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QUANTISED PAINLEVÉ MONODROMY MANIFOLDS,

SKLYANIN AND CALABI-YAU ALGEBRAS

LEONID CHEKHOV, MARTA MAZZOCCO, VLADIMIR RUBTSOV

to Boris Dubrovin.

Abstract. In this paper we study quantum del Pezzo surfaces belonging to
a certain class. In particular we introduce the generalised Sklyanin-Painlevé
algebra and characterise its PBW/PHS/Koszul properties. This algebra con-
tains as limiting cases the generalised Sklyanin algebra, Etingof-Ginzburg and
Etingof-Oblomkov-Rains quantum del Pezzo and the quantum monodromy
manifolds of the Painlevé equations.

1. Introduction

In recent years, studying non-commutative rings through the methods of quan-
tum algebraic geometry has sparked enormous interest due to its applications in
mirror symmetry. The work by Gross-Hacking and Keel [21] associates to Looi-
jenga pairs on the A-side, i.e. pairs (Y,D) where Y is a smooth projective surface
and D is an anti-canonical cycle of rational curves, a mirror family on the B-side
constructed as the spectrum of an explicit algebra structure on a vector space. The
elements of the basis of global sections uniformise such a spectrum and are called
theta functions.

Interestingly, the A-side is equipped with a symplectic structure, and it is quan-
tised by geometric quantisation within the SYZ formalism [51], while the B side is
naturally quantised by deformation quantisation.

In this paper we study a certain class of del Pezzo surfaces that can be put
on either side of the mirror construction, or in other words, whose geometric and
deformation quantisation coincide. In particular, we study the quantisation of a
family of Poisson manifolds defined by the zero locus Mφ of a degree d polynomial
φ ∈ C[x1, x2, x3] of the form

(1.1) φ(x1, x2, x3) = x1x2x3 + φ1(x1) + φ2(x2) + φ3(x3)

where φi(xi) for i = 1, 2, 3 is a polynomial of degree ≤ d in the variable xi only.
From an algebro-geometric point of view (under certain conditions on the degrees

of each polynomial φi, i = 1, 2, 3) the projective completion Mφ in the weighted
projective space WP3 of the affine surface Mφ ⊂ C3 is a (possibly degenerate)

del Pezzo surface. In other words, the pair (Mφ, D∞),where D∞ is the divisor at

infinity, is a Loojenga pair and Mφ = Mφ \D∞. At the same time, each affine del
Pezzo surface can be considered as Spec (C[x1, x2, x3]/〈φ〉), which is the same as
⊕k≥0H

0(PMφ, L
⊗k), where PMφ is the projectivisation of Mφ and L is the trivial

line bundle given by Mφ \ {0}.
1
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A quantisation of a del Pezzo surface of this type appeared in the work of
Oblomkov [32] as the spherical sub-algebra of the ČC1 double affine Hecke alge-
bra (DAHA). Then Etingof, Oblomkov and Rains proposed a notion of generalised
DAHA for every simply laced affine Dynkin diagram and showed that their spherical
sub-algebras quantise the coordinate rings of affine surfaces obtained by removing
a nodal P1 from a weighted projective del Pezzo surface of degrees 3, 2 and 1 re-

spectively for E
(1)
6 , E

(1)
7 and E

(1)
8 or by removing a triangle from a projective del

Pezzo surface of degree 3 in the case D
(1)
4 . In the same paper, the authors defined

a holomorphic (but not algebraic) map from the mini-versal deformation of the
corresponding Kleinian singularity SL(2,C)/Γ (where Γ ∈ SL(2,C) is the finite
subgroup corresponding to the Dynkin diagram D4, E6, E7 and E8 respectively via
the McKay correspondence) to the family of surfaces Mφ where φ is in our form:

D
(1)
4 x1x2x3 + x2

1 + x2
2 + x2

3 + ηx1 + σx2 + ρx3 + ω,

E
(1)
6 x1x2x3 + x3

1 + x3
2 + x2

3 + η2x
2
1 + η1x1 + σ2x

2
2 + σ1x2 + ρx3 + ω,

E
(1)
7 x1x2x3 + x4

1 + x2
3 + x2

3 + η3x
3
1 + · · ·+ η1x1 + σx2 + ρx3 + ω,(1.2)

E
(1)
8 x1x2x3 + x5

1 + x2
3 + x2

3 + η4x
4
1 + · · ·+ η1x1 + σx2 + ρx3 + ω.

Following this work, P. Etingof and V. Ginzburg [15] have proposed a quantum
description of del Pezzo surfaces based on the flat deformation of cubic affine cone

surfaces with an isolated elliptic singularity of type Ẽ6, Ẽ7 and Ẽ8 in (weighted)
projective planes:

Ẽ6 τx1x2x3 +
x3
1

3
+

x3
2

3
+

x3
3

3
+ η2x

2
1 + η1x1+

+ σ2x
2
2 + σ1x2 + ρ2x

2
3 + ρ1x3 + ω,

Ẽ7 τx1x2x3 +
x4
1

4
+

x4
2

4
+

x2
3

2
+ η3x

3
1 + · · ·+ η1x1+

+ σ3x
3
2 + · · ·+ σ1x2 + ρ2x

2
3 + ρ1x3 + ω,

Ẽ8 τx1x2x3 +
x6
1

6
+

x3
2

3
+

x2
3

2
+ η5x

5
1 + · · ·+ η2x

2
1 + η1x1+

+ σ2x
2
2 + σ1x2 + ρ2x

2
3 + ρ1x3 + ω.

(1.3)

Their result gives a family of Calabi-Yau algebras parametrised by a complex num-
ber and a triple of polynomials of specifically chosen degrees. Interestingly, as far
as we know, nobody has proved a similar result for the polynomials (1.2).

Poisson manifolds defined by the zero locus Mφ of a degree 3 polynomial φ ∈
C[x1, x2, x3] of the form (1.1) where φi(xi) for i = 1, 2, 3 is a polynomial of degree 2
appear in the theory of the Painlevé differential equations as monodromy manifolds
[54]. Indeed, the Painlevé sixth monodromy manifold is precisely the affine surface
that appeared in Oblomkov [32] (see also [16]) as the spectrum of the center of
the Cherednik algebra of type ČC1 for q = 1. This result was generalised in
[27], where seven new algebras were produced as Whittaker degenerations of the
Cherednik algebra of type ČC1 in such a way that their spherical–sub-algebras tend
in the semi-classical limit to the monodromy manifolds of the respective Painlevé
differential equations.

In the present paper we give a quantisation of the Painlevé monodromy manifolds
that fits into the scheme proposed by Etingof and Ginzburg (see Theorem 1.5).
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Namely, for an appropriate quantisation Φ of φ, we define an associative algebraAΦ,
which is a flat deformation of the coordinate ring C[x1, x2, x3] or, more precisely,
the quantisation of the corresponding Poisson algebra Aφ = (C[x1, x2, x3], {·, ·}φ)
where

{p, q}φ =
dp ∧ dq ∧ dφ

dx1 ∧ dx2 ∧ dx3

is the Poisson-Nambu structure (2.11) on C3 for p, q ∈ C[x1, x2, x3].
The algebra AΦ has three non-commuting generators Xi, i = 1, 2, 3 subject to

the relations
XiXj − qXjXi = φk(Xk), (i, j, k) = (1, 2, 3)

with φk ∈ C[Xk] and q ∈ C∗. One can consider the following diagram where the left
and right column arrows are natural surjections and the horizontal arrows denote
flat deformations or quantisations of the corresponding Poisson algebras Aφ and
Aφ/(φ) :

(1.4) Aφ

��

fl. def. ///o/o/o/o/o/o Aq
Φ

��
Aφ/(φ)

fl. def.///o/o/o Aq
Φ/(Ω).

Following the idea of [15], we construct the bottom-right corner algebra as a quo-
tient of the (family of) associative algebras Aq

Φ by the bilateral ideal generated by
a central element Ω ∈ Aq

Φ for all φ corresponding to the Painlevé monodromy man-
ifolds. As a result, we obtain a (family of) non-commutative 3-Calabi-Yau algebras
that we denote by UZ and their non-commutative 2-dimensional quotients as a
quantum del Pezzo surfaces.

More precisely we give the following:

Definition 1.1. Given any scalars ǫ1, ǫ2, ǫ3, and q, qm 6= 1 for any integer m,
the universal Painlevé algebra UP is the non-commutative algebra with generators
X1, X2, X3,Ω1,Ω2,Ω3 defined by the relations:

q−1/2X1X2 − q1/2X2X1 − (q−1 − q)ǫ3X3 + (q−1/2 − q1/2)Ω3 = 0,

q−1/2X2X3 − q1/2X3X2 − (q−1 − q)ǫ1X1 + (q−1/2 − q1/2)Ω1 = 0,(1.5)

q−1/2X3X1 − q1/2X1X3 − (q−1 − q)ǫ2X2 + (q−1/2 − q1/2)Ω2 = 0,

[Ωi, ·] = 0, i = 1, 2, 3.

Remark 1.2. The name universal has been chosen because in the case ǫ1 = ǫ2 =
ǫ3 = 1, this algebra corresponds to the Universal Askey-Wilson algebra [52].

Definition 1.3. The confluent Zhedanov algebra UZ is the quotient UP/〈Ω1,Ω2,Ω3〉.
Remark 1.4. The name confluent Zhedanov has been chosen because for differ-
ent choices of the scalars ǫ1, ǫ2, ǫ3, the algebra UZ is coincides with the confluent
Zhedanov algebras studied in [27].

Theorem 1.5. The confluent Zhedanov algebra UZ satisfies the following proper-
ties:

(1) It is a Poincaré-Birkhoff-Witt (PBW) type deformation of the homogeneous
quadratic C-algebra with three generators X1, X2, X3 and the relations:

q−1/2X1X2 − q1/2X2X1 = 0,
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q−1/2X2X3 − q1/2X3X2 = 0,(1.6)

q−1/2X3X1 − q1/2X1X3 = 0.

(2) It is a family of 3-Calabi-Yau algebras with potential

ΦUZ := X1X2X3 − qX2X1X3 +
q2 − 1

2
√
q

(ǫ1X
2
1 + ǫ2X

2
2 + ǫ3X

2
3 ) +

+(1− q)(Ω1X1 +Ω2X2 +Ω3X3).(1.7)

(3) Its center Z(UZ) is generated by
(1.8)

Ω4 :=
√
qX3X2X1 − qǫ1X

2
1 − ǫ2

q
X2

2 − qǫ3X
2
3 +

√
qΩ1X1 +

Ω2√
q
X2 +

√
qΩ3X3.

The proof of this theorem is obtained by the combining Propositions 3.5, 4.1
and 4.2. The construction of the quotient UZ/〈Ω4〉 within the Etingof-Ginzburg
framework is carried out in Theorem 4.3.

Our quantisation is compatible with the Whittaker degeneration of generalised
DAHA proposed in [27] - see Theorem 2.2 here below. In particular, we show that

the Kleinian case D4 arises as a limit of the elliptic singularity case Ẽ6 - all other
Kleinian cases follow as special limits as well as shown in [10]. Inspired by this,
we study a broad class of degenerations of Poisson algebras in terms of rational
degenerations of elliptic curves.

Moreover, we connect with the work of Gross, Hacking and Keel [21], namely
for each φ in the form (1.1) we produce a Looijenga pair (Y,D) where Y is the
smooth weighted projective completion of our affine surface Mφ ⊂ C3 and D is
some reduced effective normal crossing anticanonical divisor on Y given by the
divisor at infinity D∞. This is equipped with a symplectic structure obtained by
taking the Poincaré residue of the global 3-form in weighted projective space WP3

along the divisor D∞. This form is symplectic on Y \D∞ = Mφ - this gives rise
to the Nambu bracket on Mφ. At the same time, the coordinate ring of each affine
del Pezzo Mφ can be seen as the graded ring ⊕k≥0H

0(PMφ, L
⊗k), where PMφ

is the projectivisation of Mφ, and L is a line bundle of an appropriate degree,
defined by the anticanonical divisor so that the equation φ = 0 can be seen as a
relation between some analogues of theta-functions related to toric mirror data on
log-Calabi-Yau surfaces.

