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Applying two general population job exposure matrices to predict incident carpal tunnel 
syndrome: A cross-national approach to improve estimation of workplace physical exposures
by Marcus Yung, PhD,1 Bradley A Evanoff, MD,1 Skye Buckner-Petty, MPH,1 Yves Roquelaure, MD,2 Alexis Descatha, MD,2,3,4  
Ann Marie Dale, PhD 1

Yung M, Evanoff BA, Buckner-Petty S, Roquelaure Y, Descatha A, Dale AM. Applying two general population job exposure 
matrices to predict incident carpal tunnel syndrome: A cross-national approach to improve estimation of workplace physical 
exposures. Scand J Work Environ Health. 2020;46(3):248–258. doi:10.5271/sjweh.3860

Objectives   A job exposure matrix (JEM) is a tool to estimate workers’ exposure to occupational physical risk 
factors. We evaluated the performance of two general population JEM (CONSTANCES and O*NET) to detect 
known exposure–disease relationships in an American prospective cohort study. We compared exposure estimates 
from three data sources and explored whether combining exposures from these two JEM, or combining exposure 
from each JEM with individual-level measures, improved prediction of carpal tunnel syndrome (CTS).
Methods   Using Cox proportional hazard models, we evaluated relationships between physical work exposure 
and incident CTS of 2393 workers using JEM-assigned and individual-level measure exposure information. We 
compared exposure estimates using Spearman’s rank correlation and Cohen’s kappa. We compared combined 
exposure models to single source exposure models by using binomial logistic regression and examined differ-
ences based on model fit and performance.
Results   The O*NET JEM [hazard ratio (HR) range 1.3–2.01] demonstrated generally similar exposure–disease 
associations as individual-level measures (HR range 1.00–1.42); we found fewer associations with the CON-
STANCES JEM (HR range 1.08–2.05). Comparisons between the three sources showed stronger correlations 
and agreement at the job versus worker level. Combined models improved goodness-of-fit and had lower Akaike 
information criterion (AIC) values compared to single-source models.
Conclusions   JEM can be applied cross nationally and there is potential to combine complementary exposure methods 
to improve estimation of workplace physical exposures in the prediction of CTS. More investigations are needed to 
explore exposure-disease associations in other samples and combinations of exposure data from different methods.

Key terms   assessment injury prevention; CTS; ergonomics; exposure–risk; JEM; job exposure matrix; muscu-
loskeletal disorder; MSD; occupational health; risk.
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Workplace exposure assessment is necessary for effec-
tive assessment and prevention of health conditions that 
may be affected by occupational factors including physi-
cal (biomechanical) exposures. A job exposure matrix 
(JEM) is an efficient tool to estimate workers’ exposure 
to occupational risk factors by using job titles, industry 
information, and job-level exposure data. There has been 
considerable international interest in constructing JEM 
to estimate physical exposures for the study of work-
related musculoskeletal disorders (MSD), leading to 

recent JEM created in Denmark (1), Norway (2), Finland 
(3, 4), the United States (5, 6), and France (7).

Several studies have validated physical exposure 
JEM and their association with various MSD, including 
low-back pain (3), hip and knee osteoarthritis (8, 9), 
carpal tunnel syndrome (CTS) (10), and subacromial 
impingement syndrome (11). More recently, we (12) 
validated a JEM (O*NET JEM) based on the American 
Occupational Information Network data (O*NET, www.
onetonline.org) by comparing exposure–disease asso-
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ciations for incident CTS in a well-studied cohort of US 
workers (13). Exposure–disease associations obtained 
using physical exposures estimated from a JEM were 
similar to associations obtained from observations of 
individual workers (12). In a cross-national comparison of 
exposure estimates, we compared a French JEM based on 
self-reported physical exposures from a large cohort study 
(CONSTANCES – Cohorte des consultants des Centres 
d’examens de santé) (14, 15) with the American O*NET 
JEM based on exposure information provided by expert 
job analysts and from surveys of workers in different jobs. 
We found that exposure estimates from these two general 
population JEM were strongly related, suggesting that 
results obtained from different general population JEM 
were likely to be comparable. In some circumstances, it 
might be reasonable to combine exposures from different 
JEM to provide better estimates of some exposures (16).

