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Abstract: Cross-entropy was introduced in 1996 to quantify the degree of asynchronism between
two time series. In 2009, a multiscale cross-entropy measure was proposed to analyze the dynamical
characteristics of the coupling behavior between two sequences on multiple scales. Since their
introductions, many improvements and other methods have been developed. In this review we offer
a state-of-the-art on cross-entropy measures and their multiscale approaches.

Keywords: cross-entropy; multiscale cross-entropy; asynchrony; complexity; coupling;
cross-sample entropy; cross-approximate entropy; cross-distribution entropy; cross-fuzzy entropy;
cross-conditional entropy

1. Introduction

To quantify the asynchronism between two time series, Pincus and Singer have adapted the
approximate entropy algorithm to a cross-approximate entropy (cross-ApEn) method [1]. Then, other
cross-entropy methods—that improve the cross-ApEn—have been developed [2–7]. Furthermore,
additional cross-entropy methods have been introduced to quantify the degree of coupling between
two signals, or the complexity between two cross-sequences [8–10]. Cross-entropy methods have
recently been used in different research fields, including medicine [5,11,12], mechanics [13], and
finance [7,10].

The multiscale approach of entropy measures was proposed by Costa et al. in 2002 to analyze
the complexity of a time series [14]. In 2009, Yan et al. proposed a multiscale approach for
cross-entropy methods to quantify the dynamical characteristics of coupling behavior between two
sequences on multiple scale factors [15]. Then, other multiscale procedures have been published with
different cross-entropy methods [16,17]. Multiscale cross-entropy methods have recently been used
in different research fields, including medicine [18–21], finance [6,9], civil engineering [22], and the
environment [23].

Cross-entropy methods and their multiscale approaches are used to obtain information on the
possible relationship between two time series. For example, Wei et al. applied percussion entropy
to the amplitude of digital volume pulse signals and changes in R-R intervals of successive cardiac
cycles for assessing baroreflex sensitivity [18]. Results showed that the method is able to identify
the markers of diabetes by the nonlinear coupling behavior of the two cardiovascular time series.
Moreover, Zhu and Song computed cross-fuzzy entropy on a vibration time series to assess the
bearing performance degradation process of motor [13]. Results showed that the method detects
trend for bearing degradation process over the whole lifetime. In addition, Wang et al. applied
multiscale cross-trend sample entropy to analyze the asynchrony between air quality impact factors
(fine particulate matters, nitrogen dioxide, . . . ), and air quality index (AQI) in different regions of
China [23]. Results showed that the degree of synchrony between fine particulate matter and AQI is
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higher than the other air quality impact factor which reveals that fine particulate matter has become
the main source of air pollution in China.

Our paper presents a state-of-the-art in three sections: First, the cross-entropy methods are
introduced. We detail, in the second section, different multiscale procedures. A multiscale
cross-entropy generalization is presented and other specific multiscale cross-entropy algorithms
are proposed in the third section.

2. Cross-Entropy Methods

In this section, we classify cross-entropy methods according to their entropy measures:
Cross-approximate entropy, cross-sample entropy, and cross-distribution entropy. Other methods that
use different cross-entropy-based measures are also detailed. Table 1 shows the twelve measures that
are detailed in this section.

Table 1. Cross-entropy measures, in chronological order, that are presented in this review. Authors,
year, reference, and section location are indicated for each item.

Method Authors Year Ref. Section
Cross-approximate entropy Pincus and Singer 1996 [1] Section 2.1.1
Cross-conditional entropy Porta et al. 1999 [8] Section 2.4.1

Cross-sample entropy Richman and Moorman 2000 [2] Section 2.2.1
Cross-fuzzy entropy Xie et al. 2010 [3] Section 2.4.2

Modified cross-sample entropy Yin and Shang 2015 [4] Section 2.2.2
Binarized cross-approximate entropy Škorić et al. 2017 [5] Section 2.1.2

Modified cross-sample entropy
based on symbolic Wu et al. 2018 [6] Section 2.2.3

representation and similarity
Kronecker-delta based cross-sample entropy He et al. 2018 [7] Section 2.2.4

Permutation based cross-sample entropy He et al. 2018 [7] Section 2.2.5
Cross-distribution entropy Wang and Shang 2018 [9] Section 2.3.1

Permutation cross-distribution entropy He et al. 2019 [10] Section 2.3.2
Cross-trend sample entropy Wang et al. 2019 [23] Section 2.2.6
Joint permutation entropy Yin et al. 2019 [24] Section 2.4.3