Due to the fact that the Calabi Yau algebra associated to Ẽ6 specialises to the
Sklyanin algebra with three generators (4.44), we provide a unified Jacobian alge-
bra, that we call generalised Sklyanin-Painlevé algebra, which for different values
of the parameters specialises to the generalised Sklyanin algebra (4.45) of Iyudu

and Shkarin, or to the Ẽ6-Calabi-Yau algebra of Etingof and Ginzburg or to our
algebra UZ.

Definition 1.6. For any choice of the scalars a, b, c, α, β, γ, a1, b1, c1, a2, b2, c2 ∈ C,
such that a, b, c are not roots of unity, the generalised Sklyanin-Painlevé algebra is
the non-commutative algebra with generators X1, X2, X3 defined by the relations:

X2X3 − aX3X2 − αX2
1 + a1X1 + a2 = 0,

X3X1 − bX1X3 − βX2
2 + b1X2 + b2 = 0,(1.9)

X1X2 − cX2X1 − γX2
3 + c1X3 + c2 = 0.
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We fully characterise for which cases the generalised Sklyanin-Painlevé algebra
is a Calabi Yau algebra with Poincaré Birkhoff Witt (PBW) or Koszul properties
or with a polynomial growth Hilbert series (PHS):

Theorem 1.7. For specific choices of the parameters as follows:

(1) a = b = c 6= 0 and (a3, αβγ) 6= (−1, 1),
(2) (a, b, c) 6= (0, 0, 0) and either α = β = a − b = 0 or γ = α = c − a = 0 or

β = γ = b− c = 0,
(3) α = β = γ = 0 and (a, b, c) 6= (0, 0, 0),

the generalised Sklyanin-Painlevé algebra is potential, PHS and Koszul.

Finally, in Theorem 6.2, we deal with the question by P. Bousseau whether his
deformation quantisation of function algebras on certain affine varieties related to
Looijenga pairs, proposed in the recent paper [6], can be compared to Etingof and
Ginzburg approach.

This paper is organised as follows. In Section 2 provide some background on
the Painlevé monodromy manifolds and produce their quantisation in Theorem
1.5. In particular we introduce the family of non-commutative algebras UZ as
the algebra generated by 〈X1, X2, X3〉 and with relations (1.5). In Section 3 we
discuss the notions of PBW, PHS and Koszul property and show in what way
the algebra UZ satisfies them. In Section 4, we discuss the notions of Calabi
Yau algebra, the Etingof and Ginzburg construction and the Sklyanin algebra.
We introduce the generalised Sklyanin-Painlevé algebra (see subsection 4.8) and
characterise its PBW/PHS/Koszul properties. In Section 5, we discuss the affine
del Pezzo surfaces Mφ for different choices of φ and their degenerations in terms
of rational degenerations of elliptic curves. In Section 6 we provide the quantum
version of such elliptic degenerations. Finally in Section 7 we provide several tables
that resume all these results and discuss some open questions.

Acknowledgements. The authors are grateful to Yu. Berest, R. Berger, F. Esh-
matov, P. Etingof, D. Gurevich, N. Iyudu, T. Kelly, T. Koornwinder, M. Gross,
B. Pym, V. Sokolov, P. Terwilliger, A. Zhedanov for helpful discussions. Our spe-
cial thanks to Geoffrey Powell who careflly read our first version and made sev-
eral useful remarks. This research was supported by the EPSRC Research Grant
EP/P021913/1, by the Hausdorff Institute, by ANR DIADEMS and MPIM (Bonn)
and SISSA (Trieste). V.R. was partly supported by the project IPaDEGAN (H2020-
MSCA-RISE-2017), Grant Number 778010, and by the Russian Foundation for
Basic Research under the Grants RFBR 18-01-00461 and 16-51-53034- 716 GFEN.

Boris, your strength, energy, optimism and courage during the last months of
your life are a testament to the great man you are. Goodbye dear friend, teacher.

2. Painlevé monodromy manifolds and their algebraic quantisation

The Painlevé differential equations are nonlinear second order ordinary differen-
tial equations of the type:

ytt = R(t, y, yt),

where R is rational in y, t and yt, such that the general solution y(t; c1, c2) satisfies
the following two important properties (see [39]):
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(1) Painlevé property: The solutions have no movable critical points, i.e. the lo-
cations of multi-valued singularities of any of the solutions are independent
of the particular solution chosen.

(2) Irreducibility: For generic values of the integration constants c1, c2, the
solution y(t; c1, c2) cannot be expressed via elementary or classical tran-
scendental functions.

The Painlevé differential equations possess many beautiful properties, for exam-
ple they are “integrable”, i.e. they can be written as the compatibility condition

(2.10)
∂A

∂t
− ∂B

∂λ
= [B,A],

between an auxiliary 2×2 linear system ∂Y
∂λ = A(λ; t)Y and an associated deforma-

tion system, under the condition that the monodromy data of the auxiliary system
are constant under deformation.

Moreover the Painlevé differential equations admit symmetries under affine Weyl
groups which are related to the associated Bäcklund transformations. Taking these
into account, to each Painlevé differential equation corresponds a monodromy man-
ifold, i.e. the set of monodromy data up to global conjugation and affine Weyl group
symmetries. The co-called Riemann–Hilbert correspondence associates to each so-
lution of a Painlevé differential equation (up to Bäcklund transformations) a point
in its monodromy manifold.

Each monodromy manifold is an affine cubic surface in C3 defined by the zero
locus of the corresponding polynomial in C[x1, x2, x3] given in Table 1, where
ω1, . . . , ω4 are some constants (algebraically dependent in all cases except PVI)
related to the parameters appearing in the corresponding Painlevé equation.

P-eqs Polynomials
PV I x1x2x3 − x2

1 − x2
2 − x2

3 + ω1x1 + ω2x2 + ω3x3 + ω4

PV x1x2x3 − x2
1 − x2

2 + ω1x1 + ω2x2 + ω3x3 + ω4

PVdeg x1x2x3 − x2
1 − x2

2 + ω1x1 + ω2x2 + ω4

PIV x1x2x3 − x2
1 + ω1x1 + ω2x2 + ω3x3 + ω4

PIIID6 x1x2x3 − x2
1 − x2

2 + ω1x1 + ω2x2 + ω4

PIIID7 x1x2x3 − x2
1 − x2

2 + ω1x1 − x2

PIIID8 x1x2x3 − x2
1 − x2

2 − x2

PIIJM x1x2x3 − x1 + ω2x2 − x3 + ω4

PIIFN x1x2x3 − x2
1 + ω1x1 − x2 − 1

PI x1x2x3 − x1 − x2 + 1

Table 1. Painlevé monodromy manifolds

Note that in Table 1, we distinguish ten different monodromy manifolds, the
PIIID6 , PIIID7 and PIIID8 correspond to the three different cases of the third
Painlevé equation according to Sakai’s classification [48], and the two monodromy
manifolds PIIFN and PIIJM associated to the second Painlevé equation corre-
spond to the two different isomonodromy problems found by Flaschka–Newell [17]
and Jimbo–Miwa [24] respectively.
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Each cubic surface Mφ := Spec(C[x1, x2, x3]/〈φ = 0〉), is endowed with the
natural Poisson bracket defined by:

(2.11) {x1, x2} =
∂φ

∂x3
, {x2, x3} =

∂φ

∂x1
, {x3, x1} =

∂φ

∂x2
.

In the case of PVI, this Poisson bracket is induced by the Goldman bracket
on the SL2(C) character variety of a 4 holed Riemann sphere, or is given by the
Chekhov–Fock Poisson bracket on the complexified Thurston shear coordinates. In
[10], all cubic surfaces were parameterised in terms of Thurston shear coordinates
s1, s2, s3 and parameters p1, p2, p3 such that the Poisson bracket (2.11) is induced
by the following flat one:
(2.12)
{s1, s2} = {s2, s3} = {s3, s1} = 1,
{p1, ·} = {p2, ·} = {p3, ·} = 0,

for PV I, PV, PVdeg, P IV, PII, PI,

{s1, s2} = {p2, s1} = {s3, s2} = {p2, s3} = 1,
{s2, p2} = 2, {s1, s3} = {p1, ·} = {p3, ·} = 0,

for PIIID6 , P IIID7 , P IIID8 .

We give this parameterisation in Table 2, where we think of all the monodromy
manifolds as having the form1:

(2.13) φ
(d)
P =x1x2x3−ǫ

(d)
1 x2

1−ǫ
(d)
2 x2

2−ǫ
(d)
3 x2

3+ω
(d)
1 x1+ω

(d)
2 x2+ω

(d)
3 x3+ω

(d)
4 = 0,

where d is an index running on the list of the Painlevé cubics PV I, PV, PVdeg, P IV ,

PIIID6 , P IIID7 , PIIID8 , P IIJM , P IIFN , P I and the parameters ǫ
(d)
i , ω

(d)
i , i =

1, 2, 3 are given by:

ǫ
(d)
1 =

{
1 for d = PV I, PV, PIIID6 , PVdeg, P IIID7 , P IIID8 , P IV, PIIFN ,
0 for d = PIIJM , P I,

ǫ
(d)
2 =

{
1 for d = PV I, PV, PIIID6 , PVdeg, P IIID7 , P IIID8

0 for d = PIV, PIIFN , P IIJM , P I,

ǫ
(d)
3 =

{
1 for d = PV I,
0 for d = PV, PIIID6 , PVdeg, P IIID7 , P IIID8 , P IV, PIIFN , P IIJM , P I.

(2.14)

and

ω
(d)
1 = −g

(d)
1 g(d)∞ − ǫ

(d)
1 g

(d)
2 g

(d)
3 , ω

(d)
2 = −g

(d)
2 g(d)∞ − ǫ

(d)
2 g

(d)
1 g

(d)
3 ,

ω
(d)
3 = −g

(d)
3 g(d)∞ − ǫ

(d)
3 g

(d)
1 g

(d)
2 ,(2.15)

ω
(d)
4 = ǫ

(d)
2 ǫ

(d)
3

(
g
(d)
1

)2
+ ǫ

(d)
1 ǫ

(d)
3

(
g
(d)
2

)2
+ ǫ

(d)
1 ǫ

(d)
2

(
g
(d)
3

)2
+
(
g(d)∞

)2
+

+g
(d)
1 g

(d)
2 g

(d)
3 g(d)∞ − 4ǫ

(d)
1 ǫ

(d)
2 ǫ

(d)
3 ,

where g
(d)
1 , g

(d)
2 , g

(d)
3 , g

(d)
∞ are constants related to the parameters appearing in the

Painlevé equations as described in Section 2 of [10] (note that in that paper capital

letters are used for the g
(d)
i ).

1Note that in the current paper we have inverted the signs of x1, x2, x3 compared to [10].
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P-eqs Flat coordinates

PV I

g1 = e
p1
2 + e−

p1
2 , g2 = e

p2
2 + e−

p2
2 , g3 = e

p3
2 + e−

p3
2 ,

g∞ = es1+s2+s3+
p1
2 +

p2
2 +

p3
2 + e−s1−s2−s3− p1

2 − p3
2 − p3

2 ,

x1 = es2+s3+
p2
2 +

p3
2 + e−s2−s3−p2

2 −p3
2 + es2−s3+

p2
2 − p3

2 + g2e
−s3− p3

2 + g3e
s2+

p2
2 ,

x2 = es3+s1+
p3
2 +

p1
2 + e−s3−s1−p3

2 −p1
2 + es3−s1+

p3
2 − p1

2 + g3e
−s1− p1

2 + g1e
s3+

p3
2 ,

x3 = es1+s2+
p1
2 +

p2
2 + e−s1−s2−p1

2 −p2
2 + es1−s2+

p1
2 − p2

2 + g1e
−s2− p2

2 + g2e
s1+

p1
2 .

PV

g1 = e
p1
2 + e−

p1
2 , g2 = e

p2
2 + e−

p2
2 , g3 = e−s1−s2−s3− p1

2 −p2
2 , g∞ = 1,

x1 = e−s1− p1
2 + g3e

s2+
p2
2 ,

x2 = e−s2− p2
2 + e−s2−2s1− p2

2 −p1 + g3e
−s1− p1

2 + g1e
−s1−s2− p1

2 − p2
2 ,

x3 = es1+s2+
p1
2 +

p2
2 + e−s1−s2−p1

2 −p2
2 + es1−s2+

p1
2 − p2

2 + g1e
−s2− p2

2 + g2e
s1+

p1
2 .

