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Seismic performance of reinforced concrete frame structures strengthened with FRP 

laminates using a reliability-based advanced approach 

 

Abstract: 

Effectiveness of applying FRP-strengthening to enhance the seismic performance of a RC frame structure 

is studied in this paper. The performance is expressed in term of reliability which implies calculation of the 

probability to reach the required level of performance under specified loadings and environmental conditions. 

The proposed approach was applied to a typical three-storey RC frame structure. Two strengthening 

configurations are compared: applying flexural FRP-strengthening to members – beams/columns – and/or 

applying FRP-confinement to columns of the structure. Seismic reliability assessments are presented in term 

of fragility estimates which involves performing nonlinear time history analysis to record the maximum 

lateral top drift of the RC frame structure under seismic loadings. This analysis is carried out using finite 

elements method. To reduce the computational effort, an efficient meta-modelling method based on 

Polynomial Dimensional Decomposition PDD in conjunction with the Monte-Carlo Simulation is developed. 

Results of simulations demonstrate the efficiency and computational advantages of the proposed method for 

the seismic reliability assessment of RC frame structures. Furthermore, the results confirm a significant 

increase in reliability of RC-frames subjected to seismic due to FRP-flexural/FRP-confinement strengthening 

especially in case of applying FRP-flexural strengthening. 

 

Keywords: Polymer-matrix composites, Finite element analysis (FEA), Prepreg, FRP-strengthening, 

Reinforced concrete frame, Seismic reliability, Probabilistic approach. 

 

1. Introduction: 

Externally bonded (EB) Fibre Reinforced Polymer (FRP) Composite material (laminates or sheets) have 

been used for over two decades to strengthen reinforced concrete RC structures. This relatively new 

strengthening technique is a widely accepted strengthening alternative around the world. The rise of FRP 

composites in strengthening applications of RC structures can be attributed to their high strength, resistance to 

corrosion, light weight and ease of application (American Concrete Institute Committee 440 [1]). It is well 



  

 

proven that FRP-strengthening can improve both flexural and shear resistances of RC structures [2-7]. In 

addition, concrete columns gains more strength when confined with FRP composites [8-11]. Other authors 

have carried out or reported experimental works that show the significant enhancement of yield load, stiffness 

and energy dissipated capacity under cyclic loadings [12-14]. 

EB-FRP technique can be used not only to sustain static loads but also to support seismic/lateral loads in 

RC frame structures. Seismic strengthening can be performed by applying FRP flexural laminates to the most 

tensioned fibres of RC of beams/columns or/and by improving axial strength of concrete columns when 

confined by FRP wraps. Thus, an overall seismic enhancement in performance of RC frames can be achieved 

such as increasing lateral shear strength and/or reducing top lateral drift [15-17]. Del Zoppo et al. [18] and Di 

Ludovico et al [19] studied experimentally and analytically FRP-retrofitting of a full scale two and three-

storey RC structure under seismic actions with varying intensities. FRP confinement was applied to columns 

while flexural strengthening was applied to beams. Their results suggested a considerable increase in capacity 

and less damage. Similar observations were achieved by Garcia et al [20], as they studied the effect of 

confinement/flexural FRP-strengthening on two full-scale two-storey RC frames subjected to different 

shaking levels. According to their results, a desirable sway was investigated with significant increase in 

columns capacity. Eslami and Ronagh [21] have carried out a numerical investigation into the efficiency of 

glass fibre reinforced polymers in improving the seismic performance of an eight-storey moment resisting 

reinforced concrete building. Their retrofitting strategy aimed to provide both columns and beams with more 

ductility of plastic hinges at beam/column ends and energy dissipation instead of increasing the lateral 

strength. Their results confirmed that GFRP wraps can significantly improve the seismic performance as RC 

frame could resist mush higher ground motions. 

It is worth mentioning that deterministic analytical/numerical models cannot provide measure the level of 

safety of FRP strengthened structural members when including the statistic nature of design variables 

(material properties, section geometry and loads) in the analysis. Such probabilistic approaches now underlie 

conventional international design codes. In the last decades, structural reliability algorithms were used in 

many studies to accurately evaluate the increase in safety level when applying FRP strengthening to structural 

elements (made of RC, wood or steel) under static loads [22-25]. Unfortunately, most of these studies do not 



  

 

cover the applications of FRP strengthening RC frame structures under earthquakes. Thus, reliability of FRP 

strengthened RC frames under earthquakes need to be handled. This can help in evaluating for what level EB-

FRP strengthening can enhance structural reliability/safety of RC frames under actual seismic loads. From 

this point of view, the proposed study aims to implement structural reliability analysis of the EB-FRP 

flexural/confinement strengthening of RC frame under seismic actions.  