2.1. Cross-Approximate Entropy-Based Measures

2.1.1. Cross-Approximate Entropy

Cross-approximate entropy (cross-ApEn), introduced by Pincus and Singer [1], allows to quantify
asynchrony between two time series. For two vectors u and v of length N, cross-ApEn is computed as:

cross-ApEn(m,r,N)(v||u) = Φm(r)(v||u)−Φm+1(r)(v||u), (1)

where Φm(r)(v||u) = 1
N−m+1 ∑N−m+1

i=1 log Cm
i (r)(v||u) and Cm

i (r)(v||u) is the number of sequences,
of m consecutive points, of u that are approximately (within a resolution r) the same as sequences,
of the same length, of v. One major dawback of this approach is that Cm

i (r)(v||u) should not be
equal to zero. This is why cross-ApEn is not really adapted for a short time series. Furthermore,
it is direction-dependent because often Φm(r)(v||u) is generally not equal to its direction conjugate
Φm(r)(u||v) [2]. The value of cross-ApEn computed from two signals can be interpreted as a degree of
synchrony or mutual relationship.

2.1.2. Binarized Cross-Approximate Entropy

Binarized cross-approximate entropy (XBinEn), introduced by Škorić et al. [5] in 2017, is an
evolution of cross-ApEn to quantify the similarity between two time series. It has the advantage of
being faster than cross-ApEn. XBinEn encodes a time series divided into vectors of length m. For two
vectors u and v of length N, the XBinEn algorithm follows these six steps:
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1. Binary encoding series are obtained as:

xi =

{
0 if ui+1 − ui 6 0

1 if ui+1 − ui > 0
, yi =

{
0 if vi+1 − vi 6 0

1 if vi+1 − vi > 0
, (2)

where i = 1, 2, ..., N − 1, xi ∈ X(i)
m = [xi, xi+t, ..., xi+(m−1)t], and yi ∈ Y(i)

m = [yi, yi+t, ..., yi+(m−1)t].
The time lag t allows a vector decorrelation to be performed;

2. Vector histograms N(m)
X (k) and N(m)

Y (n) are computed as:

N(m)
X (k) =

N−(m−1)t

∑
i=1

I{
m−1

∑
l=0

xi+l·t × 2l = k}, N(m)
Y (n) =

N−(m−1)t

∑
j=1

I{
m−1

∑
l=0

yj+l·t × 2l = n}, (3)

where k, n = 0, 1, ..., 2m − 1, and I{·} is a function that is equal to 1 if the indicated condition
is fulfilled;

3. The probability mass functions are obtained as:

P(m)
X (k) =

N(m)
X (k)

N − (m− 1)t
, P(m)

Y (n) =
N(m)

Y (n)
N − (m− 1)t

, (4)

where k, n = 0, 1, ..., 2m − 1;
4. A distance measure is applied:

d(X(i)
m , Y(j)

m ) =
m−1

∑
k=0

I{xi+k·t 6= yj+k·t}, (5)

where i, j = 1, ..., N − (m− 1)t;
5. The probability pm

k (r) that a vector is within the distance r from a particular vector is estimated:

pm
k (r) = Pr{d(X(k)

m , Ym) 6 r}; (6)

6. XBinEn is finally obtained as:

XBinEn(m, r, N, t) = Φ(m)(r, N, t)−Φ(m+1)(r, N, t), (7)

where Φ(m)(r, N, t) = ∑2m−1
k=0 P(m)

X (k) · ln (pm
k (r)).

This method gives almost the same results as cross-ApEn for a non-short time series. However, it
is computationally more efficient than cross-ApEn. Its main disadvantage is that it cannot identify
small signal changes. XBinEn is adapted to environments where processor resources and energy are
limited but it is not a substitute to cross-ApEn [5]. It is proposed when the cross-ApEn procedure
cannot be applied. The value of XBinEn computed from two signals can be interpreted as a degree of
relationship between a related pair of time series.

2.2. Cross-Sample Entropy-Based Measures

2.2.1. Cross-Sample Entropy

Cross-sample entropy (cross-SampEn) quantifies the degree of asynchronism of two time series.
This method was introduced by Richman and Moorman in 2000 to improve the cross-ApEn limitations
(see Section 2.1.1) [2]. Cross-SampEn is a conditional probability measure that quantifies the probability
that a sequence of m consecutive points (called sample) of a time series u—that matches another
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sequence of the same length of another time series v—will still match the other sequence when their
length is increased by one sample (m + 1). For two vectors u and v, cross-SampEn is computed as:

cross-SampEn(m, r, N)(v||u) = − ln
Am(r)(v||u)
Bm(r)(v||u) , (8)

where m is the sample length, N is the vectors (u and v) length, Am(r)(v||u) and Bm(r)(v||u) are,
respectively, the probability that a sequence of u and a sequence of v will match for m + 1 and m points
(within a tolerance r).

