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ABSTRACT In this paper, we investigate the benefit of intentionally added noise to observed data in various
scenarios of Bayesian parameter estimation. For optimal estimators, we theoretically demonstrate that the
Bayesian Cramér-Rao bound for the case with added noise is never smaller than for the original data, and the
updated minimum mean-square error (MSE) estimator performs no better. This motivates us to explore the
feasibility of noise benefit in some useful suboptimal estimators. Several Bayesian estimators established
from one-bit-quantizer sensors are considered, and for different types of pre-existing background noise,
optimal distributions are determined for the added noise in order to improve the performance in estimation.
With a single sensor, it is shown that the optimal added noise for reducing the MSE is actually a constant
bias. However, with parallel arrays of such sensors, bona fide optimal added noise, no longer a constant bias,
is shown to reduce the MSE. Moreover, it is found that the designed Bayesian estimators can benefit from
the optimal added noise to effectively approach the performance of the minimumMSE estimator, even when
the assembled sensors possess different quantization thresholds.

INDEX TERMS Bayesian estimator, Bayesian information, bona fide optimal noise, noise benefit, parameter
estimation.

I. INTRODUCTION
Adding some random noise to a signal before quantiza-
tion has been shown to be beneficial for analog to digital
converters resulting in smaller signal distortion and wide
system dynamic range [1]–[3]. The technique of adding
noise or dithering was perhaps the first that recognized
a beneficial role for noise in a signal processing context
[1]–[5]. Then the term stochastic resonance was initially
coined to describe the possible mechanism for maximizing
the response of a bistable system to a small periodic force by
optimizing the noise intensity to a non-zero level [6]. Stochas-
tic resonance attracted much attention in physics and biology
[7]–[17] soon afterwards. Gammaitoni [1] first pointed out
that stochastic resonance, far from being limited to a resonant
phenomenon, can also be interpreted as a special case of
dithering and is related to the notion of noise-induced thresh-
old crossings. Similarly, Collins et al. [18], [19] coined the
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term of aperiodic stochastic resonance for characterizing the
noise-induced behavior in excitable systems with aperiodic
inputs, and Stocks [20] defined the suprathreshold stochas-
tic resonance using Shannon’s average mutual information
measure between the input and the output of a summing
network of threshold devices. These widened concepts of
stochastic resonance that are closely relate to the field of
statistical signal processing, are now widely referred to as
noise enhancement or noise benefit [21]–[50].

There are two main situations whereby the noise benefit
has been exploited in signal estimation: one is implementing
suboptimal estimators in practical estimation problems to
avoid too complex or intractable optimal estimators in general
[34], [51]. The other is estimating a signal from observed
data of a number of low-cost sensors (e.g. quantizers) in
a fusion center. These sensors with a few bits are often
deployed over a sensing field to compose wireless sensor
networks in distributed estimation problems [38], [52], [53].
For the first situation, the performances of some easily imple-
mented suboptimal estimators were shown to be substantially
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improved by exploiting the benefits of added noise
[22], [32], [34]–[38], [42], [46]–[49]. In the second situation,
rich results from utilizing various kinds of noise have been
reported for quantized observations [1], [2], [12]–[14], [20],
[21], [23]–[25], [27], [30], [31], [33], [36]–[43], [45]–[49].
For instance, Papadopoulos et al. developed a methodology
of additive control input before signal quantization at the
sensor to achieve the maximum possible performance for
quantizer-based networks [23]. They also noticed the option
of using feedback from past observations for efficient esti-
mators in terms of mean-square error (MSE) [23]. Modeling
the suprathreshold stochastic resonance as stochastic quanti-
zation, McDonnell et al. systematically studied the optimal
linear and nonlinear decoding schemes associated with the
information bound on the MSE [12]. The optimal Bayesian
estimators constructed by the quantizer outputs were also
explicitly derived, and a basic mechanism was provided for
the performance improvement of optimal Bayesian estimator
by increasing the noise level [24], [25], [30], [31].

Since the addition of noise can be artificially designed,
then finding the optimal probability density function (PDF)
of added noise becomes an interesting question [26], [28],
[29], [32], [33], [36]–[43], [45]–[49]. Especially, Chen et al.
considered all possible PDFs of added noise to optimize
an arbitrary fixed or variable estimator and proved that the
optimal noise, if it exists, is just a finite number of (no
more than two) constant vectors by using the properties
of convex hull and Caratheodory theorem [28], [29], [32],
[38], [39]. Then, this kind of optimal noise PDFs inspired a
series of theoretical improvability of estimation under vari-
ous estimation criteria [26], [33], [37], [40]–[43], [45]–[49].
An interesting question is whether optimal bona fide noise,
rather than a constant bias, exists for enhancing the estima-
tor performance or not. Interestingly, Uhlich [42] proposed
a new estimator constructed by bagged estimators that are
modified bymutually independent noise samples, and derived
the necessary and sufficient conditions for the existence of the
optimal noise. Uhlich [42] also found that the optimal noise
PDF, not limited to the noise type revealed in [28], [29], [32],
[38], [39], has non-trivial complicated shapes. For minimiz-
ing the MSE of a combiner of identical estimators, we also
found that solving the optimal noise PDF is a constrained
nonlinear functional optimization problem, and approximate
optimal PDFs of the optimal noise are also found to be
complicated [46], [48].