The objectives of this study were to evaluate the 
ability of the CONSTANCES and O*NET JEM to detect 
known exposure–disease relationships in a large US pro-
spective cohort study and to explore whether combining 
exposure variables from multiple sources of exposure 
information improved the prediction of health outcomes 
(figure 1). As an extension of our previous study (12), 
we first evaluated the predictive validity of the CON-
STANCES and O*NET JEM by testing their ability to 
reproduce known exposure–disease associations obtained 
from individual-level measures (Aim 1). To further exam-
ine the relationships between the three sources of expo-
sure data, we then compared associations and agree-
ment of exposure estimates between the CONSTANCES 
JEM, the O*NET JEM, and individual-level measures 
obtained from a large US prospective cohort study (Aim 
2). Finally, we compared multivariable models combin-
ing exposure data from both JEM and observations to 
determine whether a combined exposure variable model 
predicted CTS better than a model containing exposure 
data from a single source (Aim 3). To our knowledge, this 
is the first study to explore the combination of exposure 
variables from two general population JEM and individ-
ual-level measures in the prediction of MSD. A general 
population JEM that produces similar exposure–disease 
associations to individual-level measures, and which can 
serve as a strong complement to existing JEM, will be an 
effective tool to study the effects of workplace physical 
exposures on a variety of health conditions.

Methods

Individual-level measures

Cohort study methodology. Pooled exposure data were 
obtained from six prospective cohort studies conducted 

as part of the NIOSH upper-extremity MSD consortium. 
This cohort has been thoroughly described in previous 
studies (12, 13, 17–19). In brief, 4321 workers were 
recruited across six study sites and followed between 
2001 and 2010. All study participants were full-time 
employees, >18 years of age, recruited from jobs that 
involved hand-intensive activities, and employed in 
manufacturing, production, service, and construction 
industries. Ethics approval was provided by the respec-
tive institutional review boards for each study and writ-
ten informed consent was obtained from all participants. 

Both hand/arm exposures and the health outcome 
(CTS) were assigned at the worker level. All study par-
ticipants completed baseline questionnaires and under-
went physical examinations, which included median and 
ulnar nerve electrodiagnostic tests. We defined incident 
CTS as (i): symptoms of tingling, numbness, burning or 
pain in the thumb, index finger or long finger, and (ii) 
abnormal electrodiagnostic tests consistent with median 
neuropathy at the wrist (12). Work exposure assessments 
were performed for each individual, consisting of inter-
views to identify primary work tasks, video recordings 
of workers performing typical work tasks, and worker- 
and analyst-rated estimation of hand forces required to 
perform each task. Physical exposure variables were 
relevant to MSD risk, including force, repetition, hand/
wrist posture, and hand/arm vibration.

Individual-level measure variables. Peak hand force required 
for a task was assessed using the Borg category ratio 
0–10 (CR-10) rating scale (20) and was obtained from 
both worker estimates [peak hand force (worker rated)] 
and from trained analysts [peak hand force (analyst 
rated)]. Video recordings of work tasks provided esti-
mates of duty cycle, for all exertions in a task (duty 
cycle for all exertions) or for exertions requiring signifi-
cant force (duty cycle of forceful exertions). Forceful 
exertions were defined as pinch force ≥9 N, or power 
grip force ≥45 N, or a Borg CR-10 rating of ≥2; esti-
mates of force was based on measurement of the force 
required for the task, the weights of parts or tools, or 
from force matching. Repetitiveness of tasks were esti-
mated using hand activity level (HAL) ratings, which 
were calculated using Latko et al’s (21) 0–10 verbal 
anchor scale determined by analysts who assigned rat-
ings by observation in the field and from video analysis 
of worker tasks. Other temporal exertion patterns for 
repetition was determined by detailed time studies of 
video recordings for all exertions (repetition per minute 
for all exertions) and for significant exertions (repetition 
per minute for forceful exertions). The American Con-
ference of Governmental Industrial Hygienists (ACGIH) 
threshold limit value (TLV) for HAL was calculated to 
provide a single composite index value from a combina-
tion of job physical exposure factors (force and repeti-



250 Scand J Work Environ Health 2020, vol 46, no 3

Two JEM, a direct measure, and incident carpal tunnel syndrome

tion) (22). Both worker- and observer-estimated TLV 
were calculated using the equation score of TLV = peak 
force/(10-HAL), using worker- or analyst-rated peak 
force, and the analyst-rated HAL. Finally, using video 
recordings of work tasks, we calculated the percent-
age of time in wrist extension (≥50 degrees) or flexion 
(≥30 degrees). Workers who performed multiple tasks 
in their job, or their supervisors, provided estimates of 
the proportion of time spent in each task. We calculated 
a time-weighted-average (TWA) exposure to create a 
single exposure variable measure that accounted for the 
proportion of daily work time in each observed task.