Generally, in probabilistic terms, reliability can be expressed in two different forms: the reliability 

index β or the frequency of failure Pf. An oversimplified but clear manner to explain what is the first form β is 

illustrated in Fig. 1. b can be regarded as the ratio between the mean value µM and the standard deviation sM 

of the margin (defined as the difference between Resistance and Stress) statistical law. There is an 

approximated relation between b and Pf: Pf.≈Φ(b), where Φ is the standard normal distribution law. The 

reliability index b can be investigated using, for example, First/Second Order Reliability Method 

FORM/SORM. The use of these methods requires an explicit analytical formula of the limit state function and 

its corresponding differentiations with respect to its random variables. This limit state function is the 

multidimensional curve for which the margin (or the difference between applied stresses and structural or 

material resistance) is equal to zero. Finally, a reliability study consists in an optimization problem and aims 

at estimating the probability that the margin is lower than zero. If an analytical formulation of the limit state 

function exists (or an approximation) the frequency of failure Pf can be estimated using simulation techniques, 

e.g. Monte-Carlo simulation, which require a huge number of model calls. But, practically, implementation of 

reliability studies is quite complex because the optimization problem to deal with may be a high-dimensional 

one and the components (or variables) of the limit state function basically may evolve during time or with 

geometrical and/or material non-linearity [26].  

è [Figure 1: Naïve illustration of two reliability indicators. Near here] 

If, on top of that, no analytical formulation is possible, such as in the case of the use of FEM, a huge 

number of simulation calls, highly time consuming, is required. To override these drawbacks, a response 

function/meta-model can be constructed by performing a limited number of relevant FEM calls. Many 

methods of response functions construction had been developed in previous studies such as Quadratic 

Response Surface QRS method, which can, to some extent, fit the points of design of experiments locally and 



  

 

required many repetitions to reach convergence. Another type is the Fuzzy fitting algorithms such as Neural 

Network application NN, Support Vector Machine …etc. Generally, such these algorithms require a high 

number of training data, high time cost in training process and number of variables is limited to 6-8 [26]. 

Recently, response functions based on the analysis of variance have increasingly been used such as Stochastic 

Response Surface method SRSM and Polynomial Dimension Decomposition PDD [27]. 

In the present study, a relevant approach for the probabilistic assessment of reinforced concrete frame 

structures strengthened with FRP laminates under seismic loading is proposed. Nonlinear finite element time-

history analyses were carried out to evaluate the required response – maximum lateral top drift on the entire 

loading duration – of an existing/FRP-strengthened RC frame. Seismic reliability, of serviceability limit state, 

was defined in term of fragility. Face to the huge number of simulations required to estimate failure 

probabilities, a Polynomial Dimension Decomposition strategy is chosen for that it is considered more 

economic in the number of FEM calls and that it represents accurately the true function in high dimension 

problems. To go further, a sensitivity analysis is performed to evaluate the importance of each random 

variable considered in the reliability study and seismic design recommendations are suggested.  

2. Probabilistic Seismic Fragility. 

Structural seismic performance can be presented in the form of fragility curves which correspond to the 

limit state function G = R(X,t) - S(X,t) < 0, where R is the structural Resistance (or capacity) and S is the 

Stress (or demand). Both resistance and stress are function of time t. X is a set of random variables 

representing material, geometrical, loading parameters variability…etc. In probabilistic terms, reliability of a 

structure (and conversely, fragility) can be considered as the conditional probability that stress does not 

exceed (conversely, exceeds) the resistance performances for a given ground motion intensity. Such 

performances are the maximum acceleration, velocity, displacement, spectral acceleration… etc. Previously, 

many research works in the literature on the topic of seismic reliability or fragility of RC structures were 

developed [28-32], but very few of them deal with the effect of FRP-strengthening on the enhancement of 

these reliability or fragility. 

In the present study, the serviceability limit state SLS – operational – is considered. In this case, the stress 

S is expressed in term of maximum lateral top drift Δmax of the frame during the entire ground motion - thus, 



  

 

the explicit time-dependence of the limit state G no more needs to be reflected on time is diminished [33] – 

and the resistance R is a given allowable deterministic value of the lateral top drift Δall (following Eurocode 8 

(EC8) [34], Δall equals to 5‰ of the total height of the building). The final form of the limit state function can 

be written as: 

𝐺 = 𝑅(𝑋, 𝑡) − 𝑆(𝑋, 𝑡) = 𝑅(𝑋) − 𝑆(𝑋) = Δ!""(𝑋) − 𝛾#Δ#!$(𝑋) (1) 

where γm is a random variable taking into account the model error and was considered to be normally 

distributed with mean value and standard deviation equal to 1.01 and 0.046 respectively as recommended by 

Vu and Stewart [35].  

