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Simplifications of the bilinear transfer for microscopic 
binary objects 

D. Courjon, D. Charraut, and G. Bou Debs 

Laboratoire d'Optique P. M. Duffieux, Centre National de la Recherche Scientifique, Unite Associee 214, Faculte 
des Sciences et des Techniques, Universite de Franche-Comte-Besan<;on, 25030 Besam;on Cedex, France 

Microscopy of binary objects in partially coherent light is analyzed in terms of bilinear transfer. A transfer model 

using two apparent transfer functions is proposed. Its domain of validity is studied by numerical simulation. 

1. INTRODUCTION
The deduction of features of scattering objects from the 
measurement of the emitted and scattered fields is an opti­
cal problem, the importance of which is growing in numerous 
fields such as metrology and biology.1 Experimentally, vari­
ous methods can be used: for instance, the direct analysis of 
the light field propagating in free space or the use of optical 
processors as imaging systems. In the latter case, optical 
microscopy in partially coherent light is still attractive, since 
it involves a simple instrument that is easy to use and that 
remains efficient for objects whose dimensions are of several 
wavelengths.2 Moreover, owing to partial coherence, a sca­
lar approach of the transfer is generally sufficient for de­
scribing the image formation accurately. Unfortunately, 
the partial coherent transfer is inherently nonlinear, and it is 
generally not possible, without restrictive hypotheses or pri­
or knowledge, to determine the object distribution from its 
magnified image. In order to determine with accuracy the 
parameters qf a given object, it is necessary to define, first, a 
unique relation between object and image distributions. 
The function connecting the object and image data is the 
bilinear t�ansfer function (BTF) (also called the cross-coef­
ficient function) in partially coherent light.3•4 Although the
notion of bilinear transfer has simplified the mathematical 
formalism of the partially coherent imagery, its utility is not 
obvious in practice. 

The first approach to solving the inverse problem is to use 
a numerical procedure, which is today possible by means of 
the current numerical capacities. However, this approach 
presents some drawbacks involving the computing time, 
which cannot be neglected in certain cases requiring real­
time dimension.al control, involving signal processing; more­
over, a numerical approach requires a precise knowledge of 
the different parameters defining the system. · Several authors have tried to simplify the transfer by 
introducing the notion of an apparent transfer function 
(ATF),5 which depends on the class of objects that are con­
sidered (nature, shape, size, etc.). Despite this restriction, 
such. a function simply connects object and image spectra 
and thus permits the retrieval of the object features from the 
image irradiance. · 

A practical example of tr an sf er modeling was recently 
developed in a study of linewidth measurement technology.6 

In that study, a simplified form of the partially coherent 
transfer equation was found experimentally. The simplifi­
cation, which is based on the decomposition of the overall 
transfer into two partial ones, permits the use of a fast 
numerical method for accurately retrieving the linewidth 
from the image spectrum data. 

This paper is intended to complete these experimental 
works with a theoretical approach by analyzing the transfer 
in partially coherent light for rectangular objects. It is 
shown that the modeling is well adapted for explaining the 
image behavior and, for example, the overshots that appear 
at the transition regions in the object. 

Finally, the modeling is tested by means of numerical 
simulations, and the role of each partial transfer on the 
image and its Fourier spectrum is pointed out. 

2. THEORY
Let us consider the space-invariant and inversion-invariant 
imaging system described in Fig. 1. The different optical 
elements are the thermal source S0, the field condenser lens 
L0, the condenser C, the object 0, and the objective Op. 
A. Transfer Relation 
The system can be described by the well-known transfer 
integraF 

Jc�,)= J J T(u + u', u')O(u :P u')o* (:�)d2u'. (1) 

u and u' are the position vectors u (u1, u2) and u'(u1', u2') in 
the frequency plane, l is the Fourier transform of the image 
irradiance, 6 is the Fourier transform of the object transmit­
tance (or reflectance), Tis the BTF,}.. is the wavelength, and 
p and p' are the distances from the object plane to the
entrance pupil plane and from the exit pupil plane to the 
image plane, respectively. By putting 

w = u/'Ap, w' = u'/'Ap, p'/p = g 
and introducing the new functions 

T(w, w') = T(w · 'J\p, w' · 'Ap), 
l(w) = l(w/g), 

Eq. (1) can be then rewritten as 

(2) 
(3) 
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Fig. 1. Microscope in Kohler's illumination. The image Ss of the 

thermal source (S0) is projected in the pupil plane (P) of the objec­

tive (Ob). 