Although many important results for noise benefits in
estimators have been obtained, there are still some unsolved
questions. For instance, it is known that, for random parame-
ter estimation, a lower bound on the MSE of any estimator
is called the Bayesian Cramér-Rao bound (BCRB) that is
directly calculated from the primary observations [54]. Then,
two interesting questions need to be addressed: after artifi-
cially injecting noise into the primary observed data, resulting
updated data—so, does the corresponding new BCRB cal-
culated on the updated data increase or decrease? Can the
minimumMSE (MMSE) estimator deduced from the updated

data achieve a lower MSE than that of the original MMSE
estimator based on the primary observations?

In this paper, we will theoretically provide the solu-
tions to aforementioned crucial questions, and elucidate the
possibility of exploiting the noise benefits in some eas-
ily implemented suboptimal estimators. We argue that the
noise-enhanced Bayesian estimators proposed by [22]–[43],
[45]–[49] in recent years can be mainly classified into four
categories: (i) the noise-modified estimator established on a
single sensor [32], (ii) a linear minimum MSE (LMMSE)
estimator based on a single sensor, (iii) the noise-enhanced
Bayesian estimator as the average of outputs of an ensem-
ble of identical sensors [42] and (iv) the linear combination
estimator executing the LMMSE transform on an array of
identical or nonidentical sensors [48].

For a noise-modified estimator, it was proved that the opti-
mal added noise is just a constant bias [32]. However, the opti-
mized MSE achieved by the noise-modified estimator has a
long way to catch up the MSE of the original MMSE esti-
mator. In order to provide useful parameter estimation, it is
useful to incorporate both the statistical properties of the orig-
inal background noise as well as the prior knowledge of the
random parameter. This design principle leads to the LMMSE
estimator with adaptively adjustable weights that depend only
on the first two moments of the joint PDF. We demonstrate
that, based on a single sensor, the LMMSE estimator can
obtain a lower MSE than the noise-modified estimator does,
but the minimum MSE achieved by the LMMSE estimator
is still larger than that of the MMSE estimator. Moreover,
the optimal added noise is still a constant bias for minimizing
the MSE of the LMMSE estimator, and not bona fide random
noise.

Furthermore, based on a sufficiently large number of iden-
tical sensors, it is shown that the noise-enhanced estimator
can efficiently approach the MMSE estimator by the bona
fide optimal noise that is not restricted to a constant bias.
However, the noise-enhanced estimator is inapplicable to an
ensemble of nonidentical sensors. For the general case of
nonidentical sensors, we theoretically demonstrate that the
linear combination estimator always outperforms the noise-
enhanced estimator, and is able to perform as efficiently as
the MMSE estimator. From observations of one-bit-quantizer
sensors, we illustratively confirm the aforementioned conclu-
sions of the performance comparison between four consid-
ered estimators. The complicated PDFs of bona fide optimal
noise for the linear combination estimator are also presented.
These interesting results of mutually independent added noise
components in sensors manifest their potential benefits to the
parameter estimation problems.

II. PARAMETER ESTIMATION MODEL AND PROBLEM
FORMULATION
Consider a parameter estimation scenario with the scalar
observation

xn = s(θ )+ ξn, (1)
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where s(θ ) is a function of an unknown random parameter θ
with a prior PDF fθ , and the mutually independent samples
ξn of background noise, uncorrelated with θ , are with zero
mean and common PDF fξ for n = 1, 2, · · · ,N . Letting
x = [x1, x2, · · · , xN ]>, the statistical characteristic of obser-
vation data can be described by the joint PDF fx,θ (x, θ) =
fx|θ (x|θ )fθ (θ ) = fξ (x−s(θ ))fθ (θ ). Here, fx|θ is the conditional
PDF. It is well known [54] that the MSE R of any estimator
θ̂ (x) satisfies the inequality

R = Ex,θ [(θ̂ (x)− θ )2] = Ex,θ [ε2] ≥ J
−1
B = BCRB, (2)

where the error of estimator is ε = θ̂ (x)−θ , and the Bayesian
information JB is defined as

JB = Ex,θ

[(∂ln fx,θ (x, θ)
∂θ

)2]
= Eθ [JF(θ )]+ Jθ (3)

with the prior Fisher information Jθ = Eθ [(∂ln fθ (θ )/∂θ )2]
of the prior PDF fθ and the Fisher information JF(θ ) =
Ex|θ [(∂ln fx|θ (x|θ )/∂θ )2] of observation data x with respect
to the parameter θ [54]. This lower bound of J−1B in (2) on
the MSER of any estimator is also called BCRB [54]. Here,
Ex,θ (·), Ex|θ (·) and Eθ (·) denote expectations with respect to
the joint PDF fx,θ , the conditional PDF fx|θ and the prior PDF
fθ , respectively.
Theorem 1: After the injection of added noise ηn into xn,

the updated observation data x̄n = xn+ηn = s(θ )+ξn+ηn =
s(θ )+ zn, and the updated BCRB is not less than the original
one.