For two time series u and v of length N, cross-SampEn can also be described as:

cross-SampEn(u, v, m, r, N) = − ln
n(m+1)

n(m)
, (9)

where n(m) represents the total number of sequences of m consecutive points of u that match with
other sequences of m consecutive points of v.

The main difference between cross-ApEn and cross-SampEn is that cross-SampEn shows
relative consistency whereas cross-ApEn does not. Unlike cross-ApEn, cross-SampEn is not
direction-dependent. However, cross-SampEn generates, sometimes, undefined values for short
time series. The value of cross-SampEn computed from two time series can be interpreted as a measure
of similarity of the two time series.

2.2.2. Modified Cross-Sample Entropy

Modified cross-sample entropy (mCSE), introduced by Yin and Shang in 2015, has been developed
to detect the asynchrony of a financial time series [4]. Inspired by the generalized sample entropy,
proposed by Silva and Murta, Jr. [25], the authors proposed to adapt this method to cross-SampEn.
The method combines cross-SampEn and nonadditive statistics. For two vectors u and v of length N,
mCSE is computed as:

mCSE(m, r, N) = − logq
∑N−m

i=1 n(m+1)
i

∑N−m
i=1 n(m)

i

, (10)

where m is the sample length, q is the entropic index, and n(m)
i is the number of times that the

distance between vectors ym = {v(i), v(i + 1), ..., v(i + m − 1) : 1 6 i 6 N − m + 1} and xm =

{u(i), u(i+ 1), ..., u(i+m− 1) : 1 6 i 6 N−m+ 1} is less than or equal to the tolerance r. The distance
is calculated with d(xm(i), ym(i)) = max{|u(i + k)− v(j + k)| : 0 6 k 6 m− 1}.

The value of mCSE computed from two time series can be interpreted as a degree of synchrony
between the two time series and it can illustrate some intrinsic relations between the two time series.

2.2.3. Modified Cross-Sample Entropy Based on Symbolic Representation and Similarity

Modified cross-sample entropy based on symbolic representation and similarity (MCSEBSS),
introduced by Wu et al. in 2018, has been developed to quantify the degree of asynchrony of two
financial time series with various trends (stock markets from different areas [6]). In comparison with
cross-SampEn, this method reduces the probability of including undefined entropies and it is more
robust to noise. For two vectors u and v of length N, MCSEBSS is computed as:

MCSEBSS(u, v, m, r, N) = − ln
n(m+1)

n(m)
, (11)
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where m is the sample length and n(m) is the number of template matches by comparing s(um(i), vm(j))
and r. For um = {u(i + k)} and vm = {v(i + k)} (0 6 k 6 m− 1 and 1 6 i 6 N −m), the similarity
function s(um(i), vm(j)) is calculated as:

s(um(i), vm(j)) =
# of 1 in count(i, j)

m
, 1 6 i, j 6 N −m, (12)

where count(i, j) is obtained by the function f defined as:

f =

{
1 if um(i + k) = vm(j + k)

0 if um(i + k) 6= vm(j + k)
, 0 6 k 6 m− 1. (13)

The parameter r must be fixed between m−n
m+1 and m−n

m , where n is the maximum number of zeros
obtained with count(i, j) to consider u and v similar.

The value of MCSEBSS computed from two time series can be interpreted as a degree of
asynchrony of the two time series. A low cross-entropy value indicates a strong synchrony between
two signals.

2.2.4. Kronecker-Delta-Based Cross-Sample Entropy

The Kronecker-delta-based cross-sample entropy (KCSE), introduced by He et al. in 2018, has been
developed to define the dissimilarity between two time series [7]. KCSE is based on the Kronecker-delta
function δx,y that returns 1 if two variables are equal and 0 otherwise. For two vectors u and v of length
N, KCSE is calculated as:

KCSE(m) = − ln
Bm+1

Bm , (14)

where Bm =
∑N−m+1

i=1 KrDum(i),vm(i)
N−m+1 and Bm+1 =

∑N−m
i=1 KrDum+1(i),vm+1(i)

N−m . The dissimilarity, between um(i) =
[u(i), u(i + 1), ..., u(i + m− 1)] and vm(i) = [v(i), v(i + 1), ..., v(i + m− 1)], is calculated as:

KrDum(i),vm(i) =
δum(i),vm(i) + δum(i+1),vm(i+1) + · · ·+ δum(i+m−1),vm(i+m−1)

n
. (15)

Authors show that KCSE is better to classify financial data than multidimensional scaling based
on the Chebyshev distance method [7]. The value of KSCE computed from two time series can be
interpreted as a degree of irregularity between the two time series.