Presently, the study aims to approximate the lateral top drift Δmax, and a fortiori the limit state function G, 

using Polynomial Dimension Decomposition, PDD. Δmax being estimated from FEM simulations. Then after, 

the statistic dispersion of the influencing parameters will be considered. Finally, Monte Carlo simulations on 

the approximated function, called also "response surface/Metal model" obtained from PDD, is applied to 

calculate the fragility F (or the probability Pf that 𝛾#Δ#!$(𝑋) is greater than Δ!""(𝑋) under a given ground 

motion: 

𝑃! = 𝑃𝑟(𝛾"Δ"#$(𝑋) ≥ Δ#%%(𝑋)|𝑔𝑟𝑜𝑢𝑛𝑑	𝑚𝑜𝑡𝑖𝑜𝑛	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) (2) 

To represent a complete fragility curve, multiple value of Δall will be considered. Finally, a structure can 

be considered as well-designed if its fragility F or reliability index b is smaller or greater, respectively, than 

an acceptable or target value. No specification about this target value in the case of seismic loading is 

provided in EC8 [34]. For guidance purpose, we can refer to Eurocode 0 (EC0) [36]. For a service life of 50 

years, it gives a maximum value of acceptable reliability index equal to 3.8 for fatigue or cyclic loadings (in 

fact, EC0 specifies a range between 1.5 and 3.8 depending on degree of inspectability, reparability and 

damage tolerance, but here, we consider the worst-case scenario. Indeed, higher is the value of b, lesser is the 

acceptable failure probability Pf). For their part, Hirataï and Ishikawa [37] proposed to choose an intermediate 

value of 2.4. 

 



  

 

3. Case study 

3.1 Reinforced concrete frame structures strengthened with FRP laminates 

In the present study a typical symmetrical three-storey RC frame with structural configurations properties 

shown in Fig. 2a and Table. 1 was considered. The given frame configurations was originally studied by 

Buratti et al. [30] as RC frame. In the numerical model, in order to account reasonably the material 

nonlinearity, all beams and columns will be divided into nine and six segments in their longitudinal dimension 

respectively as shown in Fig 3a. Full restraints were assumed at the base of the frame. It was assumed that 

FRP laminates used in flexural strengthening are anchored in end regions. Thus, all FRP-end debonding 

failure modes can be totally neglected.  

è [Figure 2: a) Three-storey RC Frame configuration (from [30]). b) considered FRP strengthening schemes. Near 

here] 

è [Table 1: Cross-sections geometry of RC frame. Near here] 

Two strengthening options were applied: the first is FRP-confining strengthening which is applied to the 

columns of the RC frame only, while the second option is FRP-flexural strengthening which is applied to 

beams and columns of the RC frame according to the schemes shown in Fig. 2b. Thickness of FRP laminates 

used for confining and flexural strengthening options were taken equal to tFRP,conf =1 mm and tFRP,flex =0.7 mm 

respectively. Width of FRP laminates used in flexural strengthening was taken equal to 225 mm. Fragility 

curves will be constructed for the cases given in Table 2. The choice of corner radius rc of a value equal to 30 

mm was considered according to Wang & Wu [38] and Sharma et al [33]. The authors suggested this value to 

be the minimum effective corner radius and our intent is to consider the worst situations. 

è [Table 2: Description of the studied cases. Near here] 

3.2 Material behaviour and failure modes 

The stress-strain relationship of unconfined concrete in compression is described by the nonlinear 

relationship given in the following equation (from [40]): 
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where fc is the concrete compressive strength, εco; =2fc/Ec, indicates the strain corresponding to the peak 

stress of the unconfined concrete (see Fig. 3a) and Ec represents the initial tangent modulus of the concrete. 

The stress strain for FRP-confined concrete is divided into two ascending parts (see Fig. 3a): the first part is 

like that of unconfined concrete from zero to a stress equal to fc while the second part is linear until the 

ultimate strength of confined concrete stress fcc. Therefore, concrete member under axial compression could 

gain more axial stiffness due to FRP confinement effect. Thus, if the same level of loading is adopted, an 

overall increase in the flexural stiffness and, consequently, decrease in deformations of these members could 

be achieved. The ultimate strength of FRP-confined concrete fcc and the corresponding strain εcc are given, 

respectively, by (from [40-41]): 

𝑓!! = 𝑓!" #1 + 2.15
𝑓#
𝑓!"
) (4) 

𝜀!! = 𝜀!& #2 + 15
𝑓#
𝑓!"
) (5) 

where fl is the lateral confining pressure which for rectangular sections can be calculated with the 

following equation: 

𝑓# = 𝑘$
2𝑓%&'𝑡%&',!)*+
0.5(𝑏 + ℎ)