Proof: Letting jF be the Fisher information of one sample
xn, we have

jF(θ ) = Ex|θ
[(∂ln fx|θ (x|θ )

∂θ

)2]
= Ex|θ

[(∂ln fξ (x − s(θ ))
∂θ

)2]
= Eξ

[(∂ln fξ (x)
∂x

)2]( ∂s
∂θ

)2
= jξ

( ∂s
∂θ

)2
(4)

with the Fisher information jξ = Eξ [(∂ln fξ (x)/∂x)2] of
the PDF fξ . Then, for the independent identically distributed
(i.i.d.) noise samples ξn, the Fisher information of the obser-
vation vector x is JF(θ ) = NjF(θ ). Similarly, the Fisher
information of the updated data x̄n can be expressed as
j̄F(θ ) = jz(∂s/∂θ )2 with the Fisher information jz =
Ez[(∂ln fz(z)/∂z)2] of the PDF fz(z) =

∫
fξ (z − η)fη(η)dη of

the composite noise zn. Since the Fisher information quan-
tities jz, jξ , jη > 0 satisfy the convolution inequality j−1z ≥
j−1ξ + j

−1
η [55], resulting in

jz ≤ jξ
( jη
jξ + jη

)
≤ jξ . (5)

Thus, for i.i.d. noise samples zn, the Fisher information of
the updated data x̄ = [x̄1, x̄2, · · · , x̄N ]> becomes J̄F(θ ) =
N j̄F(θ ) = Njz(∂s/∂θ )2 and the updated Bayesian information
satisfies

J̄B = Eθ [J̄F(θ )]+ Jθ ≤ JB = Eθ [JF(θ )]+ Jθ . (6)

Substituting (6) into (2) proves Theorem 1.

Theorem 1 only tells us the increase of the updated BCRB
of the updated data vector x̄. However, based on the MSE
criterion and among all estimators, the minimum MSE Rms
is achieved by the MMSE estimator θ̂ms(x) = Eθ |x(θ |x) =∫
θ fx|θ (x|θ )fθ (θ )dθ/

∫
fx|θ (x|θ )fθ (θ )dθ [51], [54]. Therefore,

an interesting question is whether the updatedMMSE estima-
tor ϑ̂ms(x̄) = Eθ |x̄(θ |x̄) can achieve a lower MSE R̄ms than
that of the original MMSE estimator θ̂ms or not. The answer
is given in Theorem 2.
Theorem 2: It is impossible to design an updated MMSE

estimator ϑ̂ms(x̄) to achieve a lower MSE R̄ms than the orig-
nial MMSE estimator θ̂ms(x) does.

Proof of Theorem 2 is presented in Appendix A. Although
this theorem leads to a negative aspect of the added noise
to the optimal MMSE estimator θ̂ms(x), it also indicates the
possibility of noise benefits in some suboptimal estimators
beyond the restricted conditions of [12], [20], [22]–[25], [27],
[30], [31], [33], [36]–[43], [45]–[49]. In practice, the MMSE
estimator θ̂ms(x) is usually too computationally intensive to
implement [51], [54], thus we will exploit the optimal added
noise in some easily implementable suboptimal estimators as
follows.

FIGURE 1. Block diagram representations of (a) the noise-modified
estimator θ̂NM in (7) and (b) the LMMSE estimator θ̂L in (13). The optimal
noise η is intentionally injected into a given sensor g for the improvement
of the MSE of the designed estimator.

III. NOISE BENEFITS IN SUBOPTIMAL ESTIMATORS
A. NOISE BENEFITS IN A NOISE-MODIFIED ESTIMATOR
Consider the scalar-parameter observation model x = θ + ξ ,
and the observation x plus the added noise η is applied to
a fixed sensor g, as shown in Fig. 1 (a). Then, the noise-
modified estimator

θ̂NM = g(x + η) (7)

is established on the updated sensor output g(x + η). Then,
the artificially added noise η is optimized to minimize the
MSE RNM = Ex,η[(θ̂NM − θ )2] = Eθ (θ2)− Eη{Ex[2θg(x +
η)−g2(x+η)]}. Since the two-moment Eθ (θ2) is given, then
Chen et al. [32] proved

min
fη

RNM=Eθ (θ2)−max
fη

Eη{Ex[2θg(x + η)− g2(x + η)]}

≥ Eθ (θ2)−max
η

Ex[2θg(x+η)−g2(x+η)], (8)
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TABLE 1. MSEs of various estimators with optimal added noise.

and the optimal added noise accords with the PDF f oη (η) =
δ(η − η∗) and the constant [32]

η∗ = argmax
η

Ex[2θg(x + η)− g2(x + η)]. (9)

Thus, with this optimal bias η∗, the MSE RNM of the noise-
modified estimator θ̂NM has a minimum

Rmin
NM = Eθ (θ2)− Ex[2θg(x + η∗)− g2(x + η∗)]. (10)

Based on Theorem 2 and compared with the minimumMSEs
achieved by the MMSE estimators ϑ̂ms(x̄) and θ̂ms(x), Rmin

NM
in (10) satisfies

Rmin
NM ≥ R̄ms ≥ Rms. (11)

Example 1: Consider an uniformly distributed parameter θ
with its PDF fθ (θ ) = 1/a (a > 0) over the interval (0, a) and
zero otherwise. A quantizer sensor is given by

g(u) =

{
1, u > γ,

0, u ≤ γ,
(12)

where γ is the threshold value of the quantizer. In Table 1,
consider three background noise types with Gaussian PDF
fξ (u) = exp(−u2/2σ 2

ξ )/
√
2πσ 2

ξ , Rayleigh PDF fξ (u) = (4−

π )u exp[−(4−π )u2/4σ 2
ξ ]/2σ

2
ξ (u ≥ 0), Laplace PDF fξ (u) =

√
2 exp(−

√
2|u|/σξ )/2σξ and the standard deviation σξ > 0.