CONSTANCES job exposure matrix. A general population 
physical exposure JEM was constructed from self-
reported data obtained from CONSTANCES, a large 
cohort study of French salaried workers (14, 15). Details 
of the creation of this JEM have been described in Eva-
noff et al (7). Briefly, in CONSTANCES, the duration 
of performing specific activities of a given frequency 
or intensity were self-reported for the current job using 
a 4- or 5-point ordinal scale; physical intensity was 
assessed with Borg’s rating of perceived exertion (RPE) 
scale. The CONSTANCES JEM focused on 27 physi-
cal risk factors relevant to MSD and used data from 
the first 81 425 CONSTANCES participants. Reported 
job titles were assigned a 4-digit PCS (profession et 
catégorie sociale - profession and social category) job 
code using the SiCore automated coding system (23). 
When required, job codes were grouped with similar 
codes to ensure all PCS job codes had a minimum of 
ten valid responses for each of its 27 physical risk fac-
tors. The resulting JEM was comprised of 27 physical 

risk factors assigned to 407 different 4-digit PCS codes 
among 35 526 eligible CONSTANCES participants after 
excluding participants who (i) were not currently work-
ing, (ii) did not report a job title, (iii) were not assigned 
a PCS job code through automatic coding, or (iv) had 
missing exposure data.

O*NET job exposure matrix. A JEM was created using physi-
cal job demand data obtained from O*NET (version 
21.2), a publicly available American database of more 
than 800 occupations. Estimates of job demands, per-
taining to the frequency and intensity, were provided by 
expert job analysts and from self-reported exposures by 
individual workers across different jobs. Job demands in 
O*NET were scored on a 5- or 8-point ordinal scale with 
exposure-specific descriptive anchors (16). Occupations 
from O*NET were assigned a standard occupational 
classification (SOC) job code.

Assigning JEM exposure estimates to individual workers

From the 4321 original pooled consortium study cohort, 
we excluded prevalent cases of CTS at baseline and 
removed subjects with no follow-up measurements, 
workers who did not have detailed data necessary for 
individual assessment, and workers who had missing 
covariate data, leaving 2393 workers for analysis of 
CTS incidence. This analyzed cohort was identical to 
a previous study on exposure–disease associations that 
used a smaller set of O*NET exposure variables (12). 
SOC codes were assigned to each job for each worker 
using information about the worker’s current job (ie, 
job title, company name, job start date and work-related 

Figure 1. Three study aims: (i) evaluate exposure–disease associations between exposure estimates from three sources and incident CTS, (ii) compare asso-
ciation and agreement of exposure estimated and values both at individual and job-title levels, and (iii) compare mulitavariate model performance between 
combined models (O*NET + CONSTANCES, O*NET + Observed, CONSTANCES + Observed) and single source models.
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tasks) collected at baseline (12). The job title selection 
feature provided by O*NET assisted in assigning SOC 
codes to match primary tasks reported by the worker 
and from employer information. Two raters, blinded by 
case status, assigned job codes independently, with dif-
ferences resolved by consensus. For assigning exposure 
values using the CONSTANCES JEM, we created a 
crosswalk to match French PCS codes with American 
SOC codes based on similarity of work physical expo-
sures (16). French PCS codes were first matched to 
three-digit ISCO-88 (International Standard Classifica-
tion of Occupations) codes using the Codage Assisté 
des Professions et Secteurs d’activité (CAPS) and an 
existing French auto-coding tool (24). ISCO-88 codes 
were then matched to ISCO-08 codes using an existing 
crosswalk from the International Labour Organization 
(25). Finally, ISCO-08 codes were matched to Ameri-
can SOC codes using an existing crosswalk from the 
US Bureau of Labor Statistics (www.bls.gov/soc). The 
mean CONSTANCES ordinal score for each exposure 
variable was then assigned to each participant’s SOC 
code. A similar process was performed when assign-
ing exposure values using the O*NET JEM. The mean 
O*NET ordinal score for each exposure variable was 
assigned to each consortium participant. For every expo-
sure variable, each of 2393 participants was assigned 
an exposure value from the individual-level measures, 
an exposure estimate from the CONSTANCES JEM, 
and an exposure estimate from the O*NET JEM. We 
focused on exposures relevant to incident CTS: 11 
exposure variables from the CONSTANCES JEM, 8 
variables from the O*NET JEM, and 11 variables from 
the consortium study (supplementary material: www.
sjweh.fi/show_abstract.php?abstract_id=3855 tables 
S1 and S2). Variables such as “stand” and “work out-
doors” were excluded from analysis as they were not 
expected to be related to CTS. Dale et al (12), reported 
exposure–disease associations for CTS using a subset of 
physical exposures from O*NET (12); in this study we 
examined a larger set of O*NET variables.