PVdeg

g1 = e
p1
2 + e−

p1
2 , g2 = e

p2
2 + e−

p2
2 , g3 = 0, g∞ = 1

x1 = e−s1− p1
2 , x2 = e−s2− p2

2 + e−2s1−s2−p1− p2
2 + g1e

−s1−s2− p2
2 − p1

2 ,

x3 = es1+s2+
p1
2 +

p2
2 + e−s1−s2−p1

2 −p2
2 + es1−s2+

p1
2 − p2

2 + g1e
−s2− p2

2 + g2e
s1+

p1
2 .

PIV

g1 = e
p1
2 + e−

p1
2 , g2 = e+

p2
2 , g3 = 0, g∞ = e−s1−s2−s3− p1

2 ,
x1 = e−2s1−s2−2s3−p1 + e−2s1−s2−s3−p1 ,

x2 = e−2s1−s2−p1 + e−s2 + e−2s1−s2−s3−p1 + g1e
−s1−s2− p1

2 ,

x3 = e−s3 + g2e
s1+

p1
2 .

PIIID6

g1 = g3 = 1, g2 = es1+
s2
2 +

p2
2 , g∞ = e

s2
2 +s3+

p2
2 ,

x1 = e−
s2
2 +

p2
2 + es1−

s2
2 +

p2
2 + e−

s2
2 +s3+

p2
2 + es1−

s2
2 +s3+

p2
2 + es1+

s2
2 +s3+

p2
2 ,

x2 = es1 + es1−s2 − e−s2 + es3 + 2es1+s3 + e−s2+s3 + es1−s2+s3 + es1+s2+s3 ,

x3 = e−
s2
2
− p2

2 + e
s2
2
−p2

2 + e
s2
2
+

p2
2 .

PIIID7

g1 = 1, g2 = es1+
s2
2 +

p2
2 , x1 = e−

s2
2 +

p2
2 + es1−

s2
2 +

p2
2 + es1+

s2
2 +

p2
2 ,

g3 = 0, g∞ = es2+
p2
2 , x2 = 1 + 2es1 + es1−s2 + e−s2 + es1+s2 ,

x3 = e−
s2
2 − p2

2 + e
s2
2 − p2

2 + e
s2
2 +

p2
2 .

PIIID8
g1 = 1, g2 = g∞ = e

s2
2 +

p2
2 , g3 = 0, x1 = e−

s2
2 +

p2
2 + e

s2
2 +

p2
2 ,

x2 = 2 + e−s2 + es2 , x3 = e−
s2
2 −p2

2 + e
s2
2 − p2

2 + e
s2
2 +

p2
2 .

PIIJM
g1 = g3 = g∞ = 1, g2 = e+

p2
2 ,

x1 = e−s1 + e−s1−s3 , x2 = es3 + es1+s3 , x3 = e−s2−s3 + e−s3 .

PIIFN
g1 = e−s1−s2−s3 , g2 = g∞ = 1, g3 = 0, x1 = es2+s3 ,
x2 = e2s3+s1+s2 + e2s3+s2 + e−s1−s2 + e−s2 , x3 = e−s3 + e−s2−s3 .

PI
g1 = g2 = g∞ = 1, g3 = 0,
x1 = e−s1 , x2 = e−s1−s2 + e−s2 , x3 = es1+s2 + es1 .

Table 2. Flat coordinates on the Painlevé monodromy manifolds

We recall that the celebrated confluence scheme of the Painlevé differential equa-
tions is the following diagram,

PD6

III

""❉
❉❉

❉❉
❉❉

❉
// PD7

III

""❉
❉❉

❉❉
❉❉

❉❉
// PD8

III

PV I
// PV

//

==⑤⑤⑤⑤⑤⑤⑤⑤

!!❇
❇❇

❇❇
❇❇

❇❇
P deg
V

""❊
❊❊

❊❊
❊❊

❊

<<③③③③③③③③

P JM
II

// PI

PIV

<<②②②②②②②②②
// PFN

II

<<③③③③③③③③③
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where the arrows represent confluences, i.e. degeneration procedures where the
independent variable, the dependent variable and the parameters are rescaled by
suitable powers of ε and then the limit ε → 0 is taken. This was studied on the
level of monodromy manifolds in [10].

Here, we provide the quantisation of all the Painlevé cubics and produce the
corresponding quantum confluence in such a way that quantisation and confluence
commute.

To produce the quantum Painlevé cubics, we introduce the Hermitian operators
S1, S2, S3, P1, P2, P3 subject to the commutation rule inherited from the Poisson
bracket of s1, . . . , p3:

[Pj , ·] = 0, [Sj , Sj+1] = iπ~{sj, sj+1} j = 1, 2, 3, j + 3 ≡ j.

Observe that the commutators [Si, Sj ] are always numbers and therefore we have

exp (aSi) exp (bSj) = exp

(
aSi + bSi +

ab

2
[Si, Sj ]

)
,

for any two constants a, b. Therefore we have the Weyl ordering:

(2.16) eS1+S2 = q
1
2 eS1eS2 = q−

1
2 eS2eS1 , q ≡ e−iπ~.

After quantisation, the parameters g
(d)
1 , . . . , g

(d)
∞ that are not equal to 0 or 1 become

Hermitian operators G
(d)
1 , . . . , G

(d)
∞ and are automatically Casimirs. We define the

operators Ω
(d)
i in terms of G

(d)
1 , . . . , G

(d)
∞ by the same formulae (2.15) that link the

ω
(d)
i to the g

(d)
i ’s - these are also Casimirs. The parameters ǫ

(d)
i are scalars, and

they remain scalar under quantisation.
We introduce the Hermitian operators X1, X2, X3 as follows: consider the classi-

cal expressions for x1, x2, x3 is terms of s1, s2, s3 and p1, p2, p3. Write each product
of exponential terms as the exponential of the sum of the exponents and replace
those exponents by their quantum version. For example the quantum version of
es1es2 is eS1+S2 . Then, the following result establishes a relation between the quan-
tisation of the Painlevé monodromy manifolds and the confluent Zhedanov algebra
given in Definition 1.1:

Proposition 2.1. The Hermitian operators X1, X2, X3,Ω
(d)
1 ,Ω

(d)
2 ,Ω

(d)
3 generate

the algebra C〈X1, X2, X3,Ω
(d)
1 ,Ω

(d)
2 ,Ω

(d)
3 〉/〈J1, J2, J3, J4〉 with

J1 = q−1/2X1X2 − q1/2X2X1 − (q−1 − q)ǫ
(d)
3 X3 + (q−1/2 − q1/2)Ω

(d)
3 ,

J2 = q−1/2X2X3 − q1/2X3X2 − (q−1 − q)ǫ
(d)
1 X1 + (q−1/2 − q1/2)Ω

(d)
1 ,(2.17)

J3 = q−1/2X3X1 − q1/2X1X3 − (q−1 − q)ǫ
(d)
2 X2 + (q−1/2 − q1/2)Ω

(d)
2 ,

J4 = [Ω
(d)
i , ·], i = 1, 2, 3.

where ǫ
(d)
i are the same as in the classical case.

Proof. The proof of this result is obtained by direct computation by using the
definitions of the quantum operators X1, X2 and X3 in terms of S1, S2, S3. By
applying the quantum commutation relations for S1, S2, S3 (2.16), relations (1.5)
follow. �

In [10], we showed that the confluence procedure for the Painlevé differential
equations corresponds to certain limits of the shear coordinates, for example for PVI
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to PV is obtained by the substitution p3 → p3−2 log ε in the limit ε → 0. We define
the quantum confluence by the same rescaling the quantum Hermitian operators by
ε and taking the same limit as ε → 0. For example, by imposing exactly the same
limiting procedure on P3, we obtain a limiting procedure on the quantum operators

X1, X2, X3,Ω
(V I)
1 ,Ω

(V I)
2 ,Ω

(V I)
3 satisfying relations (2.17) for d = V I, that produces

some new quantum operators X1, X2, X3,Ω
(V )
1 ,Ω

(V )
2 ,Ω

(V )
3 . By construction, these

operators satisfy relations (2.17) for d = V . The same construction can be repeated
for every d. Therefore, we have the following:

Theorem 2.2. The confluence of the Painlevé equations commutes with their quan-
tisation.

3. Poincaré-Birkhoff-Witt (PBW)-deformation properties of the
quantum algebra (1.5)

In this section we study the algebraic properties of the quantum algebra UZ.
The basic observation is that when all constants ǫi and all values of the Casimirs
Ωi, i = 1, 2, 3, are zero, then (1.5) are standard quantum commutation relations
defining a graded algebra that is a PBW deformation of the polynomial algebra in
three variables. Here we adapt the work of [41] and [7] to check that UZ is a PBW
type deformation for all cases of ǫi and all values of the Casimirs Ωi, i = 1, 2, 3.

3.1. To PBW or not to PBW. Here we discuss the definition of the PBW, PHS
and Koszul properties.

Let V be a finite-dimensional K-vector space of dimension n with basis {xi}ni=1.
Consider the tensor algebra T •(V ) of V over K - this is the free associative algebra
T •(V ) = K〈x1, . . . , xn〉. For any pair of integers 1 ≤ i < k ≤ n we choose an
element Ji,k ∈ T •(V ) such that deg Ji,k ≤ 2. Let J be the union of the bilateral
ideals

xi ⊗ xk − xk ⊗ xi − Ji,k

in T •(V ). Then the quotient algebraA = T •(V )/〈J〉 is equipped with the ascending
filtration {Fk}, k ≥ −1;F−1 = 0 (i.e. Fk−1 ⊂ Fk ) such that Fk consists of all
elements of degree ≤ k in x1, . . . , xn.

Definition 3.1. The (filtered) unital associative algebra A is said to satisfy the
PBW property if there is an isomorphism of graded algebras

⊕k≥0Fk/Fk−1 ≃ S(V ),

where S(V ) is the symmetric algebra of V . [41]

Given a filtered algebra A with filtration by finite-dimensional vector spaces, we
write

Pt(A) :=
∑

k∈Z

dim(Ak)t
k ∈ Z[[t]]

for the Hilbert-Poincaré series of the associated graded algebra

gr(A) = ⊕k≥0Ak := ⊕k≥0Fk/Fk−1.

For the purposes of this paper, we distinguish the case of n = 3 and give the
following definition:
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Definition 3.2. The algebra A is said to satisfy the PHS property if its Poincaré-
Hilbert series of A coincides with 1

(1−t)3 . We shall call PHS-algebras 3-algebras with

this property. [22]

In the case of a Lie algebra g of dimension n with a basis {x1, ..., xn}, there is
a natural reformulation of the PBW-property for the universal enveloping algebra
U(g) in terms of the map σ : S(g) → gr(U(g)) where S(g) is the symmetric algebra
of the Lie algebra g and gr(U(g)) is the associated graded algebra of the filtered
algebra T •(g). This map is defined due to the universality of U(g) from the relation
σ ◦ τ = φ where τ : T •(g) → S(g) is the canonical projection and φ : T •(g) →
gr(U(g)) is the surjective morphism of graded algebras induced by the canonical
projection of T •(g) → U(g).

In this case, the following three statements are equivalent (see [20]):

• the homomorphism σ : S(g) → gr(U(g)) is a graded algebra isomorphism;
• if g admits a totally ordered basis {xλ}λ∈Λ then the subset

{1} ∪ {x1 . . . xλn
| (λ1, . . . , λn) ∈ Λn, λ1 ≤ . . . ≤ λn, n ≥ 1}

gives a basis of U(g);
• the canonical map g → U(g) is an injection.

We shall use these reformulations of PBW to choose among them a form which is
convenient to our aims.

We conclude this subsection by recalling the definition of Koszul algebra.
Let A be a graded algebra over a field K of characteristic 0:

A = ⊕∞
k=0Ak,

its augmentation ideal A+ is by definition

A+ := ⊕∞
k=1Ak

and the canonical projection

π : A 7→ A0 = A/A+,

is called augmentation map. By the augmentation map, A0 can be considered as
an A-module:

A×A0 → A0, (a, x) = π(a)x.