f(w) = J J T(w + w', w')O(w + w')O*(w')d2w', (4) 

where T takes the form 

T(w, w') = J J S(a)P(w + a)P*(w' + a)d2a. (5) 

S is the emittance in the image of the source projected in the 
pupil plane, and P is the pupil transmittance. 

The type of object under test belongs to the category of 
two-dimensional objects (flat ones) and is represented phys­
ically in Fig. 2. Is and ¢s (IM and ¢M) are the intensity and 
the phase of a plane wave J.:s (J.:M) after reflection on the 
object. The latter can then be described mathematically by 
the one-dimensional functions 

O(x) = OR(x) + jOJ(x), 
OR(x) = 1 - (1 - t0 cos ¢0)rect(x/L), 
OJ(x) = t0 sin ¢0 rect(x/L), (6) 

where x is one of the coordinates of the position vector r(x, y) 
in the object plane, ¢0 is the phase difference ¢M - <Ps, and to 
is the quantity (!Mlls)112•

It was shown previously8 that the two-dimensional inte­
gral in the right-hand side of Eq. (4) reduces to a one­
dimensional one in the case of objects whose transmittance 
is constant along they direction: 

f(w) = J T(w + w', w')O(w + w')O*(w')dw'. (7) 

l(w) can be rewritten as a linear combination of two 
terms6: 

/(w) = Al'(w) - 2Bl"(w) for w � 0. (8) 

The term f(O), which corresponds to a constant irradiance 
in the object, has been omitted for the sake of clarity: 

and 

I-'( ) = __!_! T( + , ') sin[7r(w + w')L] w 
2 

w w 'w 
( ') 7r w + w 

X sin(?rw'L) d ,
' 

w 
w 

f"(w) = _!_ T(w, O)sin(7rwL)
.

7r w 

(9) 

(10) 

Parameters A and B, which depend on only the object 
parameters, are defined as follows: 

A = l + t02 - 2t0 cos ¢0, 
B = 1 - t0 cos ¢0• 

In order to continue the transfer modeling, it i.s necessary to 
simplify the integral term f'(w), for instance, by developing 
sin[7r(w + w')L] in sine and cosine functions and using the 
fractional expansion 

w'(w � w')
= : c, - w � w' ) - (ll) 

The Fourier transform of the image irradiance can then be 
rewritten in terms of a combination of three simpler terms: 

/'(w) = sinc(7rwL)f1(w) - cos(7rwL)[f2(w) + f3(w)], (12)

where 

l1 (w) = 2L2 J T(w + w', w')sinc(27rw'L)dw', 

I- ( ) _ 1 J T(w + w', w') (2 'L)d , 
2 W - -2- / COS 1fW W , 

7r w w 

/3{w) = - _1_ J T(w + w', w') dw'. 
27r2 (w + w')w' 

(13) 

(14) 

(15) 

The sine function is the ratio sin(7rwL)/7rwL. /3(w) can be
rewritten as 

/3(w) = - _1_ J T(w + �', w') dw'
7r2W W 

- L

·1 ---

J'<t>o 

(16) 

(a) 

(b) 

x 

(c) 

x 

Fig. 2. (a) Schematic representation of the object; ns and nM are 
the indices of the two media constituting the object. Plane waves 
before (io) and after (is and �M) reflection over the object are 
shown. (b), (c) Variation of To and ¢0 over the object. 
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by using the symmetry properties of the BTF4: 

T(w, w') = T*(-w', -w), 

which is due to the reality of the image irradiance, and 

T(w, w') = T*(w, w'), 

which holds for inversion-invariant and space-invariant bi­
linear systems. 

It is not possible to reduce the evaluation of the integrals 
further, except with approximations that are compatible 
with the experimental conditions. These approximations 
are studied in the Subsection 2.B. 