2.2.5. Permutation-Based Cross-Sample Entropy

The permutation-based cross-sample entropy (PCSE), introduced by He et al. in 2018, is quite
similar to KCSE (see Section 2.2.4) [7]. A permutation step has only been added. For two vectors u and
v of length N, PCSE is calculated as:

PCSE(m) = − ln
Bm+1

Bm , (16)

where Bm =
∑N−m+1

i=1 KrDpermuXm(i),permuYm(i)
N−m+1 and Bm+1 =

∑N−m
i=1 KrDpermuXm+1(i),permuYm+1(i)

N−m . The KrD function
is defined in Section 2.2.4. The two vectors permuXm(i) and permuYm(i) are obtained by a permutation
algorithm defined with the permutation entropy [26]. The Video S1 shows an example of a
permutation algorithm.

PCSE shows better results than KCSE for synthetic data (ARFIMA model) [7]. However, the two
approaches give the same results for financial data [7]. Authors show that KCSE is better to classify
financial data than multidimensional scaling based on the Chebyshev distance method [7]. The value
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of PCSE computed from two time series can be interpreted as degree of irregularity between the two
time series.

2.2.6. Cross-Trend Sample Entropy

Inspired by MCSEBSS (see Section 2.2.3), Wng et al. developed the cross-trend sample entropy
(CTSE) to quantify the synchronism between two time series with strong trends [23]. For two time
series u and v of length N, CTSE is calculated with the following four steps algorithm:

1. The two time series are symbolized as:

U(j) =

{
1 if ũ(j) > u(j)

0 otherwise
, V(j) =

{
1 if ṽ(j) > v(j)

0 otherwise
, 1 6 j 6 N, (17)

where ũ and ṽ are, respectively, the trend of u and v obtained by polynomial fitting (linear,
quadratic or higher order).

2. The template vectors um and vm are constructed as:

um(i) = {U(i + k)}, vm(i) = {V(i + k)}, (18)

where 0 6 k 6 m− 1 and 1 6 i 6 N −m.
3. The similarity between xm(i) and ym(i) is calculated as:

d(xm(i), ym(i)) =
# of 1 in Cm(i)

m
, 1 6 i 6 N −m, (19)

where the i-th symbol vector Cm is determined with f , a symbolic function between two template
vectors um and vm, as:

f =

{
1 if um(i + k) = vm(i + k)

0 otherwise
, 0 6 k 6 m− 1. (20)

4. CTSE is finally computed as:

CTSE(u, v, r, N) = − ln
n(m+1)

n(m)
, (21)

where n(m) is obtained by comparing d(xm(i), ym(j)) within a tolerance r for 1 6 i 6 N −m.

CTSE has two advantages over MCSEBSS: It is more sensitive to the difference of dynamical
characteristic between two signals, and it works well with signals with trends (linear, quadratic, cubic,
and sinusoidal) [23]. The value of CTSE computed from two time series can be interpreted as an
indicator of dynamical structure regarding the two time series with potential trends.

2.3. Cross-Distribution Entropy-Based Measures

2.3.1. Cross-Distribution Entropy

In 2018, Wang and Shang introduced the cross-distribution entropy (cross-DistEn) to quantify
the complexity between two cross-sequences [9]. To generalize the standard statistical mechanics, the
authors replaced the standard distribution entropy (DistEn) based on Shannon entropy by DistEn
based on Tsallis entropy [9]. The authors showed that cross-DistEn better illustrates the relationships
between two vectors than cross-SampEn does [9]. For two times series u and v of length N cross-DistEn
follow these four steps:
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1. The state-space is reconstructed by building (N − m + 1) vectors X(i) and Y(i) with X(i) =

{u(i), u(i + 1),..., u(i + m − 1)}, 1 ≤ i ≤ N − m, and Y(j) = {v(j), v(j + 1),..., v(j + m − 1)},
1 ≤ j ≤ N −m. m is the intended size of the vectors X(i) and Y(i);

2. The distance matrix is built by defining the distance matrix D = {di,j} with di,j being the
Chebyshev distance between the vectors X(i) and Y(j) defined as:

dij = max{|u(τ)
i+k − vτ

j+k|, 0 6 k 6 m− 1}; (22)

3. The probability density is estimated by computing the empirical probability density function of
the matrix D by applying the histogram approach. If the histogram has M bins, the probability of
each bin will be Pt with 1 ≤ t ≤ M;

4. The cross-distribution entropy based on the Tsallis entropy is computed as:

crossDistEn(u, v) =
1

ln (a)
1

q− 1
(1−

M

∑
t=1

Pq
t ), (23)

where q is the order of the Tsallis entropy and a the logarithm base of the entropy computation.