Definition 3.3. (Koszul Algebras). A Koszul algebra A is an N-graded algebra
A = ⊕∞

k=0Ak over a field K that satisfies following conditions:

• A0 = K.
• A0 ≃ A/A+, considered as a graded A-module, admits a graded projective
resolution

· · · → P (2) → P (1) → P (0) → A0 → 0.

such that P (i) is generated as a Z-graded A-module by its degree i compo-
nent, i.e., for the decomposition of A- modules:

P (i) = ⊕j∈ZP
(i)
j

one has that P (i) = AP
(i)
i .
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Standard examples of Koszul algebra are the symmetric algebra S(V ) and the
exterior algebra Λ(V ) of an n dimensional K-vector space V .

Given a Koszul algebra A = ⊕∞
k=0Ak, consider the tensor algebra T (A1) and the

map
µ : T (A1) → A, µ(x1 ⊗ · · · ⊗ xk) := x1 . . . xk.

A classical theorem (see for example [42]) states that every Koszul algebra is qua-
dratic, namely,

A ≃ T (A1)/〈I〉
where 〈I〉 us the ideal generated by the quadratic relation:

(kerµ) ∩ (A1 ⊗K A1).

The inverse statement is not always true. Priddy ([42]) proved that if a homoge-
neous quadratic algebra has a PBW basis, then it is Koszul.

3.2. PBW-type algebra structure. In this sub-section, we follow the work by
Braverman-Gaitsgory [7] to adapt the ideas of sub-section 3.1 to he case of non
homogeneous algebras such as our quantum algebra UZ.

The free non-commutative polynomial associative algebra C〈X1, X2, X3〉 can be
considered as the tensor algebra T •(V ), where V = V ect〈X1, X2, X3〉, that is filtered
by the natural filtration:

F k(T •(V )) = {⊕j≤kT
j(V )}.

We are now going to explain how this filtration descends to the quotient.
Fix a subspace Î ⊂ F 2(T •(V )) = C ⊕ V ⊕ (V ⊗ V ) and let I ⊂ V ⊗ V be the

image of Î : I = π(Î) under the natural projection π : F 2(T •(V )) → V ⊗ V . There
is a epimorphism of graded algebras (denoted by the same letter) π : T •(V )/〈I〉 →
gr(T •(V )/〈Î〉).

Definition 3.4. [7] The non-homogeneous quadratic algebra Â = T •(V )/〈Î〉 is a
PBW-type deformation of A := T •(V )/〈I〉 if the projection π is an isomorphism of
graded algebras.

Roughly speaking, this means that the graded algebra gr(Â) associated to the

filtered non-homogeneous quadratic algebra Â = T •(V )/〈Î〉 is the homogeneous
quadratic A = T •(V )/〈I〉.

To show that our quantum algebra UZ is a PBW-type deformation, the first
step is to show that it admits a natural filtration. This is obtained by considering
it as a quotient of the free polynomial associative algebra with three generators
C〈X1, X2, X3〉 by non-homogeneous relations with linear and affine terms. Then,
we need to prove that π is indeed an isomorphism, namely we need to prove the
first statement of Theorem 1.5:

Proposition 3.5. The quantum algebra UZ is a PBW type -deformation of the
homogeneous quadratic C-algebra with three generators X1, X2, X3 and the relations
(1.6).

Proof. The demonstration consists of two steps. First, we drop linear and constant
terms and consider the “purely” quadratic algebra A and show that it is a standard
PBW-deformation of the polynomial free algebra C〈X1, X2, X3〉 with three genera-
tors. By quotienting out the relations (1.6) we obtain a graded algebra and one can
easily see (choosing, for example, the base of ordered monomials Xp

1X
s
2X

r
3 ) that
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the dimension of the homogeneous components of this algebra for different s 6= 0 is
constant (flat-deformation).

As second step, we consider the non homogeneous algebra Â (for generic q). This
is based on the application of the following theorem due to Braverman-Gaitsgory
[7] and Polishchuk-Positselsky [41] to the homogeneous ideal I(I) generated by the
relations I ⊂ V ⊗ V (1.6):

Theorem 3.6. Let Â be a non homogeneous quadratic algebra, Â = T •(V )/〈Î〉,
and A = T •(V )/〈I〉) its corresponding homogeneous quadratic algebra. Suppose A
is a Koszul algebra. Then Â is a PBW-type deformation of A if and only if there
exist linear functions l1 : Â → V, l2 : Â → C for which

Î = {u− l1(u)− l2(u) | u ∈ I}.
and the following conditions are satisfied

• Im(l1 ⊗ Id− Id⊗ l1) ⊆ I;
• l1(l1 ⊗ Id− Id⊗ l1) = −(l2 ⊗ Id− Id⊗ l2),
• l2(l1 ⊗ Id− Id⊗ l1) = 0,

where the maps l1 ⊗ Id− Id⊗ l1 and l2 ⊗ Id− Id⊗ l2 are defined on the subspace
(I ⊗ V ) ∩ (V ⊗ I) ⊂ T •(V ).

Remark 3.7. For the case of the finite-dimensional Lie algebra g, one has Â =
U(g) and A = S(g), the symmetric algebra of g. Consider I ⊂ g ⊗ g defined as
I = {x1⊗x2−x2⊗x1, x1, x2 ∈ g}. Then l1(x1⊗x2−x2⊗x1) := [x1, x2], l2 := 0.
The three conditions in Theorem 3.6 are equivalent to the Jacobi identity.

Polishchshuk and Positselsky studied the conditions for PBW property for qua-
dratic algebras in a more general setting ([41]). We shall reformulate the conditions
in theorem 3.6 in a form that is easy to verify in our case (see Theorem 2.1 ch.5 in
[41]) , i.e. in terms of the bracket operator [·, ·] : I ⊂ V ⊗ V → V satisfying two
conditions

(3.18) [·, ·]12 − [·, ·]23 : (I ⊗ V ) ∩ (V ⊗ I) → I

(3.19) [·, ·]([·, ·]12 − [·, ·]23) : (I ⊗ V ) ∩ (V ⊗ I) 7→ 0.

We remark that the subspace

(I ⊗ V ) ∩ (V ⊗ I) ⊂ V ⊗ V ⊗ V

defines an analog of the space of symmetric elements of degree 3. The bracket
operation [·, ·] : I ⊂ V ⊗ V → V is defined only on the subspace I that is why, due
to the first condition ensures that the bracket maps I ⊗V ∩V ⊗ I again into I and
we can apply it once more.

In this setting, the map l1 ⊗ Id− Id⊗ l1 is given by [·, ·]12− [·, ·]23 while the map
l2 ⊗ Id− Id⊗ l2 is [·, ·]([·, ·]12 − [·, ·]23).

As mentioned before, if the quadratic algebra A = T •(V )/〈I〉 is Koszul then

the associated graded algebra gr(Â) where Â = T •(V )/〈I − [·, ·]I〉 is isomorphic to
gr(A). Here, I − [·, ·]I means the space of elements u − [·, ·]u, u ∈ I and the ideal

〈I − [·, ·]I〉 coincides with the non-homogeneous ideal 〈Î〉.
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Proof of Theorem 3.6. We use the conditions (3.18), (3.19) in the case when V =

CX1 ⊕ CX2 ⊕ CX3 and T •(V ) = C〈X1, X2, X3〉 and 〈Î〉 is the ideal generated by
relations (1.5):

(3.20) Â = T •(V )/〈Î〉.
The first condition (3.18) is valid straightforwardly. The second condition (3.19)

follows from the following equality

(X1X2 − qX2X1)X3 + (X2X3 − qX3X2)X1 + (X3X1 − qX1X3)X2 =

X3(X1X2 − qX2X1) +X1(X2X3 − qX3X2) +X2(X3X1 − qX1X3),
(3.21)

that is proved by replacing the quadratic terms in the brackets by L1, L2, L3, where

L1 := (q−1/2 − q3/2)ǫ
(d)
3 X3 − (1− q)Ω

(d)
3 ,

L2 := (q−1/2 − q3/2)ǫ
(d)
1 X1 − (1− q)Ω

(d)
1 ,(3.22)

L3 := (q−1/2 − q3/2)ǫ
(d)
2 X2 − (1− q)Ω

(d)
2 ,

leading to the identity

L1X3 + L2X1 + L3X2 = X3L1 +X1L2 +X2L3,

that is trivially satisfied due to the fact that [Li, Xi] = 0.
To conclude, the “pure quadratic” part A is Koszul hence, the non-homogeneous

algebra Â is a flat deformation of the polynomial algebra C[X1, X2, X3]. �

Remark 3.8. Braverman and Gaitsgory gave a fairly simple proof that the Koszul
property of A and the conditions (3.18) and (3.19) i.e. PBW-property imply the

existence of a graded deformation A~ of Â such that at ~ = 1 it is canonically
isomorphic to Â. This is what we shall understand under “good” (or “flat”) defor-
mation properties.

3.3. Zhedanov algebra and its degenerations. As explained in Section 2, the
quantum algebras of definition 1.3 are quantisations of the monodromy manifolds
of the Painlevé differential equations. The Painlevé sixth monodromy manifold
appeared in the paper by Oblomkov [32] (see also [16]) as the spectrum of the center
of the Cherednik algebra of type Č1C1 for q = 1. This result was generalised in
[9] where this affine cubic surface was explicitly quantised leading to the Zhedanov
algebra, which is isomorphic [25] to the spherical sub–algebra of the Cherednik
algebra of type Č1C1. In [27], seven new algebras were produced as confluences
of the Cherednik algebra of type Č1C1 in such a way that their spherical–sub-
algebras tend in the semi-classical limit to the monodromy manifolds of all other
Painlevé differential equations. The quantum algebras defined by relations (1.6)
are isomorphic to the spherical–sub-algebras introduced in [27], in the same way
in which the Zhedanov algebra is isomorphic to the spherical sub–algebra of the
Cherednik algebra of type Č1C1. Our Theorem 1.5 shows that the Zhedanov algebra
and its degenerations are flat deformations of the polynomial algebra C[X1, X2, X3].

4. Relation with Calabi-Yau and Sklyanin algebras

The aim of this section is to clarify the relations of our quantum algebra UZ with
the quantum analogues of del Pezzo surfaces introduced by Etingof and Ginzburg
[15]. The latter are elements of a very general class of non-commutative algebras
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related to the twisted Calabi-Yau algebras introduced by V. Ginzburg [53]. We
start by recalling these notions here.

4.1. Calabi-Yau algebras and potentials. Let A be a finite dimensional, asso-
ciative and graded C-algebra . We say that A is d-Calabi-Yau of dimension d if
ExtdA(A,A⊗A) ≃ A as a bimodule and otherwise (n 6= d)) ExtnA(A,A⊗A) = 0. In
this paper, we will focus on the case of 3-Calabi-Yau algebras. Ginzburg has argued
that most 3-Calabi-Yau algebras arise as a certain quotient of the free associative
algebra. More precisely, let V be a C-vector space with base X1, X2, X3; its tensor
algebra T •(V ) is the free associative graded algebra A := C〈X1, X2, X3〉. One can
consider the elements of C〈X1, X2, X3〉 as non-commutative words obtained from
the variables X1, X2, X3. The quotient T •(V )/[T •(V ), T •(V )] is the space of cyclic
words or “traces”. This is the 0-degree Hochschild homology of the free algebra
C〈X1, X2, X3〉. We shall use in what follows the usual notation for the quotient of
an associative algebra by the space of commutators, A♮ := A/[A,A].

One can define cyclic derivatives ∂j ≡ ∂Xj
for any Φ ∈ A♮ by

(4.23) ∂jΦ :=
∑

k|ik=j

Xik+1Xik+2...XiNXi1Xi2 ...Xik−1 ∈ A,

where j = 1, 2, 3 and all indices i1, . . . , iN ∈ (1, 2, 3).
The two-sided ideal JΦ =< ∂1Φ, ∂2Φ, ∂3Φ > in A is a non-commutative analogue

of the Jacobian ideal and we can pass to the quotient

(4.24) AΦ := A/JΦ.

We say that the an element Φ ∈ (F 3T •(V ))♮ is a Calabi-Yau potential if AΦ is a
3-CY-algebra.

