s 2 dv (21) with α H := c 2 H (2H-1) 2 σ 2 4α . Now, we set ϕ k (v) := 1 0 (v-s) H-3 2 d(W (k) -w(k)
) s and we apply an integration by parts to ϕ k taking into account that W

(k) 0 = w(k) 0 = 0: ϕ k (v) = (v -1) H-3 2 (W (k) 1 - w(k) 1 ) -(3/2 -H) 1 0 (v -s) H-5 2 (W (k) s -w(k) s )ds.
And then

u 2 e -α(u-v) |ϕ k (v)| 2 dv 2|W (k) 1 - w(k) 1 | 2 u 2 (v -1) 2H-3 e -α(u-v) dv + 2(3/2 -H) 2 u 2 e -α(u-v) 1 0 (v -s) H-5 2 (W (k) s -w(k) s )ds 2 dv 2|W (k) 1 - w(k) 1 | 2 u 2 (v -1) 2H-3 e -α(u-v) dv + 2(3/2 -H) 2 1 0 (W (k) s -w(k) s )ds 2 u 2 (v -1) 2H-5 e -α(u-v) dv(22) Lemma 3. Let α, β > 0.
Then, for all u 2, e -αu u 2 (v -1) -β e αv dv max e -α(u-2) (u -1), (u -1) -β+1 .

In the right hand side of ( 22), we apply an integration by parts on the first term and then we use Lemma 3:

u 2 (v -1) 2H-3 e -α(u-v) dv = 1 α (u -1) 2H-3 -e -α(u-2) + (3 -2H)e -αu u 2 (v -1) 2H-4 e αv dv 1 α (u -1) 2H-3 -e -α(u-2) + (3 -2H) max e -α(u-2) (u -1), (u -1) 2H-3 C ′ H (u -1) 2H-3 where C ′
H > 0 is some constant. Finally, by using Lemma 3 also on the second term in ( 22), we finally get the existence of a constant C ′′ H > 0 such that:

u 2 e -α(u-v) |ϕ k (v)| 2 dv C ′′ H (u -1) 2H-3 sup s∈[0,1] |W (k) s -w(k) s | 2 . ( 23 
)
Now, putting inequality ( 23) into ( 21) and taking the square root, we finally get:

|Y u -Ỹu | e -α 2 (u-2) |Y 2 -Ỹ2 | + C (3) H (u -1) H-3 2 sup s∈[0,1] |W (k) s -w(k) s |. ( 24 
)
On the one hand, we can note that e -α 2 (u-2)

C ′ u H-3 2 for all u 2. On the other hand, we have

|Y 2 -Ỹ2 | K H sup s∈[0,1] |W (k) s - w(k) s |.
These two facts combined with (24) conclude the proof.

Conditional exponential moments of the martingale increments

Proposition 5. Assume (H 1 ) and (H 2 ). Let H ∈ (0, 1). There exists K = K(H, L, α, σ ) > 0 and ζ > 0 such that for all k ∈ N * and for all p 2,

E[|M k -M k-1 | p |F k-1 ] C p F p Lip ψ p n,k ζ p/2 pΓ p 2 a.s.
where

ψ n,k := k ∆ n - k -1 ∆ n + n i=⌈ k ∆n ⌉ u H-3/2 i , u i := t i -k + 1 = i∆ n -k + 1 and M k is defined by (18).
Proof. Let k ∈ N * and p ≥ 2. By combining inequality (20) with the technical lemma 2, we immediately get that there exists K = K(H, L, α, σ ) > 0 such that:

|M k -M k-1 | p ≤ K p F p Lip ψ p n,k Ω sup v∈[0,2] G (k) v (W -w) + sup s∈[0,1] |W (k) s -w(k) s |P W (d w) p
The end of the proof consists in proving that

E Ω sup v∈[0,2] G (k) v (W -w) + sup s∈[0,1] |W (k) s -w(k) s |P W (d w) p F k-1 ≤ ζ p/2 pΓ p 2 .
We have

E [|M k -M k-1 | p |F k-1 ] ≤ 2 p-1 E Ω sup v∈[0,2] G (k) v (W -w) P W (d w) p F k-1 + 2 p-1 E Ω sup s∈[0,1] |W (k) s -w(k) s |P W (d w) p F k-1 ≤ 2 p-1 E Ω sup v∈[0,2] G (k) v (W -w) P W (d w) p + 2 p-1 E Ω sup s∈[0,1] |W (k) s -w(k) s |P W (d w) p (25) 
where the last inequality is obtained by using that

W (k) = (W s+k-1 -W k-1 ) s≥0 is independent from F k-1
. Now, if we denote by F (k) the natural filtration associated to W (k) , then the right hand side terms of (25) are just expectations of conditional expectations with respect to