Statistical analysis

Aim 1: Physical exposures and incident CTS. We computed 
Cox proportional hazard models to evaluate relation-
ships between baseline physical work exposure and 
incident CTS. We determined hazard ratios (HR) and 
95% confidence intervals (CI) adjusted for age, gender, 
body mass index (BMI), and study site. Each model 
included a single physical work exposure from the 
CONSTANCES JEM, O*NET JEM, or individual-level 
measurement. Since exposure data from all sources 
were expressed on different scales, we examined a 
dichotomous exposure model where values were split 
at the median value (high versus low), in addition to 

continuous exposure models (per 1-unit increase). We 
applied robust sandwich estimators (26) to account for 
intra-cluster dependence within each model.

Aim 2: Comparison of exposure estimates between JEM and 
individual-level measures and between JEM at the worker- 
and job-level. We carried out two comparison analyses: 
Spearman’s rank correlation coefficient and Cohen’s 
kappa. We matched a priori similar exposure variables 
in order to compare exposure estimates between JEM 
and observation. Matched exposure variables assessed 
similar ergonomic risk factors (ie, force, repetition, 
posture, duration). For the O*NET JEM, we matched 
≥1 of 8 O*NET variables to 11 consortium variables, 
resulting in 41 matched pairs (supplementary table 
S1). For the CONSTANCES JEM, we matched ≥1 of 
9 CONSTANCES variables to 11 consortium variables, 
resulting in 54 matched pairs (supplementary table S2). 
Between CONSTANCES and O*NET JEM, we matched 
8 O*NET variables with 9 CONSTANCES variables, 
resulting in 28 matched pairs (16). Job title data repre-
sented 130 unique American SOC codes matched to 77 
unique French PCS codes.

We assigned exposure values from both JEM and 
from individual-level measurement to each of 2393 work-
ers, and calculated Spearman correlations and Cohen’s 
kappa at the worker level between: (i) O*NET JEM and 
consortium exposures, (ii) CONSTANCES JEM and 
consortium exposures, and (iii) CONSTANCES and 
O*NET JEM. We also performed the same comparisons 
at the level of the job within the 130 job codes contained 
in the consortium data. When calculating Cohen’s kappa, 
we dichotomized physical exposure estimates from the 
CONSTANCES JEM, O*NET JEM, and consortium 
individual-level measure exposure data at their respec-
tive median physical exposure levels. We interpreted 
our Cohen’s kappa calculation as the level of agreement 
in categorizing high and low exposure groups between 
exposure methods for each paired exposure variable.

Aim 3: Comparison of models consisting of CONSTANCES, 
O*NET, and individual-level measures in predicting incident 
CTS. Our third aim was to compare models based on 
their performance, including measure of goodness-of-fit. 
In order to compare models, we used binomial logistic 
regression with research site as a random intercept; there 
are few readily implemented tests for goodness-of-fit 
for Cox proportional hazard models (27). Each model 
included a set of physical work exposures from the 
CONSTANCES JEM (11 variables), O*NET JEM (8 
variables), and consortium individual-level measures (11 
variables). For all binomial logistic regression models, 
we selected a fixed follow-up time of two years for all 
participants; this two-year period ensured that data from 
all six study sites were retained in our analysis, leaving 
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2173 eligible participants for analysis. We excluded all 
participants who had missing exposure data, leaving 
1073 participants. 

For the multivariable model analysis, we performed 
backward selection by Akaike information criterion 
(AIC) (28), to retain a subset of variables, adjusted for 
age, gender, BMI, and research site, for models contain-
ing CONSTANCES, O*NET, or consortium exposures. 
For each model, we calculated the c-statistic as a mea-
sure of goodness-of-fit of models with multiple variables 
from each exposure method.

To explore the prediction of incident CTS by com-
bining variables across JEM or adding JEM data to 
individual-level measures, we compared an O*NET-only 
model to O*NET + CONSTANCES, and a consortium 
exposure-only model to consortium + O*NET and con-
sortium + CONSTANCES. For these combined models, 
we carried out backward selection by AIC, retaining a 

subset of JEM variables into a model with our a priori 
selected covariates (age, gender, BMI, research site) and 
O*NET or consortium variables identified in the O*NET 
or consortium variable-only analysis. We computed AIC 
estimates (29), and the c-statistic, between the O*NET 
model and CONSTANCES + O*NET model, between 
the consortium model and consortium + O*NET model, 
and between the consortium model and consortium + 
CONSTANCES model. We compared c-statistics by 
calculating the 95% CI with bootstrapping resulting in 
a one-sided bootstrapped P-value.