Here, the interval bound a = 1, the quantizer threshold γ =
0 and the standard deviations σξ take

√
0.1,
√
(4− π )/20

and 1/
√
5 for three types of considered background noise,

respectively. It is seen in Table 1 thatMSEs of θ̂NM(x) without
the added noise are 0.2571, 0.3333 and 0.2643, respectively.
With the optimal bias η = η∗ given in Table 1, the noise-
modified quantizer θ̂NM(x + η∗) has the optimized MSEs
of 0.1643, 0.1242 and 0.1771. However, compared with the
MSEs of 0.0446, 0.0256 and 0.0533 achieved by the cor-
responding MMSE estimators θ̂ms(x), the improvement on
the MSE of θ̂NM by the optimal added noise η = η∗ is
limited.

B. NOISE BENEFITS IN A LMMSE ESTIMATOR
In order to further reduce the MSE of the noise-modified
estimator, we perform the LMMSE transform on the sensor

output g(x + η) and establish a LMMSE estimator

θ̂L = wg(x + η)+ w0 (13)

with adjustable weights w and w0, as shown in Fig.1 (b).
Theorem 3: For the LMMSE estimator θ̂L of (13), the opti-

mal noise η has the PDF f oη (η) = δ(η− η
†) with the constant

η†=argmax
η

{Ex[θg(x + η)]−Eθ (θ )Ex[g(x + η)]}2

Ex[g2(x + η)]−E2
x[g(x + η)]

. (14)

The MSERL of θ̂L has the minimum

Rmin
L = var(θ )−

{
Ex[θg(x + η†)]− Eθ (θ )Ex[g(x + η†)]

}2
Ex[g2(x + η†)]−E2

x[g(x + η†)]

≤ Rmin
NM, (15)

where var(θ ) = Eθ (θ2)− E2
θ (θ ) is the variance of θ .

Proof of Theorem 3 is given in Appendix B. It is shown
in Table 1 that, without the added noise, the MSEs of the
LMMSE estimator θ̂L(x) are 0.0701, 0.0833 and 0.0741 for
three background noise types, respectively, which already are
lower than that of the noise-modified estimator θ̂NM(x + η∗)
with its optimal added noise η∗ in (9). Utilizing the opti-
mal added noise η† in (14), the MSEs of θ̂L(x + η†) can
be further reduced to 0.0547, 0.0396 and 0.0589. However,
the improved MSEs of θ̂L(x + η†) still cannot approach the
MSE achieved by the MMSE estimator θ̂ms(x). Moreover,
the optimal ‘‘noise’’ η = η† is still a constant bias, rather
than a bona fide random noise.

FIGURE 2. Block diagram representation of the noise-enhanced estimator
θ̂NE in (16). Here, M mutually i.i.d. noise components ηm in sensors are
optimized to minimize the MSE of θ̂NE.

C. NOISE BENEFITS IN IDENTICAL SENSORS
The configurations of both noise-modified estimator θ̂NM and
the LMMSE estimator θ̂L are only operated on one sensor.
Next, consider an ensemble of identical sensors that receive
the same input data x, and the mutually i.i.d. noise compo-
nents ηm are also fed into each sensor, as shown in Fig. 2.
Here, ηm arewith the common PDF fη and satisfy Eη(ηmηk ) =
0 form 6= k (m, k = 1, 2, · · · ,M ,M ≥ 2). Then, the average
value of all outputs of sensors forms the noise-enhanced
estimator

θ̂NE =
1
M

M∑
m=1

g(x + ηm). (16)
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The MSE of θ̂NE can be computed as

RNE = Ex,η[(θ − θ̂NE)2]

=
Ex{Eη[g2(x + η)]} + (M − 1)Ex{E2

η[g(x + η)]}

M
− 2Ex{θEη[g(x + η)]} + Eθ (θ2), (17)

where the correlations Ex,η[θg(x+ηm)] = Ex{θEη[g(x+η)]}
(∀m) and Ex{Eη[g(x + ηm)]Eη[θg(x + ηk )]} = Ex{E2

η[g(x +
η)]} for m 6= k (m, k = 1, 2, · · · ,M ).
Theorem 4: For minimizing the MSE RNE of the noise-

enhanced estimator θ̂NE by mutually i.i.d. noise components
ηm, the optimal noise is not with the PDF f oη (η) = δ(η −
η‡) for a constant bias η = η‡. For the given background
noise ξ and added noise components ηm, the MSE RNE is a
monotonically decreasing function of the sensor number M .
Moreover, for a sufficiently large sensor number M → ∞,
the MSE satisfies

lim
M→∞

min
fη

RNE ≤ Rmin
NM. (18)