F (k)
1 , so we finally get

E [|M k -M k-1 | p |F k-1 ] ≤ 2 p-1 E sup v∈[0,2] G (k) v (W -W ) p + 2 p-1 E sup s∈[0,1] |W (k) s -W (k) s | p .
Since W (k) and W (k) are i.i.d. and have the same law as W (1) , we can replace 1) , which gives

W (k) -W (k) by √ 2W ( 
E [|M k -M k-1 | p |F k-1 ] ≤ 2 p-1 √ 2E sup v∈[0,2] G (1) v (W ) p + 2 p-1 √ 2E sup s∈[0,1] |W (1) s | p .
To conclude the proof, we only have to prove that sup v∈[0,2] G With Lemma 1 in hand, we finally get : Proposition 6. Assume (H 1 ) and (H 2 ). Let H ∈ (0, 1). Let k ∈ N * . There exists K = K(H, L, α, σ ) > 0 (independent of k) such that for all λ > 0,

E[exp(λ(M k -M k-1 )) | F k-1 ] exp Kλ 2 F 2 Lip ψ 2 n,k a.s.
where

ψ n,k := k ∆ n - k -1 ∆ n + n i=⌈ k ∆n ⌉ u H-3/2 i , u i := t i -k + 1 = i∆ n -k + 1
and M k is defined by (18).

Proof of Proposition 4

Proof. The inequality on the conditional Laplace transform of ⌈tn⌉ k=1 M k -M k-1 easily follows from Proposition 6. We thus have to prove the bound on ⌈tn⌉ k=1 ψ 2 n,k . Let us begin by the estimation of ψ n,k for all k ∈ {1, . . . , ⌈t n ⌉}. First, we easily get that

k ∆ n - k -1 ∆ n ≤ ∆ -1 n . (26) 
Secondly, let us consider the second part of ψ n,k , we have

n i=⌈ k ∆n ⌉ (i∆ n -k + 1) H-3/2 ≤ 1 + n ⌈k∆ -1 n ⌉ (t∆ n -k + 1) H-3/2 dt = 1 + ∆ H-3/2 n (t -(k -1)∆ -1 n ) H-1/2 H -1/2 n ⌈k∆ -1 n ⌉ = 1 + ∆ H-3/2 n H -1/2 (n -(k -1)∆ -1 n ) H-1/2 -k∆ -1 n -(k -1)∆ -1 n H-1/2 ≤ 1 + ∆ H-3/2 n × 1 H-1/2 n -(k -1)∆ -1 n H-1/2 if H > 1/2 1 1/2-H k∆ -1 n -(k -1)∆ -1 n H-1/2 if H < 1/2 ≤ 1 + ∆ H-3/2 n × 1 H-1/2 n -(k -1)∆ -1 n H-1/2 if H > 1/2 1 1/2-H 1 + ∆ -1 n H-1/2 if H < 1/2. ( 27 
)
From ( 26) and ( 27), we thus deduce that there exists c 1 = c 1 (H) > 0 such that

ψ n,k ≤ ∆ -1 n + 1 + c 1 ∆ -1 n (t n -(k -1)) H-1/2 if H > 1/2 ∆ -1 n if H < 1/2.
We can now move on the estimation of ⌈tn⌉ k=1 ψ 2 n,k . From the inequality above, it follows that there exists

c 2 = c 2 (H) > 0 such that ⌈tn⌉ k=1 ψ 2 n,k ≤ c 2 (∆ -2 n + 1)⌈t n ⌉ + c 2 ∆ -2 n ⌈tn⌉ k=1 (t n -(k -1)) 2H-1 if H > 1/2 ∆ -2 n ⌈t n ⌉ if H < 1/2. ( 28 
)
It remains to estimate

⌈tn⌉ k=1 (t n -(k -1)) 2H-1 when H > 1/2. It is readily checked that ⌈tn⌉ k=1 (t n -(k -1)) 2H-1 ≤ ⌈tn⌉ k=1 (⌈t n ⌉ -(k -1)) 2H-1 = ⌈tn⌉ k=1 k 2H-1 ≤ ⌈t n ⌉ 2H .
(29) Finally, from ( 28) and ( 29), we get the existence of

c 3 = c 3 (H) > 0 and c 4 = c 4 (H) > 0 such that ⌈tn⌉ k=1 ψ 2 n,k ≤ c 3 ∆ -2 n ⌈t n ⌉ + ∆ -2 n ⌈t n ⌉ 2H if H > 1/2 ∆ -2 n ⌈t n ⌉ if H < 1/2 ≤ c 4 ∆ -2 n ⌈t n ⌉ 2H if H > 1/2 ∆ -2 n ⌈t n ⌉ if H < 1/2.
This concludes the proof since t n = n∆ n .