 (6) 

where fFRP and tFRP,conf are the rupture strength and thickness of confinement FRP material respectively. b 

and h are width and height of RC section. ks is shape factor that is equal to the ratio of the effective confined 

area to the gross concrete area enclosed by FRP and is expressed as (from [40-41]): 

𝑘( = 71 −
(𝑏 − 2𝑟%)' + (ℎ − 2𝑟%)'

3𝑏ℎ − 𝜌(? (1 − 𝜌()@  (7) 

where rc is the corner radius and ρs is the longitudinal steel ratio. Transverse steel confinement is 

neglected as the objective of the present study is to examine the enhancement in seismic reliability in applying 



  

 

FRP strengthening to an existing RC frame. This assumption is reasonable as lack of stirrups amount is a 

characteristic feature for old RC building. 

It is assumed that concrete is linearly elastic in the tension region. Beyond the tensile strength, fct=0.3 

(fc)2/3 (CEB-FIB Model Code 1990 [42]), the tensile stress decreases linearly as the principal tensile strain 

increases as shown in Fig. 3b. Ultimate failure from cracking is assumed to occur when the tensile strain 

exceeds the value εut=2Gf / fct, where Gf is the fracture energy which is dissipated during the formation of a 

crack and was taken as (from [43]): 

𝐺) = 2.5𝛼* 3
𝑓%&

0.0514
+.-.

E1 +
𝑑!

11.27H
+.''

𝑤𝑐/+.0 (8) 

where αo=1.44 for crushed or angular aggregate diameter. da (mm) is the maximum aggregate size. In the 

present study, it will be assumed that da=32 mm. wc=0.45 is the water-to-cement ratio in the concrete mix. 

The constitutive model used to simulate the steel reinforcement was the classical metal elastic-perfectly 

plastic model, while linear elastic behaviour up to failure was assumed for FRP laminates. Perfect bond 

between concrete and both steel reinforcement and FRP laminates was assumed. 

è [Figure 3: Concrete stress-strain curves. Near here] 

Table 3 gives all probabilistic properties of the random variables considered in the fragility analysis. The 

considered variables relate to material and loading properties. FRP-geometrical properties were considered as 

deterministic variables as they have insignificant effect in reliability [2,23-24]. 

è [Table 3: Probabilistic parameters of random variables. Near here] 

 
 
 
 

4. Numerical assessment of seismic reliability. 

As already mentioned, stochastic non-linear time history analyses are required to obtained fragility curves. 

These analyses were carried out using the computer Abaqus/standard package [44] to evaluate the required 



  

 

response – maximum lateral top drift on an entire seismic loading duration - of an existing/FRP-strengthened 

RC frame. They are basically implemented by considering material and geometrical nonlinearities. 

Rayleigh-proportional damping mass and stiffness constants, ao and a1 respectively, were formulated for 

each FEM run by estimating the first three natural frequencies as: ao=2ζω1ω3/( ω1+ω3) & a1=2ζ/( ω1+ω3),  ζ is 

the damping ratio, ω1 and ω3 are the first and third frequencies respectively [45]. Formulation assures that 

reasonable damping at the second frequency, while for higher frequencies the third would produce a very high 

damping that be essentially eliminated due to their illogical damping values. 

4.1 Finite Element Modelling  

Nonlinear time history analysis of the RC frame was carried using Abaqus/Standard finite element 

program. Beams and columns of RC frame were modelled using 2-dimensional beam element (B21) while 

longitudinal steel reinforcements and flexural FRP laminates were modelled using rebar option. In the 

numerical model, all beams and columns were divided into nine and six segments in their longitudinal 

dimension respectively as shown in Fig 4a. When applying FRP confinement strengthening, it is assumed that 

confinement effect will be applied to columns of RC only while beams were assumed to be unconfined, as 

slabs prevent wrapping of FRP-laminates around beams. Two approaches are available in Abaqus/Standard to 

predict the behaviour of concrete: smeared crack and plastic damage models. The plastic damage model was 

selected for this study since it has higher potential for convergence compared to the smeared crack model 

[44]. The cross sections of beams and columns have been divided into nine integrations points. The system’s 

masses are assumed to be concentrated at each storey level (from loads applied to beams). 

Two finite element loading steps were performed; the first step is static which includes the application of 

dead and live loads only while the second step is a time history analysis due to ground acceleration. Fig. 4b 

shows the ground acceleration that was applied at the base points of the frame. The considered ground motion 

has a Peak Ground Acceleration of 0.33g and a total duration of 30 seconds.  

As a sample of FEM runs, Fig. 4c presents the lateral top drift calculated over the entire duration of 

the seismic action corresponding to the reference point c. The maximum lateral top drift, the desired PDD 

response y(c1 … cN ), was recorded to 43.51mm at a time of 14.1sec. 