Proof of Theorem 4 is given in Appendix C. Interestingly,
as the sensor number M → ∞, (16) can be asymptotically
represented as

θ̂NE = lim
M→∞

1
M

M∑
m=1

g(x + ηm) = Eη[g(x + η)], (19)

which is just the noise-enhanced estimator proposed by
Uhlich [42]. Theorem 4 only tells us that the optimal noise
is not a constant bias, but which type of noise is optimal to
minimizing the MSE of the noise-enhanced estimator θ̂NE?
This non-convex problem is in general intractable, because
the term Ex[E2

η(g(x + η))] in (17) is a nonlinear functional of
the PDF fη. Therefore, the minimization problem of the MSE
minfη RNE usually employs the PDF approximation method
[26], [42], [47], [48], [56] to obtain an approximate optimal
solution form as

f̃ oη (η) =
K∑
k=1

λkφ

(
η − µk

σk

)
(20)

with the normalization coefficients λk ≥ 0 satisfying the
constraint

∑K
k=1 λk = 1, and the Gaussian window function

φ(u) = exp(−u2/2)/
√
2π , means µk , standard deviations

σk ≥ 0. The approximate PDF f̃ oη will asymptotically con-
verge to the existing optimal PDF f oη as the number K of the
window function increases [26], [42], [47], [48], [56].
Example 2: For instance, consider M = 1000 identical

quantizers of (12) and other parameters are the same as in
Example 1. The sequential quadratic programming [56] is
used to numerically solve the approximate PDF f̃ oη of (20).
In Figs. 3 (a), (b) and (c), the approximate PDFs f̃ oη are
plotted for estimating the uniform distributed parameter θ
buried in three background noise types, respectively. It is seen
in Fig. 3 that the approximate optimal added noise PDF f̃ oη
exhibits non-trivial complicated shapes and varies with the

FIGURE 3. Approximate PDFs f̃ o
η (η) for the noise enhanced estimator θ̂NE

with background noise types of (a) Gaussian, (b) Rayleigh and (c) Laplace
distributions. For the linear combination estimator θ̂LC in (21),
approximate PDFs f̃ o

η (η) are also presented for (d) Gaussian, (e) Rayleigh
and (f) Laplace background noise types. Here, the windows number
K = 10 in (20).

background noise types. These approximate PDFs f̃ oη implies
a bona fide random noise, rather than a constant bias. More-
over, substituting the obtained approximate optimal noise
PDFs f̃ oη into (17), the corresponding MSE values ofRNE(x̄)
are reduced to 0.0448, 0.0267 and 0.0536, as listed in Table 1,
which are almost equal to the corresponding MSEs achieved
by the MMSE estimator θ̂ms(x).

D. NOISE BENEFITS IN NONIDENTICAL SENSORS
From (16), the noise-enhanced estimator θ̂NE uniformly sets
the same weight 1/M to the identical sensors g, which is
inappropriate for an ensemble of nonidentical sensors gm
shown in Fig. 4. Carrying out a LMMSE transform on the
sensor outputs gm(x + ηm), a linear combination estimator is
established as

θ̂LC = w0 + w>g, (21)

where the sensor output vector g = [g1(x + η1), g2(x +
η2), · · · , gM (x + ηM )]>, the weight vector w =

[w1,w2, · · · ,wM ]> and w0 is the bias weight [48]. Then,
the MSE of θ̂LC can be expressed as

RLC=Ex,η[(θ−θ̂LC)2] = Ex,η[(θ−w0 −w>g)2]. (22)

An interesting fact ofRLC in (22) is that the minimization of
RLC with respect to weights, uncoupled with the minimiza-
tion of RLC with respect to the added noise, can be first the-
oretically solved. Setting the derivative ∂RLC/∂w0 = 0 and
the gradient ∂RLC/∂w = 0 producew0 = Eθ (θ )−w>Ex,η(g)
and w = C−1p, where p = Ex,η{[θ −Eθ (θ )][g−Ex,η(g)]} is
the cross-correlation vector of the parameter θ and the sensor

18826 VOLUME 8, 2020
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FIGURE 4. Block diagram representation of the linear combination
estimator θ̂LC in (21). Besides the injection of mutually independent
added noise components ηm, each sensor is also endowed with an
adjustable weight wm.

vector g and C = Ex,η{[g − Ex,η(g)][g − Ex,η(g)]>} is the
covariance matrix of g [48], [57]. Then, using the optimal
weights w0 and w, the linear combination estimator θ̂LC in
the LMMSE sense can be rewritten as

θ̂LC = Eθ (θ )+ p>C−1[g− Ex,η(g)] (23)

and the minimized MSE RLC with respect to weights is
given by

RLC = var(θ )− p>C−1p. (24)