Part

2: E[F X | F 0 ] -E[F X ]
We now turn to the bound of

E[F X | F 0 ] -E[F X ]. First, let us remark that E[E[F X | F 0 ] -E[F X ]] = 0
so that we can use again Lemma 1 in order to deduce exponential bounds. The related result is stated in Proposition 7.

We introduce notations related to the conditioning with respect to F 0 . Let (W t ) t∈R denote the two-sided Brownian Motion induced by Mandelbrot-Van Ness representation (see ( 3)) and set W -= (W t ) t≤0 . For ε ∈ (0, 1/2) and ε ′ > 0, set

Ω -:= w : (-∞, 0] → R d ; w(0) = 0 , lim t→-∞ w(t) |t| 1 2 +ε ′ = 0 and w is ( 1 2 -ε)-Hölder continuous on compact intervals .
Owing to some classical properties on the Wiener process, this subspace is of Wiener measure 1 for any fixed ε ∈ (0, 1/2) and ε ′ > 0. In other words,

P W -(Ω -) = 1. Then, for any w ∈ Ω -, L((B H t ) t≥0 |W -= w) = L((Z t + D t (w)) t≥0 )
where Z 0 = D 0 (w) = 0 and for all t > 0,

Z t = c H t 0 (t -s) H-1 2 -(-s) H-1 2 dW s and D t (w) = α H 0 -∞ (t -s) H-1 2 -(-s) H-1 2 dw s .
(Z t ) t≥0 and (D t (w)) t≥0 are continuous processes on [0, +∞) (see Lemma 4 below) and for any w ∈ Ω -, the (additive) SDE

dY t = b(Y t )dt + σ(dZ t + dD w t ) ( 30 
)
has a unique solution denoted by (X x,w t ) t≥0 .

Since F is Lipschitz continuous with respect to d n , we can also remark that

|E[F X | F 0 ] -E[F X ]| ≤ F Lip n k=1 R d ×Ω- |X X0,W - t k -X y,w t k |ν(dy, dw), (31) 
where ν = L(X 0 , W -) is an initial condition for the dynamical system which is such that the process is stationary. This involves that we will use bounds on

|X x,W - t -X y,w t | to deduce the result for E[F X | F 0 ] -E[F X ].
To this end, we first state a technical result about D(w): Lemma 4. Let w ∈ Ω -with ε ∈ (0, H) and ε ′ ∈ (0, 1 -H). Then, (D t (w)) t≥0 is continuous on [0, ∞) and differentiable on (0, +∞). Furthermore, for any δ 1 ∈ (0, 1 -Hε ′ ] and δ 2 ∈≤ H -1ε, there exist some positive constants C δ1 and C δ2 such that for any t > 0,

|D ′ t (w)| ≤ Φ ε,ε ′ (w) C δ1 t -δ1 1 t>1 + C δ2 t -δ2 1 t∈(0,1] with Φ ε,ε ′ (w) = sup r∈(0,1] |w(-r)| r 1 2 -ε + sup r>1 |w(-r)| r 1 2 +ε ′ . (32) 
Proof. Let w ∈ Ω -. By an integration by parts, one checks that the process (D t (w)) is well-defined for any t > 0 and admits the following alternative representation:

D t (w) = α H H - 1 2 0 -∞ (t -r) H-3 2 -(-r) H-3 2 w(r) dr if t ∈ (0, 1]
It easily follows that (D t (w)) t>0 is smooth on (0, +∞] and that for all t > 0,

D ′ t (w) = α H H - 1 2 H - 3 2 0 -∞ (t -r) H-5 2 w(r) dr.
On the one hand, for any ε

∈ [ε ′ , 1 -H), | -1 -∞ (t -r) H-5 2 w(r) dr| ≤ sup r>1 |w(-r)| r 1 2 +ε -1 -∞ (t -r) H-5 2 r 1 2 +ε dr ≤ Φ ε,ε ′ (w) -1 -∞ (t -r) H-2+ε dr ≤ Φ ε,ε ′ (w)(1 + t) H-2+ε .
On the other hand, for any ε ≥ ε,

0 -1 (t -r) H-5 2 w(r) dr ≤ sup r∈(0,1] |w(-r)| r 1 2 -ε 0 -1 (t -r) H-2-ε dr ≤ Φ ε,ε ′ (w)t H-1-ε .
Inequality (32) easily follows from what precedes. In particular, since ε ∈ (0, H), t → D ′ t (w) is integrable near 0 and hence, t → D t (w) is continuous on R + .

In view of (31), we now provide a control of the evolution of two paths of the fractional SDE (30) starting from initial conditions (x, w) and (y, w).