  

 

 

è [Figure 4: FEM meshing (a), applied ground acceleration (b) and sample of lateral top drift results (c). 

Near here] 

4.2  Polynomial Dimensional Decomposition PDD  

4.2.1 General aspects 

Polynomial Dimensional Decomposition PDD, also called High Dimensional Model Representation 

HDMR, is an efficient meta modelling approach dedicated to highly nonlinear complex input-output 

problems. Generally, the determination of the reliability value requires a transformation of the limit 

state/response function from the physical space G(X) to the standard random space K(U). X= {x1,..., xN}T is the 

set of random physical variables in the reliability problem and U= {u1,…, uN}T is the corresponding set of X in 

the normalized standard space. The transformation from the physical space X to the standard space U is 

carried out through a probabilistic transformation T: X=T(U) or U=T -1(X), such as the Nataf distribution [46] 

which is used in this work. Establishing the response function K(U) – where U is an input vector of N 

variables in the standard space - using PDD requires the definition of a reference point – c={c1,…,cN}T. The 

later can be defined as the mean point, which gives accurate results when dealing with statistical moments or 

sensitivity analysis [27]. However, if the study is focused on reliability analysis, is more suitable to define the 

reference point as the design point (i.e. the most probable failure point), which can be easily obtained through 

First Order Reliability Method [26]. In the proposed study, the origin of the standard normalized space, i.e. 

where all variables are equal to their respective mean value, was defined as this reference point. According to 

the PDD method [27, 47], the S-dimensional approximation 𝐾1L of the mechanical response K, reads:  

𝐾1L(𝑈) ≅ 𝑦* +PP𝛼23𝜓3(𝑢2)
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where ψj is a unidimensional orthogonal j-order polynomial in normalized form. S is the order of PDD. m 

is the maximum order of polynomial ψj. N is the number of variables. 

In the present study Hermite polynomials Hj were chosen to express ψj function as: 

𝜓3 =
𝐻3
[𝐻3[

=
𝐻3
\𝑗!

, 𝑗 = 1, 2, … ,𝑚 (10) 

The expansion given in Eq. 9 approximates K(U) when the parameter m→∞. Practically, yo, α, β, γ, ….C 

are the unknown coefficients to determine. But, in the case of high-dimensional problems, a huge number of 

FEM calls will be required to estimate them. Dealing with this problem, and aiming to decrease computation 

time, Rahman [47], and, Xu and Rahman [48] have suggested to estimate these coefficients using dimension 

reduction integration method. The expansion is truncated to a certain order and the coefficients can be 

expressed as: 

𝑦*
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(12) 

where R is the dimensional reduction order of the integration that can be carried out through numerical 

integration method. f is the Gauss probability density function with a mean value equal to zero and standard 

deviation is unity. 



  

 

The "economy" of computation time induced by PDD depends on the truncation order R, on the number of 

uncertain parameters N and on the number of integration points n. It can be defined as the ratio of the number 

of FEM calls required by the PDD method, i.e. ∑ 𝐶6?/:(𝑛 − 1)?/::4?
:4+ , to the number of FEM calls required 

by the fully tensor product quadrature rule, i.e. 𝑛6 [47]. The PDD method is obviously very useful (and 

efficient) to compute high-dimensional integrals. For example, in our case for which N = 9 and with R = 2, n 

= 5, this ratio is around 3000. Considering the time required for each FEM calls (see §4.2.2 below), PDD is a 

necessary condition for dealing with complex simulations as in our case. 

In the present study, Gauss-Hermite quadrature rule with n integration points on each dimension was 

considered. It is worth mentioning that the accuracy, also, of PDD expansion function depends on the choice 

of the parameters S, R, n, and m. The parameter R should be selected in such manner that S ≤ R < N. It is 

generally recommended to be taken equal to the PDD order S. In addition, the number of integration points n 

can be assumed, while m can be evaluated using try-and-error procedure starting from m = 1 to m = n-1, until 

accuracy of PDD function is achieved. Otherwise n must be updated to a higher value [47]. Fig. 5 shows the 

computational procedure for constructing PDD function. 

è [Figure 5: Computational procedure for the establishment of dimensional polynomial decomposition function. Near 

here] 

Following procedure described in Fig. 5, the parameters – R, S, n & m – required for PDD were found to 

be equal to R = S = 2, n = 5 and m = 4. To assess generalization capability of the approximate response 

surface built with these parameters (R, S, …), we choose points in the normalized standard space out of the 

design of experiments used for the polynomial constants evaluation and compare values of lateral top drift 

Δmax(U) provided by FEM simulations and calculated from the response surface. The elementary integrals in 

equations (11) and (12), resulting from the dimension reduction process, are computed using 10th order Gauss-

Hermite cubature rule. Fig. 6 shows the results of FEM and PDD at the chosen verification points on each 

random variable. We can conclude that PDD can give a response surface (𝐾i1 with R = S = 2, n = 5 and m = 4) 

that accurately predicts the lateral top drift Δmax. and on which to carry out Monte Carlo simulations.  