Theorem 5: The linear combination estimator θ̂LC is never
worse than the noise-enhanced estimator θ̂NE in (16) in the
same environment, and the MSEs satisfy RLC ≤ RNE.
Theorem 5 is proved in Appendix D, and is illustrated in

the following examples.
Example 3: Consider again Example 1 and minimize the

MSE RLC in (24) by optimizing the added noise. For M =
1000 identical quantizers gm = g of (12) with the same
threshold γ = 0, the approximate noise PDFs f̃ oη of the opti-
mization problem of minfη RLC are also numerically solved
for three background noise types, as shown in Fig. 3 (d), (e)
and (f), respectively. The corresponding MSE values ofRLC
are 0.0447, 0.0266 and 0.0533, as listed in Table 1, which
also approach to the MSE achieved by the MMSE estimator
θ̂ms. However, compared to the noise-enhanced estimator
θ̂NE, θ̂LC improves the MSE slightly in estimating param-
eters from the observations of a large number of identical
sensors.
Example 4: ConsiderM (even number) quantizers gm with

two groups: one group of M/2 quantizers has the same
threshold γ1 = 0, and the other group of M/2 quantizers
is with the same threshold γ2 = 1. The background noise
ξ is selected as Gaussian distributed with the zero-mean and
standard deviation σξ =

√
0.1, and other conditions are the

same as in Example 1. The MSEs of estimators θ̂NE and θ̂LC
are plotted as a function of the sensor number M in Fig. 5,
wherein the MSE is minimized with respect to the added
noise by the approximate PDF in (20). It is seen in Fig. 5
that, upon increasing the sensor numberM and dividing these

FIGURE 5. MSEs of the linear combination estimator θ̂LC in (21) and the
noise-enhanced estimator θ̂NE in (16) versus the sensor number M.

FIGURE 6. Approximate PDF f̃ o
η (η) for the linear combination estimator

θ̂LC in (21) with two groups of nonidentical sensors gm. Here, the number
of sensors is M = 200, one group of M/2 quantizers has the threshold
γ1 = 0, and the other group of M/2 quantizers is with the threshold
γ2 = 1. The background Gaussian noise ξ is with the zero-mean and
standard deviation σξ =

√
0.1. The windows number K = 10 in (20).

sensors into two groups, the MSE of the linear combination
estimator θ̂LC (�) still approaches 0.0446 achieved by the
MMSE estimator θ̂ms (dashed line) asymptotically. While,
under the same condition, the MSE of the noise enhanced
estimator θ̂NE (◦) approaches 0.0715 asymptotically at large
M , rather than 0.0446. The reason is that the linear combi-
nation estimator θ̂LC allocates different weights to sensors
gm with different thresholds. For instance, for M = 200,
the weights wm = 3.0976 × 10−3 (m = 1, 2, · · · , 100) for
the group of quantizers with threshold γ1, and the weights
wk = 5.1738 × 10−3 (k = 1, 2, · · · , 100) for the group of
quantizers with threshold γ2. But the estimator θ̂NE in (16)
always endows all sensors with a fixed weight 1/M , regard-
less of the distinction of thresholds for two groups of sensors.
For comparison, the MSEs of both θ̂LC (F) and θ̂NE (∗) are
also plotted in Fig. 5 forM identical sensors g with threshold
γ1 = 0, which also all approach the MMSE value of 0.0446
as the number M increases. For a moderate sensor number
(e.g. 2 ≤ M ≤ 102), the MSE RLC (F) of θ̂LC also clearly
outperforms the MSE RNE (∗) of θ̂NE. These points indicate
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the superiority of the linear combination estimator θ̂LC over
the noise enhanced estimator θ̂NE for Bayesian parameter
estimation. In addition, for the total number M = 200 of
sensors with two groups, the approximate noise PDFs f̃ oη that
minimizes theMSERLC to 0.0451 is also numerically solved
and shown in Fig. 6, which also has quite a complicated
structure. For other threshold settings of γ (not shown here),
the superiority of the linear combination estimator is also
confirmed.

IV. CONCLUSION
In this paper, added noise is intentionally injected into the
observed data, we first theoretically address a crucial question
of the increase of the BCRB of the updated observations,
and then prove that the updated MMSE estimator yet cannot
provide a lower MSE than that the original MMSE estimator.
We mainly investigate the noise benefits in certain types of
suboptimal Bayesian estimators that are widely employed
due to their ease of implementation and low cost. For the
noise-modified estimator in (7) or the LMMSE estimator in
(13) based on a single sensor, the optimal added noise that
minimizes the estimator MSE is just a constant bias, but not
bona fide random noise. However, for the noise-enhanced
estimator in (16) and the linear combination estimator in (21)
established on an ensemble of sensors, it is observed that
the optimal noise that improves the estimator and makes it
as efficient as the original MMSE estimator is a bona fide
random signal, rather than a constant bias. Especially, for
an ensemble of two groups sensors with different settings,
the linear combination estimator in (21), benefiting from the
optimal added noise, can still approach the MSE of the origi-
nal MMSE estimator when the sensor number is sufficiently
large.

Some open questions remain. For instance, it is seen in (23)
that the construction of the linear combination estimator θ̂LC
requires the theoretical two-moments of the cross-correlation
between the parameter and the sensor outputs and the covari-
ance of the sensor outputs. To find these statistical quantities
we need the joint PDF of the observation data and the added
noise, of which, most of time, we have no knowledge of the
probabilistic structure. Thus, under this circumstance, how
do we establish a practical estimator? If the observation data
is stationary and ergodic, can we approximately compute
these desired statistical characteristics from one sampling
realization of data? Or on the minimization of the least
squares error criterion, how do we establish an easily imple-
mentable least-square estimator and which kind of added
noise is optimal for improving the MSE of the least-square
estimator? In addition, in many signal estimation problems,
the observations are obtained in a sequential order as time
processes. So, can we present a sequential linear combination
estimator in the LMMSE sense that continuously update
weights and the added noise according to the new incom-
ing data? These interesting questions deserve the further
study.