Lemma 5. Suppose that assumptions (H 1 ) and (H 2 ) are in force. Let w and w belong to Ω -with ε ∈ (0, H) and ε ′ ∈ (0, 1 -H). Then, there exist some positive constants

C 1 = C 1 (H, L, α, σ ) and C 2 = C 2 (H, L, α, σ ) such that for every t ≥ 0, |X x, w t -X y,w t | 2 ≤ C 1 e -αt |x -y| 2 + C 2 Φ ε,ε ′ ( w -w)(t ∨ 1) 2H-2+ε ′
where Φ ε,ε ′ is defined by (32).

Proof. For two paths w and w in Ω -,

B w t -B w t = D t ( w -w).
Thus, for any t 0 > 0,

X x, w t -X y,w t = X x, w t0 -X y,w t0 + t t0 b(X x, w s ) -b(X x,w - s )ds + σD t ( w -w).
As a consequence,

e αt |X x, w t -X y,w t | 2 = e αt0 |X x, w t0 -X y,w t0 | 2 + t 0 2e αs X x, w s -X x,w s ), σD ′ s ( w -w) ds + t 0 e αs α|X x, w s -X y,w s | 2 + 2 X x, w s -X x,w s , b(X x, w s ) -b(X x,w s ) ds.
By Assumption (H 1 ),

X x, w s -X x,w s , b(X x, w s ) -b(X x,w s ) ≤ -α|X x, w s -X y,w s | 2 whereas by the elementary inequality |uv| ≤ (ε/2)|u| 2 + 1/(2ε)|v| 2 applied with ε = α, 2 X x, w s -X x,w s ), σD ′ s ( w -w) ≤ α|X x, w s -X y,w s | 2 + σ 2 α |D ′ s ( w -w)| 2 .
Thus, for any ε ′ > 0, we have for any t ≥ t 0 ,

e αt |X x, w t -X y,w t | 2 ≤ e αt0 |X x, w t0 -X y,w t0 | 2 + σ 2 α t t0 e αs |D ′ s ( w -w)| 2 ds.
By Lemma 4, we deduce that a positive constant C exists such that:

t t0 e αs |D ′ s ( w -w)| 2 ds ≤ CΦ ε,ε ′ ( w -w) 1 + t∨1 1 e αs s 2H-2+2ε ′ ds .
By an integration by parts, it follows that

e -αt α t t0 e αs |D ′ s ( w -w)| 2 ds ≤ CΦ ε,ε ′ ( w -w) α e -αt + t∨1 1 e α(s-t) s 2H-2+2ε ′ ds ≤ CΦ ε,ε ′ ( w -w))(t ∨ 1) 2H-2+2ε ′ .
Thus,

|X x, w t -X y,w t | 2 ≤ e -α(t-t0) |X x, w t0 -X y,w t0 | 2 + C σ 2 Φ ε,ε ′ ( w -w)(t ∨ 1) 2H-2+2ε ′ . Let us finally control |X x, w t0 -X y,w t0 | 2 . Since b is L-Lipschitz continuous, for every t ≥ 0, |X x, w t -X y,w t | ≤ |x -y| + L t 0 |X x, w s -X y,w s |ds + σ sup s∈(0,t] |D s ( w -w)|,
and the Gronwall Lemma yields:

|X x, w t0 -X y,w t0 | ≤ |x -y| + σ sup s∈(0,t0] |D s ( w -w)| e Lt0 . Now, assume that t 0 ∈ (0, 1]. By Lemma 4, sup s∈(0,t0] |D s ( w -w)| ≤ t0 0 |D ′ s ( w -w)|ds ≤ CΦ ε,ε ′ ( w -w)t H-ε 0 .
As a consequence,

|X x, w t0 -X y,w t0 | 2 ≤ C |x -y| 2 + Φ ε,ε ′ ( w -w) .
The result follows.

Before stating Proposition 7 (which provides the exponential bound for

E[F X | F 0 ] -E[F X ]
), we finally obtain bounds on the moments of Φ ε,ε ′ (W -) and of the invariant distribution. Lemma 6. Let ε, ε ′ be some positive numbers. Then, there exists C ε ′ > 0 such that for every λ > 0,

E[|Φ ε,ε ′ (W -)| p ] ≤ C p ε ′ E[|Z| p ]
where Z has N (0, 1)-distribution.