4.2. Etingof-Ginzburg quantisation. Given a polynomial φ ∈ C[x1, x2, x3], in
[15]), Etingof and Ginzburg constructed an associative algebra AΦ which is a flat
deformation of the coordinate ring C[x1, x2, x3] or, more precisely, the quantisation
of the corresponding Poisson algebra Aφ = (C[x1, x2, x3], {·, ·}φ) where

{P,Q}φ =
dP ∧ dQ ∧ dφ

dx1 ∧ dx2 ∧ dx3

is the Poisson-Nambu structure (2.11) on C
3 for P,Q ∈ C[x1, x2, x3].

Let us remind that the flat deformations of a Poisson algebra (A, π) are governed
by the second group of Poisson cohomology HP 2(A) and a flatness of the Poisson
algebra means also a flatness of a deformation of A as a commutative algebra. The
flat deformations considered by Etingof and Ginzburg are semiuniversal deforma-
tions with smooth parameter scheme such that the Kodaira-Spencer map is a vector
space isomorphism.

As a consequence of the computations in [38] (see Proposition 3.2), the family of
affine Poisson brackets (2.11) is a family of unimodular Poisson brackets, so by the
result of Dolgushev ([14]) the quantisation AΦ is a Calabi-Yau algebra generated
by three non-commutative generators Xi, i = 1, 2, 3 subject to the relations

∂Φ

∂X1
=

∂Φ

∂X2
=

∂Φ

∂X3
= 0,

where Φ is a potential whose non commutative Jacobian ideal is a suitable quantum
analogue of the classical Jacobian ideal in the local algebra of φ.
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In [15], the authors quantise the natural Poisson structure on the hyper-surface

in C
3 with an isolated elliptic singularity of type Ẽr, r = 6, 7, 8. Such hyper-surfaces

are the zero locus of the weighted homogeneous part of the polynomials (1.3) in P2,
WP1,1,2 and WP1,2,3 respectively:

Ẽ6 φ(6)
∞ = τx1x2x3 +

x3
1

3
+

x3
2

3
+

x3
3

3
,

Ẽ7 φ(7)
∞ = τx1x2x3 +

x4
1

4
+

x4
2

4
+

x2
3

2
,

Ẽ8 φ(8)
∞ = τx1x2x3 +

x6
1

6
+

x3
2

3
+

x2
3

2
.

(4.25)

In each case, their quantisation produces a 3-Calabi-Yau algebra A
Φ

(r)
∞

defined by

a suitable quantum potential Φ
(r)
∞ , r = 6, 7, 8. Motivated by the study of miniversal

deformations of elliptic singularities, Etingof and Ginzburg study deformations of

the potential Φ
(r)
∞ by adding a term of the form

(4.26) Ψr = P (X1) +Q(X2) +R(X3),

where the polynomials P,Q and R depend of a total of µ arbitrary parameters, µ
being the Milnor number of the elliptic singularity, and have smaller degree than

Φ
(r)
∞ has in the variable X1, X2 and X3 respectively. They prove that for such

choice of Ψr the sum potential Φr := Φ
(r)
∞ + Ψr also defines 3-Calabi-Yau algebra

AΦr
with central element Ωr that in the classical limit tends to the full polynomial

φr in (1.3).
This central element, let us drop the index r to keep the discussion general,

Ω is used in [15] as a non-commutative analogue of the polynomial φ and the
quotient AΦ/(Ω) is a non-commutative analogue of the Poisson algebra Aφ/(φ).
As a consequence, the authors consider the following commutative diagram where
the left and right column arrows are natural surjections and the wave-like arrows
denote flat deformations (or quantisations) of the corresponding Poisson algebras
Aφ and Aφ/(φ) :

(4.27) Aφ

��

fl. def. ///o/o/o/o/o/o Aq
Φ

��
Aφ/(φ)

fl. def.///o/o/o Aq
Φ/(Ω),

The idea of [15] is to construct the bottom-right corner algebra as a quotient of
the (family of) associative algebras Aq

Φ by a bilateral ideal generated by a central
element Ω ∈ Z(Aq

Φ).
At the quantum level, the difficulty is that the potential Φ and the central

element Ω are different, even though, in their classical limit, they produce the same
polynomial φ. As a consequence, to complete the construction of Aq

Φ/(Ω) one needs
to find the explicit expression for Ω. In [15] this was done explicitly for the elliptic

singularities of type Ẽ6, Ẽ7 and Ẽ8.
Let us describe the Ẽ6 case in some detail - as we shall see, this is the specific case

that in certain limit produces the monodromy manifolds of the Painlevé equations.
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It is convenient to recast the polynomial φ6 in the form

φτ,t
a,b,c,d = τx1x2x3+

t

3
(x3

1+x3
2+x3

3)+
1

2
(a1x

2
1+b1x

2
2+c1x

2
3)+a2x1+b2x2+c2x3+d.

Let us denote by Aφτ,t

a,b,c,d
/(φτ,t

a,b,c,d) the coordinate ring defined by the affine Poisson

surface φτ,t
a,b,c,d = 0 in C3.

We note that φ
(d)
P defined in (2.13) is a specialisation of φτ,t

a,b,c,d corresponding
to the choice of parameters:
(4.28)

τ = 1, t = 0, a = (−2ǫ
(d)
1 , ω

(d)
1 ), b = (−2ǫ

(d)
2 , ω

(d)
2 ), c = (−2ǫ

(d)
3 , ω

(d)
3 ), d = ω

(d)
4 ,

so that the P1 bundle over the projectivisation PMφP
of the the surface MP coin-

cides with our general isomonodromic cubic surface (2.13).

Etingof and Ginzburg consider the family of homogeneous potentials ΦEG ∈
C〈X1, X2, X3〉♮

(4.29) ΦEG = X1X2X3 − qX2X1X3 −
t

3
(X3

1 +X3
2 +X3

3 ),

and show that the filtered algebra Aq
ΦEG

with generators X1, X2, X3 subject to the
relations

X1X2 − qX2X1 = tX2
3 ,

X2X3 − qX3X2 = tX2
1 ,

X3X1 − qX1X3 = tX2
2 ,

is a 3-CY algebra.
They then add a deformation potential ΨEG where

(4.30) ΨEG =
1

2
(a1X

2
1 + b1X

2
2 + c1X

2
3 ) + a2X1 + b2X2 + c2X3 + d.

Note that this deformation potential is precisely in the form (4.26) with

P =
1

2
a1X

2
1 + a2X1 +

1

3
d, Q =

1

2
b1X

2
2 + b2X2 +

1

3
d, R =

1

2
c1X

2
3 + c2X3 +

1

3
d.

The sum ΦEG + ΨEG depends on q and further 8 parameters a = (a1, a2),b =
(b1, b2), c = (c1, c2), q and t (the Milnor number of the corresponding elliptic Goren-
stein singularity is 8).

The Jacobian of the potential ΦEG +ΨEG gives the following relations

X1X2 − qX2X1 − tX2
3 + c1X3 + c2 = 0,

X2X3 − qX3X2 − tX2
1 + a1X1 + a2 = 0,(4.31)

X3X1 − qX1X3 − tX2
2 + b1X2 + b2 = 0,

that define the family of algebras Aq
ΦEG+ΨEG

.
The Theorem 3.4.4 from [15] claims that for generic values of the parameters

q, a1, a2, b1, b2, c1, c2, d, t, the family of algebras Aq
ΦEG+ΨEG

is Calabi-Yau.
In fact, they prove a more general statement; in each case we may choose

(4.32) ΦEG =





X1X2X3 − qX2X1X3 − t
3 (X

3
1 +X3

2 +X3
3 ), for E6

X1X2X3 − qX2X1X3 − t
(
1
4X

4
1 + 1

4X
4
2 + 1

2X
2
3

)
, for E7

X1X2X3 − qX2X1X3 − t
(
1
6X

6
1 + 1

3X
3
2 + 1

2X
2
3

)
, for E8
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and taking ΨEG = P (X1)+Q(X2)+R(X3) depending on generic µ+1 parameters
with P , Q, R non-homogeneous polynomials of degree:

deg(P ) =






2, for E6,
3, for E7,
5, for E8,

deg(Q) =






2, for E6,
3, for E7,
2, for E8,

deg(R) =






2, for E6,
1, for E7,
1, for E8,

the sum ΦEG + ΨEG is a Calabi-Yau potential and its Jacobian defines a filtered
family of associative 3-Calabi-Yau algebras with µ + 1 parameters, where µ is the
Milnor number of the respective Gorenstein singularity.

In each case Ẽr, r = 6, 7, 8, this family of filtered algebras Aq
ΦEG+ΨEG

forms

the Rees algebras of the corresponding algebras Aq
ΦEG

with homogeneous potentials

ΦEG given in (4.32). The algebras Aq
ΦEG+ΨEG

/(Ω) where Ω ∈ Z(Aq
ΦEG+ΨEG

) is
a non-scalar central element, give a semi-universal family of associative algebras
(depending on q and µ parameters) which are 3-Calabi-Yau as well.

The theorem 3.4.5 in [15] proves that the center Z(Aq
ΦEG+ΨEG

) is the polynomials

algebra C[Ω] and the quotient-algebra Aq
ΦEG+ΨEG

/Ω of Aq
ΦEG+ΨEG

by the two-sided

ideal 〈Ω〉 gives a flat deformation of Aφτ,t

a,b,c,d
/(φτ,t

a,b,c,d).

The main difficulty in this description, as it remarked by Etingof and Ginzburg,

is to compute the explicit form of the Casimir Ω. In the case of Ẽ6, the central
element is given by [15, 43]:

ΩEG = (−a21q
2 − a2qt− 2a2q

2t− a2q
3t− b1c1qt

2)X1+

t(−b2 − 2b2q − 2b2q
2 − b2q

3 − a1c1qt+ b21t
2 − b2t

3 − b2qt
3)X2+

t(−c2q − 2c2q
2 − 2c2q

3 − c2q
4 − a1b1qt− c21qt

2 + c2t
3 + c2qt

3)X3+

(1 + q)t2c1qtX2X1 + t(−b1 − b1q − b1q
2 − 2b1t

3 − b1qt
3)X2

2+

(−a1q
2 + a1qt

3)X2X3 + (1 + q)t2b1tX3X1 + (a1q
3 + a1qt

3)X3X2+

t(−c1q
2 − c1q

3 − c1q
4 + c1t

3 + 2c1qt
3)X2

3 + (1 + q)t2(1 + t)(1 − t+ t2)X3
2+

(1 + q)t(q3 − t3)X2X3X1 − (1 + q)t(1 + t)(1− t+ t2)qX3X2X1 + (q3 − t3)(1 + q)tX3
3 .

(4.33)

4.3. Algebra UZ as singular limit of an Etingof-Ginzburg Calabi-Yau al-

gebra. In this section we prove some further nice properties of the algebra UZ by
showing that it is isomorphic to a singular limit of an Etingof-Ginzburg Calabi-Yau
algebra. Indeed, the specialisation of relations (4.31) with

a1 =
(q2 − 1)ǫ

(d)
1√

q
, b1 =

(q2 − 1)ǫ
(d)
2√

q
, c1 =

(q2 − 1)ǫ
(d)
3√

q

a2 = Ω1(1 − q), b2 = Ω2(1− q), c2 = Ω3(1− q), t = 0,

(4.34)

gives the commutation relations (1.5). The following result proves the third state-
ment in Theorem 1.5:

Proposition 4.1. The cubic Casimir Ω4 defined in (1.8) is a special limit of the
Etingof-Ginzburg central element ΩEG.

Proof. To deduce the central element Ω4 as a limit of ΩEG, we first need to introduce
a quadratic term X2

1 in ΩEG by applying the commutation relations (4.31). Then,



QUANTISED PAINLEVÉ MONODROMIES, SKLYANIN AND CY ALGEBRAS. 19

by taking the limit as t → 0 of 1
t (ΩEG − a1a2(q

2 + t3)) we obtain:
(4.35)
Ωt=0

EG := (q2−1)qX3X2X1−(q+1)(a2qX1+b2X2+c2qX3)−a1q
2X2

1−b1X
2
2−c1q

2X2
3 .