APPENDIXES
APPENDIX A
PROOF OF THEOREM 2
Consider the case of s(θ ) = θ without loss of generality.
For the updated observation data x̄n = θ + ξn + ηn =

θ + zn, the joint PDF of the random parameter θ and the
data vector x̄ is described as fx̄,θ (x̄, θ) = fx̄|θ (x̄|θ )fθ (θ ),
where the conditional PDF can be expressed as fx̄|θ (x̄|θ ) =∏N

n=1 fz(x̄n − θ ) =
∏N

n=1
∫
fξ (x̄n − θ − ηn)fη(ηn)dηn =∫

fξ (x̄− θ − η)fη(η)dη. Then, the updated MMSE estimator
is given by ϑ̂ms(x̄) = Eθ |x̄[θ |x̄] =

∫
θ fθ |x̄(θ |x̄)dθ with the

conditional posterior PDF fθ |x̄(θ |x̄) = fx̄,θ (x̄, θ)/fx̄(x̄) and the
PDF fx̄(x̄) =

∫
fx̄,θ (x̄, θ)dθ . The MSE of ϑ̂ms(x̄) is given by

R̄ms = Ex̄,θ [(θ − ϑ̂ms(x̄))2] = Eθ [θ2] − Ex̄[ϑ̂ms(x̄)2]. Since
the two-moment Eθ [θ2] is given, then we now find the opti-
mal added noise vector η to maximize the term Ex̄[ϑ̂ms(x̄)2].
Consider a real-value vector function f (Z) = Z2

1 /Z2 with
Z = [Z1,Z2]T and Z2 > 0. Since its Hessian matrix
∇

2 f (Z)=2[Z2,−Z1]T [Z2,−Z1]/Z3
2 is positive semidefinite,

then f (Z) is convex [33], [46], [58]. Thus, Jensen’s inequal-
ity E2

η[Z1]/Eη[Z2] ≤ Eη[Z2
1 /Z2] indicates that Ex̄[ϑ̂ms(x̄)2]

satisfies

Ex̄[ϑ̂ms(x̄)2] =
∫ [∫

θ fx̄|θ (x̄|θ )fθ (θ )dθ
]2

fx̄(x̄)
d x̄

=

∫ E2
η{Eθ [θ fξ (x̄− θ − η)]}

Eη{Eθ [fξ (x̄− θ − η)]}
d x̄

≤

∫
Eη

{
E2
θ [θ fξ (x̄− θ − η)]
Eθ [fξ (x̄− θ − η)]

}
d x̄ (25)

= Eη

[∫
E2
θ [θ fξ (x̄− θ − η)]
Eθ [fξ (x̄− θ − η)]

d x̄

]

≤ max
η

∫
E2
θ [θ fξ (x̄− θ − η)]
Eθ [fξ (x̄− θ − η)]

d x̄

= max
η

p(η), (26)

where the inequality (25) accords to the Jensen’s inequality
[33], [46], [58] and (26) holds for f oη (η) = δ(η− η

∗) with the
constant vector η∗ = argmaxη p(η). Furthermore, from (26)
and noting d x̄ = d(x̄− η∗), we find

Ex̄[ϑ̂ms(x̄)2] ≤
∫

E2
θ [θ fξ (x̄− θ − η

∗)]

Eθ [fξ (x̄− θ − η∗)]
d x̄

=

∫
E2
θ [θ fξ (x− θ )]
Eθ [fξ (x− θ )]

dx

=

∫
E2
θ [θ fξ (x− θ )]

f 2x (x)
fx(x)dx

=

∫ (∫
θ fx|θ (x|θ )

)2

fx(x)dx

= Ex[θ̂ms(x)2]. (27)

Thus, we find R̄ms = Eθ [θ2] − Ex̄[ϑ̂ms(x̄)2] ≥ Eθ [θ2] −
Ex[θ̂ms(x)2] = Rms. Theorem 2 holds.
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APPENDIX B
PROOF OF THEOREM 3
The MSE of θ̂L(x + η) in (13) can be written as
RL = Ex,η

[
(θ − wg(x + η)− w0)2

]
. Setting the derivative

∂RL/∂w0 = 0, the optimum biasing weight w0 is solved as
w0 = Eθ (θ ) − wEx,η[g(x + η)], which happens to make θ̂L
unbiased as Ex,η(θ̂L) = Eθ (θ ). Substituting w0 into RL and
setting ∂RL/∂w = 0, we have

w =
Ex,η[θ̃ g̃(x + η)]

Ex,η
[
g̃2(x + η)

] (28)

with g̃(x+η) = g(x+η)−Ex{Eη[g(x+η)]} and θ̃ = θ−Eθ (θ ).
Subsequently, with the solved weight w in (28), the MSE of
θ̂L can be rewritten as