Proof. It is enough to consider the one-dimensional case and by a symmetry argument, it is certainly equivalent to prove the result for a Brownian motion on R + . Furthermore, using that for a Brownian motion W on R + , t → tW 1 t (with initial value equal to 0) is also a Brownian motion, we deduce that we have only to prove that for any ε ′ > 0,

E sup t≥1 W t t 1 2 +ε ′ p ≤ C p ε ′ E[|Z| p ].
By the Itô formula,

W t t 1 2 +ε ′ = W 1 + t 1 1 s 1 2 +ε ′ dW s -( 1 2 + ε ′ ) t 1 W s s 3 2 +ε ′ ds. (33) 
For the first right-hand side term, there is nothing to prove. For the second one, we remark that it is a Gaussian process and it follows that a Brownian Motion W exists such that sup 

| Wt | ≤ sup t∈[0,σ∞) Wt -sup t∈[0,σ∞) (-Wt )
and hence

E[ sup t∈[0,σ∞) | Wt | p ] ≤ 2 p E[| sup t∈[0,σ∞) Wt | p ] ≤ (2 √ σ ∞ ) p E[|Z| p ]
since sup t∈[0,σ∞) Wt has the same distribution as √ σ ∞ |Z| where Z has N (0, 1)distribution. Let us now consider the last term of (33). We have

sup t≥1 t 1 W s s 3 2 +ε ′ ds ≤ +∞ 1 |W s | s 3 2 +ε ′ ds.
Hence, by the Jensen inequality applied with the probability measure µ ε ′ (ds) = Cs -(1+ε ′ ) ds, we get:

E sup t≥1 t 1 W s s 3 2 +ε ′ ds p ≤ C +∞ 1 E W s √ s p 1 s 1+ε ′ ds.
Thus, by the scaling property, it follows that

E sup t≥1 t 1 W s s 3 2 +ε ′ ds p ≤ CE[|Z| p ]
where Z has N (0, 1)-distribution.

Lemma 7. Assume (H 1 ) and (H 2 ) and let ν denote the marginal invariant distribution. Then, there exists

C = C(H, L, α, |b(0 R d )|, σ ) > 0 such that for any p > 1, R d |y| p ν(dy) ≤ C p E[|Z| p ]
where Z denotes a random variable with N (0, 1)-distribution.Furthermore, (L,

α, b 0 , s) → C(H, L, α, b 0 , s) is bounded on every compact set of R + × R * + × R + × R + .
Remark 7. The dependency of C with respect to H, L, α, b(0 R d ) and σ is explicit and is given in the following proof.

Proof. The proof uses some arguments of (Hairer, 2005, Proposition 3.12) by controlling the distance between the solution to the SDE with the one of a Ornstein-Uhlenbeck process for which the announced property holds. For the sake of completeness, let us give some details. Let (U t ) t≥0 denote a solution to dU t = -U t dt + σdB H t and (X t ) t≥0 a solution to (1). Assume that U and X are built with the same fBm and start from the same starting point x. Then,

X t -U t = t 0 b(X s ) -U s ds so that |X t -U t | 2 = 2 t 0 b(X s ) -U s , X s -U s ds. For any x and u ∈ R d , b(x) -u, x -u = b(x) -b(u), x -u + b(u) -u, x -u . Now, by (H 1 ) and (H 2 ) (which implies that ≤ (|b(0 R d )| ∨ L)(1 + |u|)), we get b(x) -u, x -u ≤ - α 2 |x -u| 2 + (|b(0 R d )| ∨ L + 1) 2 α (1 + |u| 2 ).
Thus, with similar arguments as in the proof of Lemma 5 (based on Gronwalltype arguments), we deduce that for any t ≥ 0,

|X t -U t | 2 ≤ 2(|b(0 R d )| ∨ L + 1) 2 α t 0 e α(s-t) (1 + |U s | 2 )ds.
Thus, denoting by . p , the L p -norm we deduce from Jensen inequality that

X x t p p ≤ 2 p-1 4(|b(0 R d )| ∨ L + 1) 2 α × 1 α ∨ 1 p/2 t 0 e α(s-t) (1+ U x s p p )ds+2 p-1 U x t p p .
Denote by ν and π σ the (marginal) invariant distributions of X and U . Owing to uniform integrability arguments and to the convergence in distribution of (X t ) t≥0 and (U t ) t≥0 towards ν and π σ , we get:

R d |y| p ν(dy) = lim t→+∞ X x t p p ≤ Cp lim t→+∞ U x t p p = Cp R d |y| p π σ (dy)
where

C := 2 4(|b(0 R d )| ∨ L + 1) 2 α × 1 α ∨ 1 1/2 + 2.
Finally, let us recall that by a standard integration by parts, But by (Hairer, 2005, Proposition 3.12), π Id has Gaussian distribution N (0 R d , c 0 I d ) where c 0 ≤ Γ(2H + 1), so that the result follows with C = σ (dΓ(2H + 1))

U t = xe -t + σ
1 2 C (which has the local boundedness property announced in the lemma).