All analyses were carried out with R software (R 
Foundation for Statistical Computing, Vienna, Austria). 

Results

Aim 1: Physical exposures and incident CTS

HR for consortium individual-level measures ranged 
from 1.00–1.42 for continuous models. Of 11 consor-
tium exposure variables, 9 were statistically meaningful, 
with the highest HR value observed with ACGIH TLV 
(analyst rated). In analyzing the dichotomous models, 5 
exposure variables were statistically meaningful.

All 8 O*NET variables were statistically meaningful 
in their relationship to incident CTS. HR ranged from 
1.31 (95% CI 1.01–1.70) (wrist finger speed) to 2.01 
(95% CI 1.55–2.59) (spend time using your hands) in 
the continuous models. We observed HR ranging from 
0.99–1.64 in the dichotomous models where 4 variables 
were statistically significant.

HR from continuous models were in the range of 
1.08–2.05 for CONSTANCES exposure variables (table 1). 
Of 11 variables, only 2 were statistically meaningful. "Fin-
ger pinch" demonstrated the highest HR of 2.05 (95% CI 
1.38–3.06), followed by "rotate forearm" (HR 1.44, 95% 
CI 1.10–1.89). Dichotomous models showed HR between 
0.81–1.46, only “repetition” was statistically significant.

In summary, we observed significant exposure–dis-
ease associations using O*NET JEM exposure variables 
to predict CTS in a US worker population; these asso-
ciations were broadly similar to variables assessed by 
individual-level measures. We also observed some, but 
fewer, significant exposure–disease associations using 
a CONSTANCES JEM to predict CTS in a US worker 
population.

Aim 2: Comparison of exposure estimates between JEM 
and individual-level measures and between JEM at the 
worker- and job-level

Aim 2 results are reported in supplementary figures 
S1–4. We provide an example that is indicative of 

Table 1. Hazard ratios (HR) and 95% CI calculated from Cox propor-
tional hazard models to evaluate relationship between baseline physi-
cal exposure and incident CTS. Adjusted for age, gender, body mass 
index (BMI), and research site. Applied with robust sandwich estimates 
(Lin & Wei, 1989). N=2393. [JEM=job exposure matrix]

Exposure variable Continuous exposure 
(per 1-unit increase)

Dichotomous  
exposure (at median)

HR 95% CI HR 95% CI
CONSTANCES JEM

Physical intensity 1.08 0.99–1.18 1.21 0.83–1.76
Repetition 1.27 0.91–1.77 1.46 1.08–1.99
Handle objects 1–4kg 1.15 0.95–1.39 1.10 0.74–1.66
Handle objects >4kg 1.12 0.91–1.37 1.16 0.74–1.83
Carry loads <10kg 1.14 0.92–1.41 1.24 0.80–1.92
Carry loads 10–25kg 1.08 0.87–1.35 0.81 0.55–1.17
Carry loads >25kg 1.13 0.87–1.47 1.33 0.89–1.99
Rotate forearm 1.44 1.10–1.89 1.40 0.97–2.00
Bend wrist 1.39 0.92–2.09 1.13 0.75–1.69
Finger pinch 2.05 1.38–3.06 1.35 0.91–2.02
Use vibrating tools 1.31 0.97–1.77 1.37 0.90–2.07

O*NET JEM
Performing general physical 
Activities

1.34 1.12–1.60 1.49 1.06–2.09

Trunk strength 1.53 1.23–1.90 1.39 0.90–2.14
Static strength 1.43 1.20–1.71 1.31 0.89–1.95
Dynamic strength 1.61 1.29–2.00 1.64 1.14–2.38
Handling & moving objects 1.33 1.16–1.52 1.49 1.04–2.14
Spend time making repetitive 
motions

1.41 1.11–1.78 1.26 0.89–1.77

Wrist finger speed 1.31 1.01–1.70 0.99 0.66–1.49
Spend time using your hands 2.01 1.55–2.59 1.51 1.09–2.09

Consortium (individual-level 
measures)

Peak hand force (worker rated) 1.10 1.04–1.16 1.91 1.39–2.61
Peak hand force (analyst rated) 1.16 1.09–1.25 1.38 1.08–1.76
Hand activity level (analyst rated) 1.08 0.96–1.22 1.28 0.90–1.83
ACGIH TLV (worker rated) 1.21 1.07–1.37 1.52 1.14–2.03
ACGIH TLV (analyst rated) 1.42 1.25–1.63 1.73 1.18–2.54
Repetition per minute for all 
exertions