B. Approximated Solutions for Integrals fi, fz, and k
It is supposed that the coherent cutoff frequency is several 
times as large as the frequency of the first zero in the spec­
trum of rectangular objects. This assumption means simply 
that the microscope works under good conditions, i.e., suffi­
ciently below the resolution limit. 

With this hypothesis the integrals given in Subsection 2.A 
can be simplified. 

Let us consider, first, the integral on the right-hand side of 
Eq. (13). It contains the product of the BTF T(w, w') with a 
sine function related to the object. With conventional op­
tics and in partially coherent illumination, the BTF has the 
aspects represented in Figs. 3{a) and 3(b) for circular aper­
tures and one-dimensional apertures, respectively. It ex­
hibits a constant region and a decreasing part, the relation of 
which depends on the degree of coherence of the light.4•7 
Consequently, the BTF variations are generally small for 
conventional systems. Inversely, the sine function is twice 

{a) 

(b} 
Fig. 3. Three-dimensional representation of the BTF in partially 
coherent light (a) for a circular objective aperture and (b) for a one­
dimensional aperture (coherence coefficient, u = 0.67).

as narrow as the Fourier spectrum of a rectangle function of 
the same width as that of the object. It is thus much more 
narrow than the BTF extension. In this case the value of the 
integral is different from zero only in the vicinity of w' = 0, 
and Eq. (13) reduces to 

/1 � LT(w, 0), (17) 

where T(w, O) is the value of the BTF along the axis w' = 0. 
Let us consider now the integral in Eq. (14). In microsco­

py, the cutoff frequency of the imaging system is always 
many times larger than the frequency of the first zero of the 
function sinc(7rwL) in order to form a well-resolved image in 
the output plane. The integrand on the right-hand side of 
Eq. (14) is thus the product of an extended slowly varying 
function, T(w + w', w'), and a rapidly oscillating term 
cos(27rw'L)/w'. Consequently, the value of the integral is 
sufficiently small, in comparison with the previous one, to be 
neglected. We shall use numerical simulations to demon­
strate more clearly the limits of the validity of these approxi­
mations. 

The last term [Eq. (15)] is certainly the most interesting 
one, sfnce the integral does not contain information about 
the object. It is generally not negligible, and it plays a key 
role in the transfer process, as is shown in Section 3. 

Finally, for large objects, taking into account the values of 
/1 and /3, the image spectrum can be written as the difference 
of two terms, 

l(w) � L(A - 2B)sinc(7rwL)TA1 - A  cos(7rwL)TA2, (18)

where 

TAI= T(w, 0) (19) 

is the first nonnormalized A TF and 

T =I = - _1_ f T(w + w', w') dw' (20) A2 3 7r2W w' 

is the second nonnormalized ATF. 
We note that in the domain of validity of our hypotheses, 

the two ATF's do not depend on the width of the object 
under test. The partially coherent transfer is thus equiva­
lent to the juxtaposition of two transfers working in paralleL 
The first transfer, associated with the ATF TAi. acts as an 
incoherent transfer, where the modulation transfer function 
would be replaced by T(w, 0). The sine function is merely 
the Fourier transform of the object emittance. The shape of 
the function T(w, 0) can be deduced easily from the three­
dimensional representation of the BTF in Fig. 3. 

The second transfer is not so classical. The cosine func­
tion can be explained as the contribution of the object edges. 
In our precise case of a binary object it is the Fourier trans­
form of the derivative of the object emittance. Its role is 
pointed out more clearly in the numerical simulation. 

3. NUMERICAL SIMULATION
In the development in Section 2, the only condition on the 
system is that T(w, w') vary slowly related tow or w'. Our 
conclusions are thus valid for any classical imaging system.
Let us now consider the practical case .of partially coherent
microscopy. 
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Fig. 4. Integral/1 plotted for various coherence coefficients and various object widths. (U is in arbitrary units.) Curves 1, <J = 1; curves 2, <J = 
0.67; curves 3, <J = 0.50; curves 4, <J = 0.30; curves 5, <J = 0.01. 