The main advantage of cross-DistEn is that it is adapted for short time series. With financial
data, cross-DistEn illustrates better the relationship between signals than cross-SampEn [9]. The value
of cross-DistEn computed from two time series can be interpreted as a degree of linkage of the two
time series.

2.3.2. Permutation Cross-Distribution Entropy

The permutation cross-distribution entropy (PCDE), introduced by He et al. in 2019, is a variant of
cross-DistEn (see Section 2.3.1) [10]. The permutation allows to characterize fluctuations and prevents
the impact of spatial distances on results. The PCDE algorithm is the same as the one of cross-DistEn,
detailed in Section 2.3.1. However, an additional step is added before step 2 to permute X(i) and
Y(j) with the permutation algorithm mentioned in Section 2.2.5. The distance matrix is therefore
constructed with the permuted vectors. The value of PCDE computed from two time series can be
interpreted as a degree of dissimilarity between the two time series.

2.4. Other Cross-Entropy-Based Measures

2.4.1. Cross-Conditional Entropy

Cross-conditional entropy (CCE), introduced by Porta et al. in 1919, quantifies the degree of
coupling between two signals [8]. A corrected conditional entropy has been introduced to improve the
approximate entropy that suffers from limitations when a finite number of sample is considered [27].
CCE is an adaptation of the corrected conditional entropy. For two signals u = {u(i), i = 1, ..., N}
and v = {v(i), i = 1, ..., N}, CCE is computed as:

CCEv/u(L) = − ∑
L−1

p(uL−1) ∑
i/L−1

p(v(i)/uL−1)× log p(v(i)/uL−1), (24)

where L is the length of the pattern extracted to be compared, p(uL−1) is the joint probability of the
pattern uL−1(i) = (u(i), uL−1(i− 1)), and p(v(i)/uL−1) is the probability of the sample v(i) given the
pattern uL−1(i). If a mixed pattern, composed by L− 1 samples, of u and v: (v(i), u(i), ..., u(i− L +

2)) = (v(i), uL−1), is defined and with the Shannon entropy E(uL) = −∑L p(uL) log p(uL), CCE can
also be described as:

CCEv/u(L) = E(v(i), uL−1)− E(uL−1). (25)
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For a limited amount of samples, the approximation of CCE always decreases to zero while
increasing L. To solve this problem, a modification has been introduced as:

CCEv/u(L) = ĈCEv/u(L) + percv/u(L)× Ê(v), (26)

where percv/u is the ratio of mixed patterns found only once over the total number of mixed

patterns, ĈCEv/u(L) and Ê(v) are, respectively, the estimates of the CCEv/u(L) and E(v) based on the
considered limited dataset.

CCE can be defined as a measure of unpredictability of one signal when the second is observed
because it quantifies the amount of information carried by one signal which cannot be derived from
the other. It is not fully a measure of synchronization. The main disadvantage of CCE is that it is not
totally adapted for short time series.

2.4.2. Cross-Fuzzy Entropy

Cross-fuzzy entropy (C-FuzzyEn), introduced by by Xie et al. in 2010 [3], is an adaptation of fuzzy
entropy, introduced by Chen et al. [28], that quantifies the synchrony or similarity of patterns between
two signals [3]. C-FuzzyEn is an improvement of cross-SampEn that is more adapted for short time
series and more robust to noise. For two times series u and v of length N, C-FuzzyEn is obtained with
the following three steps algorithm:

1. The distance dm
ij between Xm

i and Ym
j is computed as:

dm
ij = d[Xm

i , Ym
j ] = max

k∈(0,m−1)
|u(i + k)− u(i)− v(j + k)− v(i)|, (27)

where m is the number of consecutive data to compare, Xm
i = {u(i), u(i + 1), ..., u(i + m −

1)} − u(i), and Ym
j = {v(i), v(i + 1), ..., u(v + m − 1)} − v(i). u(i) and v(i) are calculated as:

u(i) = 1
m ∑m−1

l=0 u(i + l), and v(i) = 1
m ∑m−1

l=0 v(i + l);
2. The synchrony or similarity degree Dm

ij is computed as: Dm
ij = µ(dm

ij , n, r), where µ(dm
ij , n, r) is the

fuzzy function obtained as:

µ(dm
ij , n, r) = exp−

(dm
ij )

n

r
, (28)

where r and n determine the width and the gradient of the boundary of the exponential function,
respectively;

3. Finally, C-FuzzyEn is computed as:

C-FuzzyEn(m, n, r) = ln Φm − ln Φm+1, (29)

where Φm = 1
N−m ∑N−m

i=1 ( 1
N−m ∑N−m

j=1 Dm
ij ), and Φm+1 = 1

N−m ∑N−m
i=1 ( 1

N−m ∑N−m
j=1 Dm+1

ij ).

The value of C-FuzzyEn computed from two time series can be interpreted as the synchronicity
of patterns.

2.4.3. Joint-Permutation Entropy

Joint permutation entropy (JPE), introduced by Yin et al. in 2019, quantifies the synchronism
between two time series. It is based on permutation entropy that consists of comparing neighboring
values of each point and mapping them to ordinal patterns to quantify the complexity of a signal [26].
For two signals u and v, JPE is computed as the Shannon entropy of the d! × d! distinct motif
combinations {(πd,t

i , πd,t
j )}:

JPE(d, t) = − ∑
i,j:(πd,t

i ,πd,t
j )

p(πd,t
i , πd,t

j ) · ln p(πd,t
i , πd,t

j ), (30)
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where d is the embedded dimension and p(πd
i , πd

j ) is the joint probability of {(πd,t
i , πd,t

j )} appearing

in the Xd,t
l = {ul , ul+t, ..., ul+(d−1)t} and Yd,t

l = {vl , vl+t, ..., vl+(d−1)t} and it is defined as:

p(πd,t
i , πd,t

j ) =
||l : l 6 T, type(Xd,t

l , Yd,t
l ) = (πd,t

i , πd,t
j )||

T
, (31)

where T = N− (d− 1)t, type(·) corresponds to the map from pattern space to symbol space, and || · ||
corresponds to the cardinality of a set.

The main advantages of JPE are the simplicity, the robustness, and the low computational cost.
The value of JPE computed from two time series can be interpreted as a degree of correlation between
the two time series [29].

3. Multiscale Procedures

To study entropy or cross-entropy measures of time series across scales, a multiscale procedure can
be used. In this part we detail, in chronological order, three multiscale methods: The coarse-grained,
the time-shift, and the composite coarse-grained approaches.

3.1. Coarse-Graining Procedure

In 2002 Costa et al. introduced the coarse-graining procedure to analyze the complexity, defined
by the analysis of the irregularity through scale factors [14]. This method is an improvement, more
adapted for a biological time series, of the coarse-graining procedure introduced by Zhang [30].
This procedure has been used in multiscale entropy and cross-entropy methods [6,9,15,20,31–33].
For each scale factor, this procedure derives a set of vectors illustrating the system dynamics. For a
monovariate discrete signal x of length N, the coarse-grained time series y(τ) is calculated as:

y(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

xi, (32)

where τ is the scale factor and 1 6 j 6 N
τ . The length of the coarse-grained vector is N

τ . An example of
coarse-graining procedure is presented in Figure 1A.

Figure 1. Examples of multiscale procedures for the ten first points of a time series x. (A) represents the
coarse-graining procedure (modified from [34]), (B) shows the time-shift procedure, and (C) illustrates
the composite coarse-graining procedure (modified from [35]).
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3.2. Time-Shift Procedure

As for the coarse-grained procedure, the time-shift procedure is used to decompose a signal
through different scale factors and to perform a multiscale analysis. While coarse-graining procedure
uses the averaging of time series on several interval scales, the time-shift procedure applies time
shifting in time series. The main disadvantage of a coarse-graining procedure is the loss of pattern
information hidden in the time series. To overcome this limitation, Pham used the Higuchi’s fractal
dimension (HFD) [36] and proposed a new multiscale analysis [37]. The time-shift procedure illustrates
the fractal dimension of a signal. This method has been recently used with entropy and cross-entropy
measures [17,37–39]. HFD shows stable numerical results for stationary, non-stationary, deterministic,
and stochastic time series [40]. For a monovariate discrete signal x of length N, the β time-shift signal
y(τ)

β is calculated as:

y(τ)
β = (xβ, xβ+τ , ..., x

β+b N−β
τ cτ

). (33)

For each time scale τ, β time-shift time series are computed (β = 1, 2, ..., τ). An illustration of the
time-shift procedure is presented in Figure 1B.