1.01 1.00–1.02 1.24 0.92–1.69

Repetition per minute for forceful 
exertions

1.02 1.01–1.02 1.38 0.98–1.95

Duty cycle of all exertions 1.00 1.00–1.01 1.05 0.74–1.49
Duty cycle of forceful exertions 1.01 1.01–1.02 1.74 1.38–2.20
%Time ≥50 ° wrist extension 1.00 0.99–1.00 0.77 0.57–1.05
%Time ≥30 ° wrist flexion 1.02 1.00–1.04 1.15 0.87–1.51
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overall trends and briefly describe the supplementary 
results. In our example, correlation coefficients between 
worker-assigned CONSTANCES JEM and consortium 
individual-level measure exposure variables ranged 
from -0.01 to 0.36 (figure 2a). Among the 54 matched 
pairs, 9 pairs demonstrated low positive correlations 
while the remaining 45 pairs were negligibly corre-
lated. Unmatched pairs resulted in negligible-to-low 
correlations. Between CONSTANCES and consortium 
variables, Cohen’s kappa values ranged between -0.07 
and 0.37 (figure 2b). Of the 54 matched pairs between 
CONSTANCES and individual-level measures, 17 pairs 
demonstrated fair agreement. Unmatched exposure vari-
able pairs showed low-to-fair agreement.

We also compared O*NET and CONSTANCES 
JEM exposure variables with consortium individual-
level measures at the job level for 130 SOC job codes. 

Between CONSTANCES and consortium estimates, 
correlations ranged between 0.06 (negligible) and 0.59 
(moderate). Of 54 matched pairs, 27 were moderately 
correlated (figure 3a). Between CONSTANCES JEM 
and consortium individual-level measures, 23 matched 
pairs demonstrated moderate agreement (figure 3b). 
Cohen’s kappa values ranged between -0.02 and 0.51.

In our results, we found mostly low correlations 
and slight agreement between matched variables from 
the O*NET JEM and consortium individual-level mea-
sures when assigned to workers (supplementary figures 
S1a–b). Comparing CONSTANCES and O*NET JEM 
exposure estimates assigned to workers, the correlations 
between matched variables were minimal but agreement 
was fair to moderate (supplementary figure S2a–b). 
When comparing exposure estimates at the job level, 
correlation and agreement between CONSTANCES 

Figure 2. Heat maps of (a) Spearman's  correlations and (b) Cohen's kappa agreement values at the worker level between CONSTANCES and individual-level 
measures. Underlined values denote matched exposure variable pairs. (N=2393 workers.)
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JEM, O*NET JEM, and individual-level measure vari-
ables were substantially higher (supplementary figures 
S3a–b and S4a–b).

Aim 3: Comparison of models consisting of CONSTANC-
ES, O*NET, and individual-level measures in predicting 
incident CTS

The analyzed cohort from aims 1 and 2 was compared 
to aim 3’s restricted sample. We observed similar mean 
age and BMI between the two analyzed samples (supple-
mentarey table S3), however, the restricted sample had 
a larger proportion of female workers (60.4% versus 
52.2%) and a higher incident rate of CTS (4.8 cases 
per 100 person-years versus 3.9 cases per 100 person-
years). The number of SOC job codes represented within 
the analyzed cohort decreased from 130 SOC codes in 

the aim 1 and 2 sample to 113 SOC codes in the aim 3 
sample; the proportion of workers per job code in each 
sample showed little difference, with a maximum of 5% 
(supplementary table S4). Between the two samples, 
mean physical exposure levels for the 11 consortium 
variables were similar (supplementary table S5).

We also compared exposure–disease associations 
between the aim 1/aim 2 full, and aim 3 restricted 
samples. We computed log-binomial regression odds 
ratios (OR) for each variable within the three sources 
of exposure data (supplementary table S6). Generally, 
in both full and restricted samples, we observed sta-
tistically meaningful relationships between exposure 
variables, within each of the three sources of data, and 
incident CTS.

Backward selection based on AIC resulted in three 
retained variables in each of CONSTANCES, O*NET, 

 

Figure 3. Heat maps of (a) Spearman's  correlations and (b) Cohen's kappa agreement values at the job level between CONSTANCES and individual-level 
measures. Underlined values denote matched exposure variable pairs. (N=130 SOC codes.)
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and consortium models (table 2). We also listed the expo-
sure variables within each combined variable model and 
compared their performance against a single source model 
(table 2). For example, the O*NET + CONSTANCES 
model consisted of five CONSTANCES variables added 
to the three O*NET job demands. When compared to 
the O*NET variable-only model, the O*NET + CON-
STANCES model had a significantly higher c-index 
(P=0.02) and a lower AIC (Δ=-13.0). We observed similar 
trends with the combined consortium + O*NET and con-
sortium + CONSTANCES models where c-indices were 
significantly higher (P=0.01 and P=0.02, respectively) 
and the AIC values were lower (Δ=-16.6 and Δ=-10.30, 
respectively) from the single source model.