è [Figure 6: Validation of polynomial dimensional decomposition PDD function. Near here] 



  

 

In addition to the accuracy achieved using PDD, the number of FEM calls is an important factor 

which controls efficiency of the used method. In our cases, to carry out the reliability analysis needs at least 

105 Monte Carlo simulations. Thus, too many FEM calculations are required and computing costs will be 

prohibitive without using the PDD function (105 x 6.8 min → 472 days). 6.8 min is the average computing 

time of a FEM call, which was found to range between 2.75 and 16.82 min. In the other hand, to use PDD 

requires 266 FEM calls to build, for instance, the above-mentioned 𝐾i1 function with R = S = 2, n = 5 and m = 

4, for the first case ("Ref"). The total average computing time is about 30 hours. When compared with 

computing time without using PDD (472 days), this reflects absolute necessity and efficiency of the proposed 

approach coupling FEM simulations, PDD approximation and Monte Carlo simulations. 

 

4.2.2 Thorough interpretation of the PDD results and sensitivity analysis 

The statistical moments of the response (here, the lateral top drift) obtained by using polynomial 

dimensional decomposition method can be directly calculated from the constants obtained from Eq. 11 and 

Eq. 12. In this context, the statistical moments can be easily obtained by applying the Esperance E[.] to Eq. 9 

and exploiting the orthogonality of the Hermite polynomials. The mean and variance of the response can be 

expressed as (from [27]): 

�̂�@% = 𝐸m𝐾i1n = 𝑦* (13) 
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We can also use result of PDD to derive the total Sobol sensitivity indexes, . They can be determined 

by carrying out a post treatment of PDD constants and can be expressed as (from [21, 49-50]): 
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5. Results and discussion on the effect of strengthening upon seismic reliability 

In reliability terms, the objective of strengthening is to reduce damage probability, Pf (Eq. 2), under 

allowable or high values of lateral top drift (the demand). Herein, in order to evaluate strengthening effect on 

the lateral top drift, a reference value of allowable lateral drift Dall, equals to 5 ‰ of the total height of the 

building HT was assumed. Referring to the proposed case of study where HT = 9 m, Dall,euro = 45mm. 

Following procedure presented in §4.2 and Fig. 5, and as already mentioned, we approximate the limit 

state function G(X) = K(U) by a polynomial response surface 𝐾1L(𝑈) with a truncation order R and PPD order 

S equal to 2 and a number of integration points n equal to 5. The mean and variance of maximum lateral top 

drift Dmax in Fig. 7. It is obvious that the different considered strengthening techniques could improve the 

reliability of the RC frame not only by decreasing the mean value but also by decreasing the variance of 

lateral drift. Globally, flexural strengthening is the most influencing technique as it gives relative reduction of 

mean and standard deviation equal to 6.5% and 28.6% respectively. Evidently, more enhancement in the 

statistical moments may be reached when applying FRP composites with high modulus or/and thickness 

(parametric perspective analysis may be developed). 

è [Figure 7: Mean and standard deviation of lateral top drift (mm) of the different cases considered. Near 
here] 
 

è [Figure 8: Sobol sensitivity indices of random variables included in PDD function. Near here] 

As far as Sobol indexes are concerned, the total sensitivity indexes obtained from Eq. 13, Eq. 14 and Eq. 

15 are presented in Fig. 8. We observe that dead load DL, concrete compressive strength f'c, live load LL and 

model error gm are the most important random variables that affect the reliability analysis. Steel yield stress fy 



  

 

and damping ratio ζ slightly affect the analysis especially in case of flexural strengthening. FRP properties 

fFRP, EFRP and steel modulus Es have a negligible effect and are strongly recommended to be considered as 

deterministic, which can strongly reduce the number of implicit mechanical model calls in the subsequent 

uncertainty propagation analysis, such as reliability study for instance. In addition, based on these results the 

empirical design model commonly used in the design codes can be strongly simplified. Indeed, the FRP 

properties fFRP, EFRP and steel modulus Es, in our case, can be discarded. Consequently, the resulting empirical 

model will be more suitable for engineering computations. Finally, the partial safety factors associated to the 

non-important parameters (i.e. from a probabilistic point of view) can be easily calibrated, since their 

respective values can be fixed to 1.    