It was shown recently9 that, for uniform full sources and 
pupils, the BTF is modified slightly when the conventional 
two-dimensional functions are replaced in Eq. (5) by one­
dimensional equivalent functions. This point is illustrated 
in Fig. 3. In this case 

S(a) = 1 if lal � r
=O if lal > r,

P(a) = 1 if lal � R
=O if lal > R, 

where a is one of the coordinates of the position vector a. 
Since the source and the pupil are now constant, it is 

possible to introduce the ratio 

u= r/R, 

called the coherence coefficient. It is defined as the ratio of 
the radius of the image of the source projected in the exit 
pupil plane to the radius of the pupil aperture. Theoretical­
ly u varies from 0 (coherent illumination) to infinity (inco­
herent illumination), but often the highest value of u is 
about 1 (especially in reflection microscopy), corresponding 
to incoherent fields. 

Integrals 11, 12, and 13 are numerically calculated for vari­
ous values of the coherence coefficient, u = 0.01, 0.3, 0.5,
0.67, 1 (u=0.67 is a value often used in microscopy), and for 
various values of the object width, L = 1, 2, 4, 10, correspond­
ing physically to actual lengths, LE = 0.54, 1.08, 2.16, 5.4 µm, 
with a numerical aperture N.A. = 0.95 and A.= 0.5145 µm. 
The resulting curves are given in Figs. 4 and 5. 

Note that it is obvious that the notion of large or small 
objects has no sense without a given reference, for instance, 
the coherent limit frequency of the system. The frequency 

wo of the first zero in the object spectrum is given by 1/L.
For large objects [for example L = 4, w0 = 0.25, which is 4
times as small as the coherent limit frequency (we= 1)], the 
resulting image can be resolved well theoretically, whereas 
for small objects (for example, L = 1, wo = We = 1), the image 
is strongly affected by the limited resolution of the system. 

A. Discussion of the Curves 
Integral 11 [Eq. (13), Fig. 4]
Let us recall that we have assumed that 

11 � LT (w, O) 

in our working conditions. 

Fig. 5. Integral I 3 for the same coherence coefficients as in Fig. 4. 
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This approximation is justified effectively in a large range 
of metrological applications in partially coherent illumina­
tion even for submicrometer objects. 

Integral 12 [Eq. (14)] 
The case of integral 12 is not illustrated here. The integral 
can be neglected regardless of the coherence coefficient and 
the width of the object. 

Integral 13 [Eq. (16), Fig. 5]
The term on the right-hand side of Eq. (16) corresponds to 
the ATF TA2• It does not depend on the object width L. 
The shape of the curve varies significantly when the coher­
ence of the illumination beam changes. It is well known that 
the sharp transitions of the transfer functions are responsi­
ble for oscillations in the images. It is interesting here that u = 0.67 corresponds to an ATF TA2 that varies slowly in the 
whole range of spatial frequencies. 

B. Fourier Spectrum of the Image 
It is now interesting to compare the spectrum of the image 
obtained directly from the transfer equation and that ob­
tained after modeling. Let us then introduce the physical 
parameters 

X = 0.5145 µm,

N.A. = 0.95, 

<I= 0.67, 

L = 2.5, 

LE= 1.35 µm, 

<Po�85o, 

to2 = 1.2,

which are actual experiment conditions in linewidth mea­
surement microscopy. 

Figure 6 corresponds to the modulus of the image spec­
trum directly calculated from Eq. (7), i.e., without approxi­
mation (solid line) and after modeling (dotted line). We 
note the good similarity between the exact spectrum and the 
approximated one. 

C. Image Reconstruction 
To illustrate the effect of the simplifications on the image 
profile, the latter is reconstructed from the spectrum with­
out approximation in Fig. 7(a) and from the approximated 
solution in Fig. 7(b). The validity of the modeling is con­
firmed even for small objects (L = 2.5, i.e., LE = 1.35 µm). 
This operation is performed by using a numerical inverse 
fast Fourier transform. 

Moreover, it was predicted previously that the transfer 
depending on TA1 could be considered as describing the 
classical noncoherent transfer, the second term being con­
nected to a derivative effect. This point is confirmed by the 
curves in Fig. 8, in which the contribution of each term of the 
spectrum is exhibited in the image plane. 