3.3. Composite Coarse-Graining Procedure

The coarse-graining procedure, introduced by Costa et al. [14], increases the variance of estimated
entropy values at large scale. To overcome this limitation, by Wu et al. introduced in 2013 a
composite coarse-graining procedure [35]. This method has been used with entropy and cross-entropy
measures [16,32]. For a monovariate discrete signal x of length N, the k-th composite coarse-grained
time series y(τ)

k is computed as:

yk,j =
1
τ

jτ+k−1

∑
i=(j−1)τ+k

xi, (34)

where 1 6 j 6 N
τ . For each time scale τ, k composite coarse-grained time series are computed

(1 6 k 6 τ). An illustration of the composite coarse-graining procedure is presented in Figure 1C.

4. Multiscale Cross-Entropy Methods

4.1. Generalization

Multiscale cross-entropy (MCE) methods consist of applying a cross-entropy measure for each
scale factor obtained by a specific procedure. For each scale factor τ, MCE is computed as:

MCE(X(τ), Y(τ)) =
1
k

k

∑
β=1

crossEn(X(τ)
β , Y(τ)

β ), (35)

where X(τ) and Y(τ) are computed with a multiscale procedure (see Section 3), k is the number of
time series that are generated by the multiscale procedure (k = 1 for the coarse-graining procedure
and k = τ for the time-shift and the composite coarse-graining procedures), and crossEn is the
cross-entropy method used (see Section 2). Table 2 shows the multiscale cross-entropy methods
that can be generalized with Equation (35). Before the computation of MCE, a pre-treatment can be
performed. For example, the asymetric multiscale cross-SampEn (AMCSE) method [33] decomposes
each signal into two, one for the positive trends and the other for the negative trends, before applying
a coarse-graining procedure and cross-SampEn.
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Table 2. Multiscale cross-entropy methods, in chronological order, that can be generalized with
Equation (35). For each method, the multiscale procedure and the cross-entropy measure used and the
reference are mentioned.

Method Multiscale Procedure Cross-entropy Measure Reference

Multiscale cross-SampEn Coarse-grained cross-SampEn Yan et al., 2009 [15]

Multiscale cross-ApEn Coarse-grained cross-ApEn Wu et al., 2013 [31]

Asymetric multiscale cross-SampEn Coarse-grained cross-SampEn Yin and Shang, 2015 [33]

Composite multiscale cross-SampEn Composite coarse-grained cross-SampEn Yin et al., 2016 [16]

Multiscale cross-DistEn Coarse-grained cross-DistEn Wang and Shang, 2018 [9]

Modified multiscale cross-SampEn
based on symbolic Coarse-grained MCSEBSS Wu et al., 2018 [6]

representation and similarity

Modified multiscale cross-SampEn Coarse-grained mCSE Castiglioni et al., 2019 [20]

Time-shift multiscale cross-SampEn Time-shift cross-SampEn Jamin et al., 2019 [17]

Time-shift multiscale cross-DistEn Time-shift cross-DistEn Jamin et al., 2019 [17]

Multiscale cross-trend SampEn Coarse-grained CTSE Wang et al., 2019 [23]

Multiscale joint permutation entropy Coarse-grained JPE Yin et al., 2019 [24]

4.2. Particular Cases

Some multiscale cross-entropy methods cannot follow the generalization previously introduced.
In this part we detail three particular methods, in chronological order: The adaptive multiscale
cross-SampEn, the refined composite multiscale cross-SampEn, and the percussion entropy.

4.2.1. Adaptive Multiscale Cross-Sample Entropy

The adaptive multiscale cross-sample entropy (AMCSE), introduced by Hu and Liang in 2011,
assesses the nonlinear interdependency between different visual cortical areas [41]. The method uses
the multivariate empirical mode decomposition (MEMD), introduced by Rehman and Mandic [42], to
decompose two time series into intrinsic mode functions (IMFs) that represent the oscillation mode
embedded in the data. For two time series u and v, AMCSE is calculated with the following three
steps algorithm:

1. The MEMD on u and v is performed to obtain N IMFs;
2. The scales of data are computed in two directions, fine-to-coarse Sτ

f 2c and coarse-to-fine Sτ
c2 f , with

the following two equations:

Sτ
f 2c =

N

∑
i=τ

IMFi, (τ 6 N), (36)

Sτ
c2 f =

N+1−τ

∑
i=1

IMFi, (τ 6 N). (37)

The two directions can be used separately or used in tandem to reveal the underlying dynamics
of complex time series;

3. For each scale factor τ, the cross-SampEn (see Section 2.2.1) is applied between the two scales of
data (Sτ

f 2c and Sτ
c2 f ) extracted from vectors u and v.