In summary, combining exposure variables from 
two sources of exposure information improved model 
performance compared to a single source of exposure 
information. Combining CONSTANCES JEM variables 

with O*NET JEM variables better predicted CTS than 
a model of only O*NET variables. Combining either 
CONSTANCES JEM or O*NET JEM exposure vari-
ables with individual-level measures also improved 
model performance.

Discussion

There is a growing interest in applying physical expo-
sure JEM to improve prediction of MSD and other 
health conditions by incorporating exposure variables 
to cohorts where no other work exposure data exists, or 
complementing existing sources of exposure informa-
tion by combining exposure methods. There is also inter-
est in comparing results obtained from JEM developed 
in different countries. We observed meaningful expo-
sure–disease associations with incident CTS in a US 
worker population using both the American O*NET and 
the French CONSTANCES JEM, with a greater number 
of associations found with the O*NET JEM. Combining 
exposures from two JEM or combining exposure from 
a JEM with individual-level measures improved the 
prediction of CTS in exploratory models.

We previously evaluated a subset of O*NET expo-
sure variables and their relationship with incident CTS 
(12) and found that O*NET JEM exposure estimates 
predicted CTS with similar effect sizes as exposure val-
ues obtained from individual-level measurement. In this 
study, we extended this evaluation by including three 
additional O*NET variables and found similar signifi-
cant exposure–disease associations using O*NET JEM 
exposure estimates, particularly with variables related 
to strength and job demands requiring hand motions. 
We also evaluated the French CONSTANCES JEM, 
which includes physical exposures not available through 
O*NET, including pinch grip, hand or wrist posture, and 
hand vibration. CONSTANCES exposure variables per-
taining to repetition were statistically meaningful in both 
continuous and dichotomous survival analysis models, 
while “rotate forearm” and “use vibrating tools” were 
statistically meaningful predictors in log binomial analy-
ses. Differences between O*NET and CONSTANCES 
questions and scales might help explain contrasts in the 
exposure–disease associations between seemingly similar 
exposure variables. Generally, O*NET variables address 
the magnitude or intensity of exposure whereas CON-
STANCES variables pertain to duration of performing 
specific actions at a specific intensity or frequency.

Although we observed meaningful exposure–disease 
associations with incident CTS using CONSTANCES 
and O*NET JEM, we observed negligible-to-low cor-
relations and low-to-fair agreement between individual-
level measures and both JEM. These results, in part, 

Table 2. Retained variables for each source of physical exposure data 
and multivariable model comparisons. Restricted to 2-year follow-up 
period. N=1073. Adjusted for age, gender, BMI, and research site 
(random intercept). [AIC= Akaike information criterion.]

Exposure variables a Binomial logistic  
regression criterion

C-Index P-value b, c AIC

Single source models
Consortium (individual-level measures) 0.716

Peak hand force (worker rated)
Repetition per minute for all exertions
%Time ≥30 ° Wrist Flexion

CONSTANCES JEM 0.755
Finger pinch
Handle objects >4 kg
Carry loads <10 kg

O*NET JEM 0.749
Dynamic strength
Spend time making repetitive motions
Spend time using your hands

Combined variable models
O*NET JEM 0.749 614.676
O*NET JEM + CONSTANCES JEM 0.780 0.02 601.662

Repetition, rotate forearm, handle  
objects >4 kg, carry loads <10 kg, bend 
wrist

Consortium (individual-level measures) 0.716 624.505
Consortium (individual-level measures) + 
O*NET JEM

0.753 0.01 607.878

Dynamic strength, spend time making 
repetitive motions, spend time using 
your hands

Consortium (individual-level measures) + 
CONSTANCES JEM

0.759 0.02 614.202

Finger pinch, handle objects >4 kg,  
carry loads <10 kg

a Variables for both JEMs and individual-level measures retained by backward 
selection based on AIC.

b One-sided bootstrapped P-value of statistical differences between c-statistics 
using 95% CI with 1000 bootstraps. 