It is clear from relation (18) that the relative weight of 
each elementary image depends on the object parameters to 
and ¢0• For example, if 

A - 2B = 0 - t0 = 1,

then the image is described only by Fig. 8(b). This result is 

well known; the image of a purely phase object exhibits 
variations of intensity only in the region of object transition. 
The proposed modeling permits us to associate with this 
phase-contrast effect a perfectly determined transfer func­
tion (TA2) that can be calculated for any coherence degree. 

It is also interesting that the transfer T A2 cannot be can­
celed for purely amplitude objects (i.e., <Po = 0) because 

A = (1 - t0)2 � 0 for t0 � 1.

In other words, the overshots in the image are not due only 

I 
2

Fig. 6. Modulus of the image spectrum: solid line, plotted from 
Eq. (7), i.e., without approximation; dotted line, plotted after mod­
eling. LE = 1.35 µm, A. =  0.5145 µm, N.A. = 0.95, and u = 0.67. 

n I I ,,.. /1 .... ------ - \ I \ r'---\ j \ II I I I I I v l./ 
(a) 

(b) 
. Fig. 7. Image profile obtained (a) without approximation (Fourier 
transform of the spectrum plotted in Fig. 6) and (b) after modeling. 
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(b) 
Fig. 8. (a) Partial image profile due to the first apparent transfer. 
(b) Partial image profile due to the second apparent transfer (deriv­
ative effect). 

Fig. 9. Examples of experimental profiles for different parameters 
t0 and ¢0: (a) A - 2B > A (amplitude object LE � 1.5 µm); (b) A -
2B � A (phase and amplitude object LE � 1.5 µm); (c) A - 2B <A 
(phase object LE= 2.5 µm). <T = 0.67, A.= 0.5145 µm, N.A. = 0.95. 

to the phase difference ¢0• To cancel the second transfer, it 
would be necessary to verify the equation 

A = 1 + t0 2 - 2t0 cos <Po = O; 

that is, 

which is never verified if to � 1. 
For reducing the overall transfer to only the first term, it is 

thus necessary to suppose low-contrast amplitude objects, 
that is, 

t0 = 1 ± €, <Po= 0. 

In this case, 

A � 2t0(l - cos ¢0) = 0
and 

A - 2B � ±2€. 

We again find the conditions of linearization of the bilin­
ear transfer,4 which can be met easily in practice. 

All these cases are effectively encountered practically, as 
shown in Fig. 9. 

D. Generalization of this Modeling 
It is clear that perfectly rectangular objects are rarely met in 
practice even in integrated electronics. The usual sample 
object is one with slightly smoothed edges. Results of some 
experiments made on this type of object show that the pro­
posed approach of the transfer remains valid.6 It can be 
explained as follows: an object with smoothed edges can be 
described as a perfect rectangle in convolution with a 
SII!Oothing function. The effect of the latter can be taken 
into account in the transfer, consequently introducing a 
small modification in the shapes of both TAI and T A2· 
4. CONCLUSION
For rectangular two-dimensional objects (flat objects) the 
bilinear transfer can be simplified by introducing two partic­
ular ATF's. The first one acts on the Fourier spectrum of 
the intensity reemitted by the object. It thus has certain 
similarities with an incoherent transfer. The second ATF 
acts on a c

'
osine function that is the Fourier transform of the 

object derivative. In the more general case of an object with 
slightly smoothed edges, it describes the edge transfer. 
Such a transfer modeling can be then considered a two­
channel transmission, with the relative weight of each chan­
nel depending on the object parameters (¢0 and to). The 
interest of such a modeling is, on the one hand, a simple 
interpretation of the image profile in partially coherent light 
and, on the other hand, the possibility of carrying out fast 
procedures to determine such critical parameters as the 
linewidth of wafers by solving relation (18) numerically. 
Images of microscopic objects of width from 0.8 µm to a few 
micrometers can be measured accurately.6•10

This modeling will be developed and extended in future 
studies to the more physical case of binary three-dimension­
al objects. 
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