The specialisation of Ωt=0
EG with (4.34) is a central element in the algebra UZ that

coincides with (q2 − 1)
√
qΩ4. �

From this perspective, one can specialise the potential ΦEG + ΨEG with the
choice of parameters (4.34). In this way, one obtains precisely the potential (1.7).
This potential can be decomposed as ΦUZ = ΦSP +ΨUZ where

ΦSP = X1X2X3 − qX2X1X3 ∈ C〈X1, X2, X3〉♮
is a homogeneous degree 3 potential that yields the skew polynomial algebra of
three variables X1, X2, X3 (1.6) and

ΨUZ =
(q2 − 1)√

q

(
ǫ
(d)
1 X2

1 + ǫ
(d)
2 X2

2 + ǫ
(d)
3 X2

3

)
+(q − 1) (Ω

(d)
3 X3+Ω

(d)
1 X1+Ω

(d)
2 X2),

is the specialisation of ΨEG with the choice of parameters (4.34). Therefore we
have the following result from which the second statement of Theorem 1.5 follows
automatically:

Proposition 4.2. The associative algebra

Aq
ΦUZ

:= C〈X1, X2, X3〉/〈∂1ΦUZ , ∂2ΦUZ , ∂3ΦUZ〉.
coincides with UZ and is a non-homogeneous 3-Calabi-Yau Koszul algebra.

Proof. To prove that Aq
ΦUZ

coincides with UZ we simply observe that the cyclic

derivatives of the potential ΦUZ give precisely the first three expressions in (1.5).
To prove that Aq

ΦUZ
is a 3-Calabi-Yau Koszul algebra we cannot apply Theorem

3.4.5 of [15] directly to the cubic potential (1.7) because of the fact that limit t→0 is
singular. Instead, we use the fact that, as proved in Proposition 3.5, this algebra is
a PBW deformation of the 3-Calabi-Yau Koszul algebra AΦSP

with potential ΦSP

and apply Theorem 3.1 in [4] that states that a non-homogeneous graded 3-algebra
is a Calabi-Yau Koszul algebra if the homogeneous part is a 3-graded Calabi-Yau
Koszul algebra. �

Then we can prove the following:

Theorem 4.3. Consider the algebra The algebra Aq
ΦUZ

∼ UZ, then the quotient

Aq
ΦUZ

/(ΩUZ) is a non-commutative deformation of the Poisson quotient Aφ1,0
ǫ,ω

/(φ1,0
ǫ,ω)

of the algebra Aφ1,0
ǫ,ω

and the following commutative diagram holds:

(4.36) Aφ1,0
ǫ,ω

��

fl. def.
///o/o/o/o/o/o/o/o/o/o Aq

ΦUZ
= UZ

��
Aφ1,0

ǫ,ω
/(φ1,0

ǫ,ω)
fl. def.
///o/o/o Aq

ΦUZ
/(ΩUZ) = UZ/(ΩUZ).

Proof. The statements are combinations of our Theorems 1.5, 3.6 and Theorem
3.4.5 of [15]. �
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4.4. Generalised Etingof-Ginzburg cubics. We now replace the homogeneous
part ΦEG given in (4.29) by Φα,β,γ ∈ C〈X1, X2, X3〉♮

(4.37) Φα,β,γ = X1X2X3 − qX2X1X3 −
1

3
(αX3

1 + βX3
2 + γX3

3 )

and consider the family of filtered algebras Aq
Φα,β,γ

with generators X1, X2, X3

subject to the relations

X1X2 − qX2X1 = γX2
3 ,

X2X3 − qX3X2 = αX2
1 ,

X3X1 − qX1X3 = βX2
2 .

Due to the results in [22, 23] we know that algebras with homogeneous potentials
from (4.37) are non-commutative Koszul 3-Calabi-Yau for certain choices of the
parameters α, β, γ but they are not always PBW or PHS.

4.4.1. Digression. Here we list some alternative definitions of the PBW property
used in the literature:2

Definition 4.4. The associative filtered algebra A is a PBW-algebra if

(1) The algebra A is a Koszul and has Poincaré-Hilbert series PA(t) =
1

(1−t)n .

(2) The elements xi1
1 , xi2

2 , . . . , xin
n , where i1, . . . , in ∈ Z, form a linear basis.

(3) There is an ordering on generators x1, . . . , xn w.r.t. which the defining
relations form a Gröbner basis.

(4) The associated graded algebra is canonically isomorphic to the algebra gen-
erated by the homogeneous parts of quadratic relations.

For example, the algebra of commutative polynomials satisfies (2) and in the
case n = 3 is a PHS algebra. Note that the fourth definition implies that any
homogeneous algebra automatically has the PBW property.

Example 4.5. Let A be the quantum algebra given by three generatorsX1, X2, X3

and three relations

X2
3 + aX1X2 + bX2X1, X2

2 + aX3X1 + bX1X3, X2
1 + aX2X3 + bX3X2

and the parameters

(a, b) 6= (0, 0), (a3, b3) 6= (1, 1), (a+ b)3 6= −1.

This algebra (number P1, table VI in [23]) is PBW with respect to the definitions
(1) (2) and (4) in 4.4 but not PBW in sense of the definition (3). Conversely, the
algebra B given by three generators Y1, Y2, Y3 and three relations

Y1Y2 + bY2Y1, Y3Y1 + bY1Y3, Y2Y3 + bY3Y2, b 6= 0

(which is number PII, table VI in [23]) is a PBW-algebra for all definitions in 4.4

2We are in debt to Natalia Iyudu for her patient explanation and clarification of different
definitions of PBW property.
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4.4.2. Calabi-Yau-Koszulity and PBW- properties of algebras whose potential is non
homogeneous. Here we consider algebras whose potential has homogeneous cubic
part of Φα,β,γ as well as non-homogeneous terms. Namely, we extend the family
of algebras Aq

ΦEG+ΨEG
by introducing the potential Φα,β,γ +ΨEG and considering

the family Aq
Φα,β,γ+ΨEG

whose relations take the form

X1X2 − qX2X1 − γX2
3 + c1X3 + c2 = 0,

X2X3 − qX3X2 − αX2
1 + a1X1 + a2 = 0,

X3X1 − qX1X3 − βX2
2 + b1X2 + b2 = 0.

(4.38)

Inspired by B. Shoikhet [49], we call this generalised algebra family by Etingof-
Ginzburg type algebras.

The generalised Etingof-Ginzburg algebra (4.38) is a Koszul, 3-Calabi-Yau for
the cases when all constants α, β, γ are equal and non-zero, or only one of them is
zero, or if two of the constants are equal and non-zero but q = 1 ([23], Table VIII).

Below, for γ = 0 we have computed the central element. We stress that the
corresponding Etingof-Ginzburg algebras are not Calabi-Yau for generic values of
q, α and β.

Lemma 4.6. For γ = 0, the element

ΩGEG = q(1 + q)(−1 + q3)x3x2x1 + q3(1 + q)αx3
1 + (1 + q)βx3

2 − a1q
2(1 + q + q2)x2

1

+ c1q(1 + q)αβx2x1 − b1(1 + q + q2)x2
2 − c1q

2(1 + q + q2)x2
3−

− qx1(a2(1 + 2q + 2q2 + q3) + b1c1α) + x2(−b2(1 + 2q + 2q2 + q3)− a1c1qβ)−
qx3(c2(1 + 2q + 2q2 + q3) + c21αβ)

(4.39)

is a central element in the algebra (4.38).

As already mentioned, the algebra Aq
ΦEG+ΨEG

is a non-commutative Calabi-Yau

algebra. Moreover, in [15] it is shown that the Hilbert-Poincaré polynomial of the
algebra Aq

ΦEG+ΨEG
is 1

(1−t)3 , i.e. this is a PHS-algebra. Conversely, as follows

from Example 4.5, the homogeneous degree 3 part Aq

Φd
t,0,0,0

of this algebra is not a

PBW-algebra in the sense of (4) in Definition 4.4.
In the next subsection we discuss a known example of the generalised Etingof–

Ginzburg corresponding to α = β = γ = 0 for which the Etingof-Ginzburg type
algebra is “good” Koszul Calabi-Yau.

4.5. Odesskii algebra of Sklyanin type. In [34], Odesskii defined a quadratic
algebra Oq with three generators X1, X2, X3 satisfying the following relations:

(4.40) X1X2 − qX2X1 = X3; X2X3 − qX3X2 = X1; X3X1 − qX1X3 = X2,

and proved that, for generic q, the center Z(Oq) is generated by the following
element Ωq := (q2 − 1)X1X2X3 +X2

1 + q2X2
2 +X2

3 . When q → 1 the algebra tends
to the universal enveloping U(sl2). Odesskii called the algebra Oq a Sklyanin type
algebra.

Theorem 4.7. The Odesskii algebra Oq is a PBW deformation of the 3-Calabi-Yau
Koszul algebra of skew polynomials defined by the potential

(4.41) ΦO := ΦSP − 1

2
(X2

1 +X2
2 +X2

3 ) ∈ C〈X1, X2, X3〉♮.
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Proof. This algebra is a PBW-algebra in the sense of all definitions in 4.4 because
of the good PBW-properties in all senses of its homogeneous degree 3 part (see
second case in the Example 4.5). To check these properties we again apply the
Theorem 3.1 in the case N = 2 of R. Berger et R. Taillefer [4]. �

Remark 4.8. This algebra is related to the following version of a quantised uni-
versal enveloping algebra for sl2 ([29]): make a rotation in the (X1, X2) plane:

X1 → −X2; X2 → X1; X3 → X3

and then the rescaling

(4.42) X1 → (q − q−1)X1; X2 → (q − q−1)X2; X3 → (q − q−1)X3,

maps the Odesskii algebra to the algebra with relations

(4.43) qX1X2 −X2X1 = (q − q−1)X3;

qX2X3 −X3X2 = (q − q−1)X1;

qX3X1 −X1X3 = (q − q−1)X2

and with the Casimir

Ω̃O := −qX1X2X3 + q2X2
1 +X2

2 +X2
3 .

Remark 4.9. This quantum Casimir cubic goes to the famous Markov cubic in
the limit q → 1.

4.6. Sklyanin algebra with three generators. One of the most famous exam-
ples of a 3-Calabi-Yau algebra is the graded associative algebra Q3(E , a, b, c) which
is related to a (possibly degenerate or singular) elliptic curve E

(4.44) Q3(E , a, b, c) = C〈X1, X2, X3〉/JΦ

with

JΦ = 〈aX2X3+bX3X2+cX2
1 , aX3X1+bX1X3+cX2

2 , aX1X2+bX2X1+cX2
3 〉,

where (a, b, c) ∈ C3 are some parameters. This algebra is a special sub-case of the
one generated by ΦEG with q = b

a and t = c
a .

Artin and Schelter [2] proved that, if the parameters (a, b, c) ∈ C3 define the
homogeneous coordinates of a point in E , this algebra satisfies the Poincare-
Birkhoff-Witt condition for all definitions in 4.4 except (3) and hence it can be
considered as a deformation of the polynomial ring C[x1, x2, x3]. For this reason,
this algebra is often called the Artin–Schelter–Tate–Sklyanin algebra with three
generators, but in this paper, for brevity, we call “Sklyanin algebra” any graded as-
sociative algebra with quadratic relations which satisfies the Poincare-Birkhoff-Witt
or PHS-conditions and that can be considered as a deformation of the polynomial
ring C[x1, x2, x3]. Iyudu and Shkarin [22] have proved that this algebra is a CY
algebra.
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4.7. Generalised Sklyanin algebras with three generators. Iyudu and Shkarin
([22]) introduced the generalised Sklyanin algebra with three generators as the fol-
lowing quotient of the free associative algebra

(4.45) Q̃3(a, b, c, α, β, γ) = C〈X1, X2, X3〉/JGS

where

JGS = 〈X2X3 − aX3X2 − αX2
1 , X3X1 − bX1X3 − βX2

2 , X1X2 − cX2X1 − γX2
3 〉,

where (a, b, c, α, β, γ) ∈ C6 is a generic set of complex constants.
These generalised Sklyanin algebras are not always potential and in fact, for

generic (a, b, c, α, β, γ) they have neither good PBW-properties nor Koszul proper-
ties. However, for special values of the parameters they do and a complete classifi-
cation is given in the following result [22]:

Theorem 4.10. The generalised Sklyanin algebra is PHS if and only if at least one
of the following conditions is satisfied:

(1) For a = b = c 6= 0 and (a3, αβγ) 6= (−1, 1) - this case includes the quadratic
Sklyanin algebra Q3(E , a, c, α

3 ).
(2) For (a, b, c) 6= (0, 0, 0) and either α = β = a− b = 0 or γ = α = c− a = 0

or β = γ = b− c = 0.
(3) For a specific choice of all parameters in terms of a root of unity, it is a

“finite” algebra which is out of our interest.
(4) For a = b = c = 0 and αβγ 6= 0. This algebra is potential without the cubic

term X1X2X3 and is out of our interest.
(5) For α = β = γ = 0 and (a, b, c) 6= (0, 0, 0), this is the case of the skew

polynomial algebra.