c P-value and AIC values compared to null model (O*NET variable-only: dy-
namic strength, spend time making repetitive motions, spend time using your 
hands) – nested model analysis. Retained CONSTANCES variables listed. 
P-value and AIC values compared to null model (Consortium variable-only: 
peak hand force - worker rated, repetition per minute for all exertions, %Time 
≥30 ° wrist flexion) – nested model analysis. Retained O*NET or CONSTANCES 
variables listed.
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likely reflected the different scales and methods used to 
obtain exposure data from CONSTANCES, O*NET, and 
the consortium study. We previously found moderate-to-
high positive correlations and moderate-to-substantial 
agreement between CONSTANCES and O*NET expo-
sure variables at the job level for 367 job codes (16); 
in that analysis, each job code was weighted equally. In 
the current study, we observed higher correlations and 
agreement between JEM exposure estimates when com-
paring agreement at the job level than when comparing 
agreement at the worker level; when assigning exposure 
estimates at the worker level, correlations and agreement 
are dependent on the distribution of workers in different 
jobs within the population. In order to compare with 
worker level observation, the current study also com-
pared a smaller number of job codes (130 SOC codes 
and 77 PCS codes) than the previous CONSTANCES 
to O*NET comparison (367 job codes). The strength of 
agreement between JEM and other exposure estimates 
may be influenced by the distribution of the worker 
population and the number of jobs under study; both of 
these factors may affect the within-job versus between-
job variation in JEM-based exposure estimates.

Differences in constructs between general population 
JEM provide an opportunity to combine complementary 
variables into a single multivariable model. Hybrid 
exposure assessment methods have been used to study 
prostate cancer risk (30) and shoulder disorders (1). 
Since the development of MSD is multifactorial (31), 
relying on a single source of exposure information may 
not provide the optimal breadth of physical exposure 
data, and hybrid exposure methods offer the opportunity 
to improve precision while maintaining the efficiency 
of a JEM. Our exploratory comparison of multivariable 
exposure models supports the use of combining data 
obtained from individual-level measures with JEM data, 
and combining data from different JEM. Combining 
exposure variables from a French population JEM with 
an American JEM to predict CTS in a US worker popu-
lation improved model performance. Combining JEM 
variables with individual-level measures also seemed 
to improve the prediction of incident CTS. We observed 
decreases in AIC compared to the baseline model, indi-
cating that combined variable models provided better 
approximations than single source models (29). These 
findings warrant further research in combining exposure 
data from different methods to better predict risks of 
work-related MSD.

Alongside our study strengths, there are several limi-
tations. First, we used a sample size of 2393 workers for 
aims 1 and 2, allowing for comparisons using the widest 
range of available job codes and time-to-event analysis; 
in aim 3, we used a restricted sample of 1073 workers 
in order to compare predictive models. Despite slight 
differences in demographics, incidence rate of CTS, 

and fewer SOC codes represented within the restricted 
sample, the mean physical exposure levels between the 
two samples were similar. Second, the crosswalk process 
for matching French PCS codes with American SOC 
codes required a multistep process. Existing software 
and tools assisted with assignment of job codes; how-
ever, there is no certainty that crosswalked jobs have 
the same tasks with similar exposures, nor that job tasks 
performed in identical jobs in different countries are the 
same. Furthermore, the number of job codes reflected 
in this analysis was on a portion of all possible job 
codes within each country. These differences may have 
contributed to the fewer exposure–disease associations 
found using the CONSTANCES JEM.

Overall, our results suggest that O*NET JEM and to 
some degree CONSTANCES JEM can reproduce known 
exposure–disease associations obtained from individual-
level measures. Combining exposure estimates between 
two JEM and between JEM and individual-level mea-
sures improved the prediction of CTS when compared 
to single source models. Exposure information from a 
JEM could potentially enrich existing individual-level 
datasets or complement an existing JEM that might lack 
particular exposures. These preliminary findings using 
cross-national JEM are encouraging, but clearly, more 
investigations are needed to explore exposure-disease 
associations in other samples and combinations of expo-
sure data from different methods to better predict MSD 
risk.

Concluding remarks

Both O*NET and CONSTANCES JEM demonstrated 
meaningful exposure–disease associations with incident 
CTS. The O*NET general population JEM demonstrated 
generally similar results as individual-level measures 
when calculating exposure–disease associations for CTS 
in the same worker cohort while the CONSTANCES JEM 
demonstrated fewer associations for CTS. This suggests 
that these JEM are useful tools for estimating workplace 
physical exposures in population studies. In exploratory 
models, adding exposure data from JEM to individual-
level measures improved the prediction of incident CTS 
in our study, as did combining data from JEM from 
two different countries. These data suggest potential for 
combining exposure methods to improve the estimation 
of workplace physical exposures for surveillance and 
epidemiology studies. The performance of a general 
population JEM is influenced on the distribution of jobs 
within the studied worker population; in most cases it 
is likely that a larger variability of jobs within a studied 
cohort will improve the ability of general population JEM 
to demonstrate exposure–disease associations.
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