4.2.2. Refined Composite Multiscale Cross-Sample Entropy

Yin et al. introduced in 2016 the composite multiscale cross-sample entropy (CMCSE) that follows
the generalization (see Section 4.1), where the composite coarse-graining procedure and cross-SampEn
are used [16]. The main disadvantage of this method is that cross-SampEn generates some undefined
values when the number of matched sample is zero. To overcome this limitation, Yin et al. introduced
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the refined CMCSE (RCMCSE). This method leads to better results with short time series. For two
times series u and v of length N, RCMSE is computed with the following three steps algorithm:

1. Coarse-grained time series are obtained with the composite coarse-graining procedure detailed
in Section 3.3;

2. For a scale factor τ, the number of matched vector pairs, nm
k,τ and nm+1

k,τ , are calculated for all
coarse-grained vectorsl

3. For each scale factor τ, RCMCSE is computed as:

RCMCSE(u, v, τ, m, r) = − ln
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ
, (38)

where m is the dimension and of the matched vector pairs and r is the distance tolerance for the
matched vector pairs.

4.2.3. Percussion Entropy

Wu et al. introduced, in 2013, the multiscale small-scale entropy index (MEISS) that is obtained by
summing the values of entropy for the first five scale factors [43]. Percussion entropy, introduced by
Wei et al. in 2019, allows one to quantify a percussion entropy index (PEI) [18]. The method has been
introduced to assess baroreflex sensitivity. PEI compares the similarity in tendency of change between
two time-series. This index has been compared to MEISS. For two time series u and v of length N, PEI
is computed with the following three steps algorithm:

1. A binary transformation of u and v is used to obtain x = {x1, x2, ..., xN−1} and y =

{y1, y2, ..., yN−1}:

xi =

{
0 u(i + 1) 6 u(i)

1 u(i + 1) > u(i)
yi =

{
0 v(i + 1) 6 v(i)

1 v(i + 1) > v(i)
; (39)

2. The percussion rate for each scale factor τ is computed as:

Pm
τ =

1
n−m− τ + 1

n−m−τ+1

∑
i=1

count(i), (40)

where m is the embedded dimension vectors and count(i) represents the match number between
A(i) = {xi, xi+1, ..., xi+m−1} and B(i + τ) = {yi+τ , yi+τ+1, ..., yi+τ+m−1};

3. PEI is calculated as:
PEI(m, nτ) = φm − φm+1, (41)

where φm = ln ∑nτ
τ=1 Pm

τ and nτ is the number of scales to consider. Wei et al. [18] have chosen
nτ = 5 in accordance with MEISS.

This algorithm is a generalization of the method developed by Wei et al. [18] for a specific time
series, amplitudes of successive digital volume pulse signals and changes in R-R intervals of successive
cardiac cycles. At the moment, it has not been used to process other kinds of signals.

5. Conclusions

In this review we proposed a state-of-the-art of cross-entropy measures, multiscale procedures,
and multiscale cross-entropy methods. Multiscale cross-entropy methods offer other interesting
perspectives for time series analysis. Furthermore, all the cross-entropy methods, detailed in this
review, can be translated into multiscale cross-entropy methods with the multiscale procedures
presented in this review.



Entropy 2020, 22, 45 13 of 15

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/1/45/s1,
Video S1: Permutation entropy–An exemple to obtain permutation vectors.

Author Contributions: Investigation, A.J. and A.H.-H.; supervision, A.H.-H.; writing–original draft, A.J.;
writing–review and editing, A.H.-H. All authors have read and agreed to the published version of the manuscript.

Funding: A CIFRE grant N◦2017/1165 was awarded by ANRT to the company COTTOS Médical to support the
work of graduate student A.J.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pincus, S.; Singer, B.H. Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA
1996, 93, 2083–2088. [CrossRef] [PubMed]

2. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef] [PubMed]

3. Xie, H.B.; Zheng, Y.P.; Guo, J.Y.; Chen, X. Cross-fuzzy entropy: A new method to test pattern synchrony of
bivariate time series. Inf. Sci. 2010, 180, 1715–1724. [CrossRef]

4. Yin, Y.; Shang, P. Modified cross sample entropy and surrogate data analysis method for financial time series.
Phys. A Stat. Mech. Appl. 2015, 433, 17–25. [CrossRef]
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