 

Monte Carlo simulations are next carried out on polynomial response surface 𝐾1L(𝑈). One of the output of 

these simulations are the probability density functions PDF of the maximum lateral top drift for each case of 

study referred in Table 2. It can be noted in Figure 9 that the PDF is not centred/ non-symmetrical and is 

difficult to be fitted with any analytical density (such as Gauss, Lognormal, or Weibull distributions). This 

may be due to nature of seismic loading under probabilistic analysis, which can produce high repetitions 

(density), as shown in figure 9, for more than one lateral drift during the duration of loading. Such this 

observation may be important when proposing maximum allowable drift in design codes - based on safety 

margin definition - considering some regional attributes of seismic load nature such as load duration/intensity. 

A multimodal distribution may fit the general shape of the lateral top drift PDF. We notice that FRP-

strengthening causes a decrease in top drift statistical moments, but the most significant decrease is observed 

for the standard deviation when applying FRP flexural strengthening. So, the FRP flexural strengthening 

technique can be strongly recommended in order to reduce top drift, than FRP confining technique of RC 

frames, to match code requirements. 

è [Figure 9: Density function PDF of lateral top drift Dmax (mm). Near here]. 

 

Fig. 10a and 10b show the fragility curves obtained using PDD for the different strengthening 

configurations of Table 2. As mentioned before, fragility analysis is performed using Monte-Carlo 



  

 

simulations based on 105 calls of the analytic PDD model. It can be noted that all the considered FRP-

strengthening configurations show a significant variation in fragility curves with respect to the reference case 

("Ref"). On one hand, reductions of the damage probability of 31.5% and 16.3% are observed when applying 

FRP-flexural and FRP-confining strengthening respectively compared to the reference case ("Ref"). 

Therefore, it could be emphasized that applying FRP-flexural strengthening is more effective and can reduce 

with a factor two (from Pf = 0.2175 to Pf = 0.1150) until eventually reaching the target value, Pf,T=0.1, 

recommended by the Joint Committee on Structural Safety [51]. Herein, the main strengthening concern is to 

increase the flexural stiffness of the RC frame and, consequently, to decrease the lateral drift. This can explain 

the weak role of FRP confining in reducing the lateral drift, as it does not improve directly the flexural 

stiffness but by increase the axial stiffness of concrete, which, evidently, could not provide the same effect as 

FRP flexural strengthening technique. On the other hand, it can be observed in Fig. 10a that rounding the 

corners of RC section, rc=30mm, could slightly reduce the damage probability. 

è [Figure 10: Fragility curves. Near here] 

Fragility curves can be viewed in a different way and be used to determine what should be the regulatory 

allowable lateral drift Dall for a given fragility (see right-hand side of Fig.10b). In the reference case "Ref", 

without strengthening, if we consider a target reliability index b = 1.5, the lowest target value found in 

Eurocode 0 [30] for fatigue or cyclic loadings, Dall should be 30 mm. It means that if the maximum actual 

lateral top drift is higher than 30 mm, the probability of damage Pf of the three-storey building under 

consideration becomes too high for a service life of 50 years (higher than 6.7x10-2); this risk is unacceptable. 

As the prescribed lateral top drift is 45 mm, we can state here that the building, without strengthening, is over-

design against seismic loadings. Thus, we can also state that the coefficient of 5 ‰ used to prescribe the 

allowable lateral top drift is too large and that we should instead use a coefficient of 3.3 ‰. Now, if we 

consider that the level of risk acceptability is 8.2x10-3, which corresponds to the target reliability index b = 

2.4 as proposed by Hirataï and Ishikawa [31], the allowable maximum lateral drift becomes 27 mm and we 

should use a coefficient of 3 ‰. Finally, if degree of inspectability, reparability and damage tolerance is low, 

EC0 specifies a target reliability index b = 3.8 for fatigue or cyclic loadings (which corresponds to Pf = 



  

 

7.2x10-5) and, in this case, allowable lateral top drift must be 22 mm and a conservative coefficient of 2.4 ‰ 

must be used instead of initial value of 5 ‰. 

 

6. Conclusions 

In the present work, effectiveness of externally bonded FRP-strengthening on the seismic fragility of RC 

frame was examined. Two different FRP-strengthening techniques was considered; FRP columns confining 

and/or FRP flexural/confining. To obtain an explicit response formula, a second-order PDD based on 

quadratic Gauss-Hermite numerical integration was used. It is shown that Polynomial Dimension 

Decomposition response surface methodology not only can robustly predict the desired response, but also can 

simplify the process of fragility computation. Sobol Sensitivity indices were evaluated for each of the random 

variables. It has been shown that concrete compressive strength, dead load, live load and model error are the 

most important variables in the reliability analysis. In contrast, small values of Sobol indices were recorded 

for steel modulus, steel strength, damping ratio and FRP properties. Later variables are strongly to be 

deterministic variables in future studies. In addition, the partial safety factors associated to these parameters 

can be neglected in the empirical models used in the design codes, which can simplify considerably the 

computational efforts in the design process.  