In all these cases, the generalised Sklyanin algebra is potential and Koszul. The
potential can be written as follows:

ΦGS =
1

3
(αX3

1 + βX3
2 + γX3

3 ) + ãX1X2X3 + b̃X2X1X3,

where ã and b̃ depend on a, b, c, q.

4.8. Generalised Sklyanin-Painlevé potential. Motivated by the idea of merg-
ing together generalised Sklyanin algebra and our algebra (1.5), we consider the
following generalisation of the potential of Etingof and Ginzburg to include the
first two cases of Theorem 4.10:

(4.46) Φ = ΦGS +ΨEG

For the choice of parameters as in the cases of Theorem 4.10, the algebra

Aq := C〈X1, X2, X3〉/J,
where

J = 〈∂X1Φ, ∂X2Φ, ∂X3Φ〉
is a generalised Sklyanin-Painlevé algebra (1.9) and gives a PHS- or PBW-type
3-Calabi-Yau deformation of C〈X1, X2, X3〉/JΦGS

.
For special choices of the parameters α, β, γ, a, b, c, a1, b1, c1, a2, b2, c2, the space

of objects Aq
♮ := Aq/[Aq,Aq] appears in the Physics literature to which section 6

is dedicated.
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Remark 4.11. It is interesting to observe the correspondence between the con-
ditions on the constants α, β and γ in the generalised Etingof-Ginzburg algebras
and the quasiclassical conditions on the existence Poisson-Nambu 3d polynomial
algebras in the the paper of L. Vinet and A. Zhedanov ([55]) where they classify
various Poisson analogues of the Askey-Wilson algebras AW(3). This correspon-
dence could be behind the fact that the potential and the central element in the
generalised Etingof-Ginzburg algebras are, in general, different, despite having the
same semi-classical limit.

5. Poisson structures and degenerations of elliptic curves

Motivated by the observation by M. Gross, P. Hacking and S.Keel (see Example
6.13 of [21]) that the family associated to (2.13) is a log-symplectic Calabi-Yau
variety, or in other words, that the projective completion Y of (2.13) with the
cubic divisor D∞ given by a triangle of lines, is an example of a Looijenga pair, in
this section we study the degenerations of a certain class of Looijenga pairs (Y,D).

In this context we need to fix some notation and assumptions to make our dis-
cussion clear. We consider the polynomials φ ∈ C[x1, x2, x3] of the form (1.2), or
(1.3) or belonging to Table 1. We list all such polynomials in the first column of
Table 3.

Polynomials φ
δ

weights
φ∞

x6
1

6 +
x3
2

3 +
x2
3

2 + τx1x2x3 + η5x
5
1 + · · ·+ ω,

1
(1, 2, 3)

x6
1

6 +
x3
2

3 +
x2
3

2 + τx1x2x3

x4
1

4 +
x4
2

4 +
x2
3

2 + τx1x2x3 + η3x
3
1 + · · ·+ ω,

2
(1, 1, 2)

x4
1

4 +
x4
2

4 +
x2
3

2 + τx1x2x3

x3
1

3 +
x3
2

3 +
x3
3

3 + τx1x2x3 + η2x
2
1 + · · ·+ ω,

3
(1, 1, 1)

x3
1

3 +
x3
2

3 +
x3
3

3 + τx1x2x3

x1x2x3 + x5
1 + x2

2 + x2
3 + η4x

4
1 + · · ·+ ω,

1
(2, 5, 3)

x1x2x3 + x5
1 + x2

2

x1x2x3 + x4
1 + x2

2 + x2
3 + η3x

3
1 + · · ·+ ω,

2
(1, 2, 1)

x1x2x3 + x4
1 + x2

2

x1x2x3 + x3
1 + x3

2 + x2
3 + η2x

2
1 + · · ·+ ω,

3
(1, 1, 1)

x1x2x3 + x3
1 + x3

2

x1x2x3 +
∑3

k=1(ωkxk − ǫkx
2
k) + ω4

3
(1, 1, 1)

x1x2x3

Table 3. del Pezzo surfaces as Loojenga pairs - in the last row
we dropped the index (d).

In each case, the projective completion Mφ of Mφ in the weighted projective
spaces WP3 are del Pezzo surface of degree δ [16, 15]. We denote by (x0, . . . , x3) the
weighted homogeneous coordinates in WP3. We list the degree δ and the weights
of the variables (x1, x2, x3) in the second column - we always assume the weight of
the homogeneous coordinate x0 to be 1.

For each polynomial φ ∈ C[x1, x2, x3] in Table 3, we take the weighted homo-
geneous part φ∞ and list it in the third column. The equation φ∞ = 0 defines a
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projective curve in WP2. The pair (Mφ, D∞) is a Looijenga pair and Mφ \D∞ is
the affine surface Mφ ∈ C3.

The projectivisation PMφ of Mφ is a projective manifold of dimension 1 embed-
ded in P2 by the linear system given by sections of a line bundle of degree δ - for
degenerated cubic divisors of del Pezzo degree 2 and 1 such sections are expressed
via Gross-Hacking-Keel θ-functions.

The coordinate ring of Mφ \D∞ is C[x1, x2, x3]/〈φ〉, which corresponds to the
cone over the projectivisation PMφ ∈ P

2, namely

C[x1, x2, x3]/〈φ〉 = ⊕kH
0(PMφ, L

⊗k),

where L is the trivial bundle of degree δ. By taking the generalisation of the
Poincaré residue for weighted projective spaces (see for example, [13]) of the global
3-form in WP3 along the divisor D∞, one obtains a symplectic form on the quo-
tient C[x1, x2, x3]/〈φ〉 which descends from the Nambu bracket restricted to the
symplectic leaves φ = 0.

In this Section we carry out the above construction for each φ in Table 3. We
also consider special cases and degenerations, namely singular limits obtained by
rescaling the weighted homogeneous coordinates and taking limits of such rescaling
to infinity. We show that such degenerations correspond to rational degenerations
of elliptic curves.

5.1. Degenerations of the Sklyanin algebra with three generators. In this

subsection we consider φ∞ =
x3
1

3 +
x3
2

3 +
x3
3

3 +τx1x2x3, a special case of the third row
of Table 3. This case is related to the quasi classical limit of the Sklyanin algebra
(4.44); namely, take a, b such that a+ b is proportional to 1− q, the quasi-classical
limit q3(E , τ) (where τ = c

3 ) of the Sklyanin algebra Q3(E , a, b, c) carries a Poisson
structure (which is also called Poisson Sklyanin algebra). In [35] and [40] it was
shown that this Poisson algebra belongs to a family of Poisson structures on the
moduli space of parabolic vector bundles of degree 3 and rank 2 on the projective
space P2. The explicit expression for the elliptic Poisson brackets of q3(E , τ) is the
natural one carried by the family of the Hesse cubics

(5.47) φτ =
1

3
(x3

1 + x3
2 + x3

3) + τx1x2x3 = 0

that define the embedding of E in P2. Namely the quadratic brackets on the affine
space C3 which define a quadratic Poisson algebra structure on

Aφτ
= C[x1, x2, x3]/φτ = ⊕k≥0H

0(φτ , L
⊗k)

and L is the degree 3 line bundle over the cubic curve φτ are:

(5.48) {x1, x2} = x2
3 + τx1x2; {x2, x3} = x2

1 + τx2x3; {x3, x1} = x2
2 + τx3x1.

It a straightforward computation to check that the algebra q3(E , τ) is invariant
under the Heisenberg group H3 and unimodular (see [38]).

5.1.1. Rational degenerations of Sklyanin Poisson algebra and triangular divisor
of Painlevé projective surfaces. A. Odesskii in [33] proposed a description of all
rational degenerations for a generalisation of elliptic algebras known as Sklyanin–
Odesskii–Feigin algebras, and their quasi-classical counterparts - namely rational
Poisson quadratic algebras. We shall restrict ourselves to one example of it in the
case of the Poisson elliptic algebra q3(E , τ). It is shown in [33] that the center of
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the rational degeneration R1
3(− 2

3 ) of the Sklyanin algebra Q3(E , a, b, c) is generated
by one polynomial of degree 3 in P

2

φ̃ =
1

3
y32 + y1y2y3.

Indeed, if we take the Casimir element φ of q3(E , τ) given by the Hesse cubic (5.47)
and take the rational limit τ → ∞ which gives us the triangle configuration in
Figure 1

{x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}
in the coordinates yi, i = 1, 2, 3 defined as:

y1 =
√
τx1, y2 = x2, y3 =

√
τx3,

we obtain φ̃.
The same triangle configuration is the divisor at infinity of the projective com-

pletion φ̄P →֒ P3 of the general Painleve cubic (2.13).

Remark 5.1. It is clear that, in the limit τ → ∞, the Poisson brackets (5.48) give
the cluster Poisson structure ([18])

{x1, x2} = x1x2; {x2, x3} = x2x3; {x3, x1} = x3x1,

but in the degenerated coordinates y1, y2, y3 these brackets read

{y1, y2} = y1y2; {y2, y3} = y2y3; {y3, y1} = y22 + y3y1.

Because these are brackets on C3, they define a quadratic Poisson algebra structure
on

Aφ̃ = C[y1, y2, y3]/φ̃ = ⊕k≥0H
0(φ̃, L⊗k)

where L is the degree 3 line bundle over the cubic divisor 1
3y

3
2 +y1y2y3 = 0 which is

the union of the line y2 = 0 and the conic 1
3y

2
2+y1y3 = 0. The rational degeneration

deforms the cluster Poisson structure. We will consider the quantum version of this
in subsection 6.4.

5.1.2. Elliptic curves in weighted projective spaces, related Sklyanin Pois-

son structures and their rational degenerations. We deal first with the poly-
nomial φ in the third row of Table 3. As discussed in subsection 4.2, it is convenient
to write this polynomial in the form

φτ,t
a,b,c,d = τx1x2x3+

t

3
(x3

1+x3
2+x3

3)+
1

2
(a1x

2
1+b1x

2
2+c1x

2
3)+a2x1+b2x2+c2x3+d.

The projectivisation PMφτ,t

a,b,c,d
of the hypersurface Mφτ,t

a,b,c,d
is a curve in P2 and

Mφτ,t

a,b,c,d
can be seen as a line-bundle over PMφτ,t

a,b,c,d
. When t = 1, a = b = c =

d = 0 the surface Mφτ,1
0,0,0,0

is an affine cone over a normally embedded elliptic curve

in P2 of degree 3 given by the homogeneous cubic

{
φ∞ = τx1x2x3 +

1

3
(x3

1 + x3
2 + x3

3) = 0
}
⊂ P

2.

This cone surface Mφτ,1
0,0,0,0

is an example of a simple elliptic Gorenstein singu-

larity (Ẽ6 case corresponding to the elliptic singularities list). Note that the same
formula for φ also defines a hypersurface in C3 with a triple point singularity in 0.

Let us now deal with the first two lines of Table 3. Denote by φ1,1,2 and φ2,1,3

the φ∞ in the second and first row respectively.
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The surface

(5.49)
{
φ1,1,2 = τ1x1x2x3 +

1

4
x4
1 +

1

4
x4
2 +

1

2
x2
3 = 0

}
⊂ C

3

has a double point in C3 that is an elliptic Gorenstein singularity of type Ẽ7.
It defines the affine cone over a homogeneous degree 4 elliptic curve in weighted
projective space WP1,1,2 defined by the same equation φ1,1,2 = 0. Similarly, the

surface of type Ẽ8

(5.50)
{
φ2,1,3 = τ2x1x2x3 +

1

3
x3
1 +

1

6
x6
2 +

1

2
x2
3 = 0

}
⊂ C

3

which is the affine cone over a homogeneous degree 6 elliptic curve in weighted
projective space WP2,1,3 defined by the same equation φ2,1,3 = 0.