We are now in position to provide an exponential bound for E[F X | F 0 ]-E[F X ]: Proposition 7. Assume (H 1 ) and (H 2 ). Suppose that n∆ n ≥ 1. Then, for any

ε ′ ∈ (0, 1 -H), a constant C = C(H, L, α, b(0 R d ), σ, ε ′ ) exists such that E[exp (λ(E[F X | F 0 ] -E[F X ]))] ≤ exp λ 2 u (n) 0 , where u (n) 0 = C F 2 Lip (n∆ n ) H+ε ′ ∆ n .
In particular, with ε ′ = 1 2 and ε

′ = 1-H 2 when H < 1/2 and H > 1/2 respec- tively, u (n) 0 ≤ C F 2 Lip n∆ -1 n if H < 1/2, n H+ 1-H 2 ∆ H-1 2 n if H > 1/2.
Remark 8. Following carefully the constants involved in the proof below (induced by the previous lemmas), one checks that for every H ∈ (0, 1) and ε

′ ∈ (0, 1 -H), (L, α, b 0 , s) → C(H, L, α, b 0 , s, ε ′ ) is bounded on every compact set of R + × R * + × R + × R + .
Thus, since the proof of Theorem 1 is obtained as a combination of Propositions 4 and 7, this property combined with Remark 6 implies that the constant C of Theorem 1 has the local boundedness property announced in Remark 2.

Remark 9. The above bound easily involves that the contribution of E[F X | F 0 ]-E[F X ] is always less constraining (up to a multiplicative constant) than the one obtained in Proposition 4.

Proof. By (31) and Lemma 5, for any p > 1,

|E[F X | F 0 ] -E[F X ]| p ≤ (2C 1 F Lip ) p R d |X 0 -y|ν(dy) n k=1 e -α 2 t k p + (2C 2 F Lip ) p Φ ε,ε ′ (W --w) p P W -(dw) n k=1 (t k ∨ 1) H-1+ε ′ p
where ν stands for the "marginal" invariant distribution, i.e. the projection of ν on the first coordinate and w denotes the p Let us consider the two right-hand side terms separately. On the one hand, using Jensen inequality, we get

R d |X 0 -y|ν(dy) n k=1 e -α 2 t k p ≤ R d |X 0 -y| p ν(dy) 2 α∆ n p .
Thus, using that |X 0 -y| p ≤ 2 p (|X 0 | p + |y| p ) and Lemma 7, we get

E R d |X 0 -y|ν(dy) n k=1 e -α 2 t k p ≤ 4 α∆ n p C p E[|Z| p ]. (34) 
On the other hand, since

H -1 + ε ′ > -1, n k=1 (t k ∨ 1) H-1+ε ′ ≤ C 1 ∆ n + n H+ε ′ ∆ n H-1+ε ′ ≤ C (n∆ n ) H+ε ∆ n .
Furthermore,

E Ω- Φ ε,ε ′ (W --w) p P W -(dw) ≤ 2 p E|Φ ε,ε ′ (W -)| p .
Thus, by Lemma 6, it follows that

E Ω- Φ ε,ε ′ (W --w) p P W -(dw) n k=1 (t k ∨ 1) H-1+ε ′ p ≤ C (n∆ n ) H+ε ∆ n p E[|Z| p ]. (35) 
Combining ( 34), ( 35) and the fact that E|Z| p ≤ C p Γ p+1 2 ≤ C p pΓ p 2 , we get: there exists a constant C > 0 such that for all p ≥ 2,

E|E[F X | F 0 ] -E[F X ]| p ≤ C F Lip (n∆ n ) H+ε ∆ n p pΓ p 2 .
To conclude, we apply Lemma 1.

7 Proofs of Statistical properties 7.1 Proof of Proposition 2

Step 1. Below we denote x 0 = (t 1 , . . . , t d ) and we define for h ∈ H and η such that η i ∈ {0, h i }:

v i (u) = (t 1 -η 1 u 1 , . . . , t i-1 -η i-1 u i-1 , t i , t i+1 -h i+1 u i+1 , . . . , t d -h d u d ).
We can write:

f (x 0 -h • u) -f (x 0 -η • u) = d i=1 f (v i (u) -h i u i e i ) -f (v i (u) -η i u i e i ) = i∈I f (v i (u) -h i u i e i ) -f (v i (u)),
where I = {i = 1, . . . , d : η i = 0}. Now fix i ∈ I.

If ⌊s i ⌋ = 0 then we obtain:

|f (v i (u) -h i u i e i ) -f (v i (u))| ≤ L i |h i u i | si which leads to (since f ∈ Σ d (s, L)) R K(u i ) (f (v i (u) -h i u i e i ) -f (v i (u))) du i ≤ L i h si i R u si i K(u i ) du i .
Otherwise, using a Taylor expansion of the function z ∈ R → f (v i (u) + ze i ) around 0, we obtain:

f (v i (u) -h i u i e i ) -f (v i (u)) = ⌊si⌋ k=1 D k i f (v i (u)) (-h i u i ) k k! + (-h i u i ) ⌊si⌋ ⌊s i ⌋! ∂ ⌊si⌋ f ∂x ⌊si⌋ i (v i (u) -τ h i u i ) - ∂ ⌊si⌋ f ∂x ⌊si⌋ i (v i (u)) ,
where τ ∈ (0, 1). This implies that, using that K is a kernel of order larger than ⌊s i ⌋ combined with the fact that v i (u) does not depend on u

i , R K(u i ) (f (v i (u) -h i u i e i ) -f (v i (u))) du i ≤ L i h si i ⌊s i ⌋! R u si i K(u i ) du i .
Combining the above results we obtain:

R d d i=1 K(u i ) (f (x 0 -h • u) -f (x 0 -η • u)) du ≤ i∈I L i h si i ⌊s i ⌋! R u si i K(u i ) du i .
Step 2. Let h, h ∈ H. Taking η = 0 in step 1 we obtain (13) Taking

η i = 0 if h i = h i ∨ h i and η i = h i = h i ∨ h i otherwise, we obtain: E fh∨h (x 0 ) -E fh (x 0 ) ≤ E fh∨h (x 0 ) -E fη (x 0 ) + E fη (x 0 ) -E fh (x 0 ) ≤ 2 i∈I L i h si i ⌊s i ⌋! R u si i K(u i ) du i ≤ 2 d i=1 L i h si i ⌊s i ⌋! R u si i K(u i ) du i .
This implies (14).

Proof of Proposition 3

We have

E fh (x 0 ) -E fh (x 0 ) p = ∞ 0 P fh (x 0 ) -E fh (x 0 ) p > t dt.
We now use Corollary 1 with the functional g(u) = K h (x 0u). We obtain that

E fh (x 0 ) -E fh (x 0 ) p = p ∞ 0 u p-1 P fh (x 0 ) -E fh (x 0 ) > u du ≤ 2p ∞ 0 u p-1 exp - u 2 (n∆) βH 4C g 2 Lip du = 2p 4C g 2 Lip (n∆ n ) βH p/2 +∞ 0 u p-1 exp -u 2 du = pΓ p + 1 2 4C g 2 Lip (n∆ n ) βH p/2 = pΓ p + 1 2 C p/2 4 g 2 Lip (n∆ n ) βH p/2
Since g Lip ≤ √ dL K V -1 h , we obtain (15).

Proof of oracle inequality

We split the proof of Theorem 3 into several steps.

Step 1. Let h ∈ H be an arbitrary bandwidth. Using triangular inequality we have:

| f (x 0 )f (x 0 )| ≤ | fĥ (x 0 ) -fh∨ ĥ(x 0 )| + | fh∨ ĥ(x 0 ) -fh (x 0 )| + | fh (x 0 )f (x 0 )|.

Note that

| fĥ (x 0 ) -fh∨ ĥ(x 0 )| ≤ | fĥ (x 0 ) -fh∨ ĥ(x 0 )| -M n (h, ĥ)

+ + M n (h, ĥ) ≤ max h∈H | fh (x 0 ) -fh∨h (x 0 )| -M n (h, h) + + M n (h, ĥ)
≤ B(h, x 0 ) + M n ( ĥ) + M n (h).

Applying the same reasoning to the term | fh∨ ĥ(x 0 ) -fh (x 0 )| and using ( 12), this leads to | f (x 0 )f (x 0 )| ≤ B(h, x 0 ) + 2M n (h) + B( ĥ, x 0 ) + 2M n ( ĥ) + | fh (x 0 )f (x 0 )| ≤ 3B(h, x 0 ) + 4M n (h) + | fh (x 0 )f (x 0 )| This implies that:

R n ( f , f ) ≤ 3 (EB p (h, x 0 )) 1/p + 4M n (h) + R n ( fh , f )

Step 2. Now, we upper bound B(h, x 0 ). Using basic inequalities we have: This leads to:

(EB p (h, x 0 )) 1/p ≤ E h (x 0 ) + 2 (ET p ) 1/p .

Step 3. We have:

ET p ≤ h∈H ∞ 0 P 1 n n i=1
ḡh (X ti ) ≥ M n (h) + t 1/p dt, where g h (X ti ) = K h (x 0 -X ti ) and ḡh (X ti ) = g h (X ti ) -Eg h (X ti ).