Compared to traditional deterministic models, probabilistic analysis gives additional information about the 

variability of the damage accumulated in the structure, which defined here as the lateral top drift. Indeed, as 

presented below, from the probability density function plots we can easily identify the region where is located 

the major mass of probability contents, in other word the location of the most probable failure events. As can 

be seen from figure 10, the lateral top drift probability mass is localised in the tail of the distribution instead 

of the neighbourhood of the mean value. This information is very useful to the designers which can focus 

their efforts only on the most probable failure events.       

Fragility curves, which can be used as design charts, were estimated using Monte-Carlo simulation based 

on the polynomial surface response function obtained. One can note that, these fragility curves are obtained 

without additional calls of the implicit mechanical model, which strongly reduce the computation times. It is 

remarkable to observe that both the considered FRP strengthening techniques can enhance seismic fragility 



  

 

curves. However, FRP-flexural strengthening effect was found to be the most dominant as its effect reduce 

the damage probability by a factor two.  

The proposed reliability procedure is considered as an initial step towards the evolution of seismic 

reliability of FRP-strengthened RC frames. It is suggested to consider additional seismic aspects such as: 

variability in seismic motion, soil type, shear-at-base/spectral-acceleration ultimate limit states…etc. Such 

these aspects can generalize the obtained results. In addition, spatial variability of concrete compressive 

strength of the different elements of the RC frame may show a valuable change in fragility curves. 
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Figure 1: Naïve illustration of two reliability indicators. 

 

Figure 2: a) Three-storey RC Frame configuration (from [23]). b) considered FRP strengthening schemes. 
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Figure 3: Concrete stress-strain curves. 

 

 

Figure 4: a) FEM meshing, b) applied ground acceleration and c) sample of lateral top drift results. 
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Figure 5: Computational procedure for the establishment of dimensional polynomial decomposition function. 

 

Figure 6: Validation of polynomial dimensional decomposition PDD function. 
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Figure 7: Mean and standard deviation of lateral top drift (mm) of the different cases considered. 

 

 

Figure 8: Sobol sensitivity indices of random variables included in PDD function. 

 

 

Figure 9: Density function PDF of lateral top drift Dmax (mm). 
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Figure 10: Fragility curves. 
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Table 1: Cross-sections geometry of RC frame 

Section Width (mm) Height (mm) As As’ 

A 300 300 2φ20mm 2φ20mm 

B 300 300 3φ20mm 3φ20mm 

C 400 400 2φ18mm 2φ18mm 

D 350 350 2φ18mm 2φ18mm 

E 300 300 2φ18mm 2φ18mm 

F 300 600 2φ18mm 2φ18mm 

I 300 600 2φ18mm+2φ20mm 2φ18mm 

H 300 600 2φ18mm+1φ20mm 2φ18mm+4φ20mm 

L 300 500 2φ18mm 3φ18mm 

O 300 500 5φ18mm 2φ18mm 

N 300 500 2φ18mm+3φ20mm 2φ18mm+4φ20mm 

P 300 500 2φ18mm+3φ20mm 2φ18mm 

 

 

Table 2: Description of the studied cases. 

Cases Description  
FEM calls required for 

construction of PDD 

Ref RC frame which is the reference/control case. 266 

Cft_rc0 
RC frame applying FRP confinement strengthening with a corner 

radius rc=zero. 
366 

Cft_rc30 RC frame applying FRP confinement strengthening with rc=30mm. 366 

Flx RC frame applying FRP flexural strengthening. 366 

Flx_Cft_rc30 
RC frame applying both FRP flexural and FRP confinement 

strengthening with rc=30mm. 
482 

 



 

Table 3: Probabilistic parameters of random variables. 

Variable Distribution Units 
Mean 

value (μ) 

Standard 

deviation (σ) 
Notes 

Concrete strength f’c Log-normal MPa 32 5.12 --- 

Steel yield stress fy   Log-normal MPa 312 36.2 --- 

Error in dead load DL Normal --- 1.05 0.10 Multiplied by Nominal dead load (wD) 

Error in live load LL GEV --- 1.0 0.25 Multiplied by Nominal live load (wL) 

Steel Modulus Es Normal MPa 200000 6600 --- 

Damping ratio ζ Log-normal --- 0.03 0.003 --- 

FRP strength fFRP  Weibull MPa 900 135 --- 

FRP modulus EFRP Log-normal  GPa 75 150 --- 

Error in FRM γm Normal --- 1.01 0.046 --- 

 

 

 