RL = var(θ )−
E2
x,η[θ̃ g̃(x + η)]

Ex,η
[
g̃2(x + η)

] . (29)

Since the variance var(θ ) of θ is given, then we maximize
the second term of (29) as

E2
x,η[θ̃ g̃(x + η)]

Ex,η
[
g̃2(x + η)

] = E2
x,η[θ̃ g̃(x + η)]

Ex,η
[
g2(x + η)

]
− E2

x,η[g(x + η)]

≤
E2
η{Ex[θ̃ g̃(x + η)]}

Eη{Ex[g2(x + η)]} − Eη{E2
x[g(x + η)]}

(30)

=
E2
η{Ex[θ̃ g̃(x + η)]}

Eη{Ex
[
g̃2(x + η)

]
}

≤ Eη
{E2

x[θ̃ g̃(x + η)]
Ex[g̃2(x + η)]

}
(31)

≤ max
η

E2
x[θ̃ g̃(x + η)]

Ex[g̃2(x + η)]
.

Using Jensen’s inequality [33], [46], [55], [58], the inequality
of (30) holds due to E2

x,η[g(x + η)] = E2
η{Ex[g(x + η)]} ≤

Eη{E2
x[g(x + η)]} based on the convex function x2, and the

inequality of (31) is valid for the convex f (Z) = Z2
1 /Z2 given

in Appendix A. Then, we find the optimal noise PDF f oη (η) =
δ(η−η†) in (14) and the minimumMSE in (15). Furthermore,
the minimum MSE Rmin

L of the estimator θ̂L also satisfies

Rmin
L

= min
w,fη

Ex̄,θ
[(
θ−Eθ (θ )−wg(x + η)+wEx,η[g(x + η)]

)2]
≤ min

fη
Ex̄,θ

[(
θ − Eθ (θ )− g(x + η)+ Ex,η[g(x + η)]

)2]
≤ Ex,θ

[(
θ − Eθ (θ )− g(x + η∗)+ Ex[g(x + η∗)]

)2]
= Rmin

NM − (Eθ (θ )− Ex[g(x + η∗)])2

≤ Rmin
NM, (32)

where the constant η∗ is given in (9). Then, Theorem 3 holds.

APPENDIX C
PROOF OF THEOREM 4
If the optimal noise η has the PDF f oη (η) = δ(η − η‡),
then M equivalent constants ηm = η‡ are added to M
identical sensors g with the same outputs g(x + η‡). Thus,
the noise enhanced estimator θ̂NE =

∑M
m=1 g(x + η

‡)/M =
g(x + η‡) reduces to the output of a single sensor. Moreover,
Eη(ηmηk ) = (η‡)2 6= 0 does not satisfy the the mutually
independent assumption of ηm. Therefore, the optimal noise
must not be a constant bias. Using the Jensen inequality and
Eη[g(x + η)] 6= g(x + η) for the given observation data x,
we obtain the inequality Eη[g2(x+η)] > E2

η[g(x+η)]. Then,
we have

Ex
{
Eη[g2(w+ η)]

}
> Ex

{
E2
η[g(w+ η)]

}
. (33)

Immediately, we find
Ex [Eη(g2(x+η))]+(M−1)Ex [E2η(g(x+η))]

M

>
Ex [Eη(g2(x+η))]+MEx [E2η(g(x+η))]

M+1 . (34)

From (34), we deduce that RNE in (17) is a monotonically
decreasing function of the sensor numberM , when the obser-
vation data x and the added noise are given. Furthermore, for
a sufficiently large number M → ∞, the MSE RNE in (17)
can be simplified as

lim
M→∞

min
fη

RNE = min
fη

(
Ex[E2

η(g(x + η))]

− 2Ex{θEη[g(x + η)]} + Eθ (θ2)
)

= min
fη

Ex{[θ − Eη(g(x + η))]2}

≤ Ex{[θ − g(x + η∗)]2} = Rmin
NM, (35)

where the constant η∗ is given in (9). Then, Theorem 4 is
proved.

APPENDIX D
PROOF OF THEOREM 5
For an ensemble of sensors gm, the noise-enhanced estimator
can be rewritten as

θ̂NE =
1
M

M∑
m=1

gm(x + ηm) (36)

and its minimum MSE can be expressed as

Rmin
NE = min

fη
Ex,η

[(
θ − θ̂NE

)2]
= Ex,η

{[
θ −

1
M

M∑
m=1

gm(x + ηm)
]2}∣∣∣

fη=f o∗η
(37)

with the optimal added noise PDF f o∗η . However, for any PDF
fη of the added noise and theM×1 dimensional vector 1 of all
ones, the MSE of the designed linear combination estimator
in (23) can be expressed as

RLC = min
w0,w

Ex,η
[(
θ − w0 − w>g

)2]
≤ Ex,η

{[
θ −

1
M

M∑
m=1

gm(x + ηm)
]2}∣∣∣

w0=0,w=1/M

= RNE. (38)
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Of course, even when the added noise PDF fη receives
the expression f o∗η that is optimal for the noise-enhanced
estimator θ̂NE, the inequality (38) also holds, resulting in
RLC|fη=f o∗η ≤ Rmin

NE . Thus, Theorem 5 holds.
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