We obtain, using Corollary 1:

ET p ≤ p h∈H ∞ 0 u p-1 P 1 n n i=1 ḡh (X ti ) ≥ M n (h) + u du ≤ 2p h∈H ∞ 0 u p-1 exp - (u + M n (h)) 2 (n∆ n ) βH 4C g h 2 Lip du ≤ 2p h∈H ∞ 0 u p-1 exp - 1 C u + M n (h) ϕ n (h) 2 du ≤ 2p h∈H ∞ 0 u p-1 exp - 1 C u ϕ n (h) 2 exp -p K C | log V h | du
Since K > C we obtain:

ET p ≤ pΓ p + 1 2 h∈H C 1/2 ϕ n (h)V h p V p( K C -1) h ≤ pΓ p + 1 2 (4dL 2 K ) p/2 C (n∆ n ) βH p/2 h∈H V p( K C -1) h ≤ p e p( K C -1)
e p( K C -1) -

1 d Γ p + 1 2 (4dL 2 K ) p/2 C (n∆ n ) βH p/2
Finally we obtain the following upper bound:

(ET p ) 1/p ≤ 2L K √ d   pΓ p + 1 2 e p( K C -1) e p( K C -1) -1 d   1/p × C (n∆ n ) βH 1/2
. This allows us to obtain Theorem 3.

Proof of Theorem 4

Set s ∈ (0, M + 1] d , L ∈ (0, +∞) d .To prove this result, we construct a specific bandwidth vector h * that belongs to H. This allows to apply Propositions 2 and 3 and to bound, in (16), the minimum over h ∈ H by the value for h = h * . Let

l * i = γ(s) s i log (n∆ n ) βH -log log (n∆ n ) βH .
Since γ(s)/s i ≤ 1/2 we have

0 ≤ l * i ≤ 1 2 log (n∆ n ) βH ≤ β H 2 log (n∆ n ) . (36) 
Now, denote for i = 1, . . . , d:

h * i = e -l * i and h i (s) = (n∆ n ) -βH log (n∆ n ) βH γ(s)/si .

Remark that, using these notations we have h i (s) ≤ h * i ≤ eh i (s). If we consider h * = (h * 1 , . . . , h * d ) and h(s) = (h 1 (s), . . . , h d (s)), then:

V h * ≥ V h(s)
≥ (n∆ n ) -βH log (n∆ n ) βH γ(s)(1/s+1/smin) ≥ (n∆ n ) -βH γ(s)(1/s+1/smin) = (n∆ n ) -βH 1/2-γ(s)

≥ (n∆ n ) -βH /2 ,
where s min = min j s j and using that (n∆ n ) βH ≥ e. This implies, in combination with (36), that h * ∈ H. In ( 16) we can bound the right hand side by taking h = h * . Let us consider each term separately. First, using Propositions 2 and 3, since 0 < s i ≤ M + 1 for each i, we have

R n ( fh * , f ) ≤ e M+1 Λ 1 + Λ 2 (log((n∆ n ) βH )) 1/2 log((n∆ n ) βH ) (n∆ n ) βH γ(s) ≤ e M+1 Λ 1 + Λ 2 log((n∆ n ) βH ) (n∆ n ) βH γ(s)
.

Secondly, using Proposition 2 we obtain:

E h * (x 0 ) ≤ 2e M+1 Λ 1 log((n∆ n ) βH ) (n∆ n ) βH γ(s)
.

Finally, using ( 10) and (11) we have: . To conclude, only note that (n∆ n ) -βH /2 ≤ (n∆ n ) -γ(s)βH since γ(s) ≤ 1/2.

M n (h * ) = 4dL 2 K V 2 h * (n∆ n ) βH 1/2 Kp| log V h * | ≤ 2 KdpL K 1 V 2 h(s) (n∆ n ) βH 1/2 | log(e d+1 V h(s) )| 1/2 ≤ 2

  sub-Gaussian. The proof of this result follows the lines of Varvenne (2019) Appendices A and B and we leave it to the patient reader.

  for the equality in distribution. But sup t∈[0,σ∞)

  that π σ = π I d • ϕ -1 σ where ϕ σ = σx. Thus, R d |y| p π σ (dy) ≤ σ p |y| p π I d (dy).

B

  (h, x 0 ) ≤ max h∈H E fh∨h (x 0 ) -E fh (x 0 ) 0 ) -E fh (x 0 ) -M n (h) 0 ) -E fh∨h (x 0 ) -M n (h ∨ h) + ≤ E h (x 0 ) + 2T, where T = max h∈H fh (x 0 ) -E fh (x 0 ) -M n (h) + .

  This allows us to conclude that min h∈H R n ( fh , f ) + 4M n (h) + 3E h (x 0 ) is bounded up to a multiplicative constant by log((n∆n) β H )

						γ(s)
						(n∆n) β H
	KdpL K	log((n∆ n ) βH ) (n∆ n ) βH	γ(s)	log((n∆ n ) βH ) | log(e d+1 V h(s) )|	1/2
	≤ 2 KdpL K	log((n∆ n ) βH ) (n∆ n ) βH	γ(s)	log((n∆ n ) βH ) d + 1 + (1/2 -γ(s)) log((n∆ n ) βH )	1/2
	≤ 2 Kd(d + 3/2)pL K	(n∆ n ) βH log((n∆ n ) βH )	γ(s)
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