From an algebraic point of view the coordinate rings Aφ discussed in subsection
4.2, and Aφ1,1,2 and Aφ2,1,3 are graded rings such that

(1) Aφ = C[x1, x2, x3]/φ = ⊕k≥0H
0(φ, L⊗k) where L is the degree 3 line bundle

over the cubic curve φ and the sections of L form the linear system3 defining
the embedding φ →֒ P

2;
(2) Aφ1,1,2 = ⊕k≥0H

0(φ1,1,2, L
⊗k) = C[x1, x2, x3]/φ1,1,2, where L is the degree

2 line bundle over the nodal curve φ1,1,2 and the sections of L define the
embedding φ1,1,2 →֒ WP1,1,2.

(3) Aφ2,1,3 = ⊕k≥0H
0(φ2,1,3, L

⊗k) = C[x1, x2, x3]/φ2,1,3 where L is the degree
1 line bundle over the nodal curve φ2,1,3 and the sections of L define the
embedding φ2,1,3 →֒ WP2,1,3.

We apply the same procedure of degeneration as above, namely we rescale

x1 → y13
1/3, x2 = − y2

τ221/231/3
, x3 = y32

1/2,

and take the limit τ2 → ∞ to obtain

φ2,1,30
= y31 + y23 − y1y2y3.

The corresponding Jacobian Poisson brackets read as

(5.51) {y1, y2} = 2y3 − y1y2, {y2, y3} = 3y21 − y3y2, {y3, y1} = −y1y3,

and define a Posson algebra structure on the ring

(5.52) Aφ2,1,30
:= C[y1, y2, y3]/φ2,1,30 = ⊕k≥0H

0(φ2,1,30 , L
⊗k),

where L is degree 1 line bundle over the singular curve φ̃2,1,30 = 0, i.e. the rational
nodal cubic of arithmetic genus 1 embedded in WP2,1,3 . Then

Mφ2,1,30
:= SpecAφ2,1,30

is the affine cone in C3 over the singular curve φ2,1,30 = 0.
Similarly by

x1 = − 1

21/4
√
τ1

y1, x2 =
1

21/4
√
τ1

y2, x3 =
√
2y3,

in the limit τ1 → ∞ one has

(5.53) φ1,1,20 = y23 − y1y2y3.

3An explicit construction of linear systems defined by sections of L for degree 2 and 1 in terms
of appropriate theta functions similar to this case can be found, for example, in the paper [46].
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The corresponding Jacobian Poisson brackets read as

(5.54) {y1, y2} = 2y3 − y1y2, {y2, y3} = −y3y2, {y3, y1} = −y1y3,

and define a Posson algebra structure on the ring

(5.55) Aφ1,1,20
:= C[y1, y2, y3]/φ1,1,20 = ⊕k≥0H

0(φ1,1,2, L
⊗k),

where L is degree 2 line bundle over φ1,1,2 = 0, the union of two rational curves
y3 = 0 and y3−y1y2 = 0 embedded in WP1,1,2 and

Mφ1,1,20
= SpecAφ1,1,20

is the affine cone in C3.
In section 6.3 we provide a quantisation of these two degenerate cases and cal-

culate the central elements - the quantisation of the full non-degenerate case can
be found in [15].

Note that in the weighted projective space, there are many different homogeneous
polynomials φ of degree 4 that define the same quotient by the Jacobian ideal. For
example

(5.56)
{
φ̃1,1,2 = τ1x̃1x̃2x̃3 +

1

3
(x̃2

3 + x̃3x̃
2
1 + x̃1x̃

3
2) = 0

}
⊂ WP1,1,2,

defines the same algebra as φ1,1,2 and

(5.57)
{
φ̃2,1,3 = τ2x̃1x̃2x̃3 +

1

3
(x̃3

1 + x̃3
2x̃3 + x̃2

3) = 0
}
⊂ WP2,1,3,

defines the same algebra as φ2,1,3.
In [36], A. Odesskii and the third author described two non-rational Poisson

morphisms between the Poisson algebra of Jacobian type associated with the Hesse
cubic (5.48) in the variables and the two homogeneous polynomials φ1,1,2:

(5.58) x̃1 = x
3
2
1 x

− 3
4

3 , x̃2 = x2x
1
4
3 x

− 1
2

1 , y3 = x
1
2
3

and φ2,1,3:

(5.59) x̃1 = x1, x̃2 = x2x
− 1

2
3 , x̃3 = x

3
2
3 .

As discussed in [36], the non-rational Poisson morphisms (5.58), (5.59) have their
origin in the Calabi-Yau mirror symmetry dualities ([19]) and the question of their
“quantum” interpretation was posed. Because by rescaling x̃1, x̃2, x̃3 in exactly the
same way as x1, x2, x3 one can produce the same rational limits φ2,1,30 , φ1,1,20 , the
quantisation produced in subsection 6.3 gives a partial answer to this question by
providing a quantisation for some rational limits of φ̃1,1,2 and φ̃2,1,3.

5.1.3. Degnerate Sklyanin algebras with three generators. The Sklyanin
algebra Q3(E , a, b, c) has the following degeneration locus

D = {(1, 0, 0); (0, 0, 1); (0, 0, 1)}⊔ {(a, b, c) | a3 = b3 = c3}.
Following [50], we call degenerate Sklyanin algebra the algebra Q3(E , a, b, c) with
(a, b, c) ∈ D.

It was proven by P. Smith that such a degenerate Sklyanin algebra is isomorphic
to C〈u, v, w〉/J where the ideal J is J = 〈u2 = v2 = w2 = 0〉 if a = b, and J =
〈uv = vw = wu = 0〉 if a 6= b. In the semiclassical limit the latter case corresponds
to φ = uvw, which is the decorated character variety of π1(P

1 \ {z1, z2, z3}) [10].



QUANTISED PAINLEVÉ MONODROMIES, SKLYANIN AND CY ALGEBRAS. 29

Remark 5.2. The latter model has a quiver representation with potential Q =
uu∗ + vv∗ + ww∗ − uvw − wvu [8].

6. Non-commutative cubics and QFT deformations

There is an interesting similarity between the formulae for the quantum potential
Φ defined in (4.46) and the non-commutative potentials describing the marginal
and relevant deformations of the N = 4 super Yang-Mills (SYM) theory in four
dimensions with gauge group U(n) (see [3] for a physical background) This theory
is written in terms of the N = 1 SYM theory with three adjoint chiral super-fields
X1, X2, X3 coupled by the potential:

Φsmooth = gTr([X1, X2]X3)

with coupling constant g, where, following the physics literature Tr denotes the
map A → A♮. From now on we drop Tr, i.e. we denote potentials and their images
in A♮ with the same symbol.

The moduli space of supersymmetric gauge theories is an important and rather
well-studied object (a mathematical account of this theory can be found in the
recent paper of C. Walton [56]). The marginal deformations, which preserve some
conformal symmetry, of the N = 4 Superconformal Field Theory have many in-
teresting applications. In particular, within the framework of the AdS/CFT corre-
spondence, they have a nice Supergravity dual descriptions.

If one chooses to preserve N = 1 Super Conformal Field Theory then the moduli
space of the marginal deformations is given by the potential:

(6.60) Φmarg = X1X2X3 − qX2X1X3 +
1

3
λ(X3

1 +X3
2 +X3

3 ).

Another important class of deformations is provided by relevant deformations
which describes the theory away from the Ultra-Violet conformal fixed point:

Φrel = m1X
2
1 +m2(X

2
2 +X2

3 ) +
∑

k

dkXk.

The structure of the vacua ofD-brane gauge theories relates to Non-Commutative
Geometry via the potentials Φphys by so called F − term constraints:

(6.61)
∂Φphys

∂Xk
= 0, k = 1, 2, 3

where Φphys = Φmarg + Φrel. This gives rise to the following non homogeneous
relations:

(6.62)






X1X2 − qX2X1 = −ΛX2
3 −m2X3 − d3

X2X3 − qX3X2 = −ΛX2
1 −m1X1 − d1

X3X1 − qX1X3 = −ΛX2
2 −m2X2 − d2

This algebra is a particular case of the algebra Aq
ΦEG+ΨEG

studied in subsection
4.4 for α = β = γ = −Λ, a1 = m1, b1 = c1 = m2, a2 = d1, b2 = d2, c2 = d3, or in
other words, of the general algebra Aq introduced in subsection 4.8.

Remark 6.1. We precise how this deformation algebra relates to previously stud-
ied:

• If Λ = 0 and m1 = m2 = − 1
2 , ei = 0, i = 1, 2, 3 then we have the

potential of (4.41) and this algebra coincides with the Odesskii degeneration
of Sklyanin algebra in subsection 4.5;
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• We see that for Λ = 0, m1 = m2 =
√
q(q−1 − q) and di = (1− q)Ω

(V I)
i the

Poisson algebra (6.62) has the form (1.5).
• If Λ = c

a and q = b/a, then this Poisson algebra coincides with a deforma-
tion of the quadratic Sklyanin Poisson algebra with three generators q3(E).
The latter can be obtained from this deformation by setting the massess to
zero: m1 = m2 = 0.

6.1. Semi-classical limits. We now take the semi-classical limit of (6.62) and
compare it with the cubic surfaces Mφ := Spec(C[x1, x2, x3]/〈φ = 0〉), for φ in
table 1. These cubics are endowed with the natural Poisson bracket (2.11). By the
correspondence principle

lim
q→1

[X1, X2]

1− q
= {x1, x2},

and, applying the algebra relations

[X1, X2] = (q − 1)X2X1 − ΛX2
3 −m2X3 − d3

so that

{x1, x2} = x1x2 − lim
q→1

Λ

1− q
X2

3 − lim
q→1

m2X3

1− q
+ lim

q→1

d3
1− q

,

and similarly

{x2, x3} = x2x3 − lim
q→1

Λ

1− q
X2

1 − lim
q→1

m1X1

1− q
+ lim

q→1

d1
1− q

,

{x3, x1} = x1x3 − lim
q→1

Λ

1− q
X2

2 − lim
q→1

m2X2

1− q
+ lim

q→1

d2
1− q

.

By a slight abuse of notation, we denote the classical masses again by m1,m2,
the classical limit of Λ by λ and put δi = limq→1

di

1−q , so that the Casimir function

for this Poisson algebra is

φcl,tot(x1, x2, x3) = x1x2x3−m1x
2
1−m2(x

2
2+x2

3)−
λ

3
(x3

1+x3
2+x3

3)+δ1x1+δ2x2+δ3x3.

We see that the corresponding Poisson algebras include all interesting families of
quadratic-linear-constant Poisson brackets in C[x1, x2, x3] and, in particular, for
λ = 0, the family coincides with the Poisson structure on the Painlevé monodromy
data cubics. At the same time, by neglecting the terms of degree < 3 in φcl,tot we
obtain

(6.63) φcl,marg(x1, x2, x3) = x1x2x3 −m1x
2
1 −m2(x

2
2 + x2

3)−
λ

3
(x3

1 + x3
2 + x3

3),

that is a perturbation of the classical Sklyanin algebra q3,1(E) (see section 5.1).

6.2. Degeneration of quadratically perturbed q3-Sklyanin brackets and

Gross-Siebert theta-functions. Consider the special case of (6.63) with m2 = 0
and λ = 3

m3
1
:

(6.64) φcl,1(x1, x2, x3) = x1x2x3 −m1x
2
1 −

1

m3
1

(x3
1 + x3

2 + x3
3).

This is an example of a central element for the classical Sklyanin algebra perturbed
by the quadratic term m1x

2
1.
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We introduce the coordinates yi, i = 1, 2, 3 connected to x1, x2, x3 by the follow-
ing relations:

x1 =
y1√
m1

, x2 =
y2√
m1

, x3 = m1y3,

so that the Casimir now reads as

(6.65) φcl,2(y1, y2, y3) = y1y2y3 − y21 − y33 +
(y31 + y32)√

m9
1

.

In the infinite mass limit m1 → ∞, (6.65) goes evidently to

(6.66) φcl,3(y1, y2, y3) = y1y2y3 − y21 − y33

Note that up to permutations of y1, y2, y3, φcl,3 is the same as φ̃2130 , and therefore,
as discussed at the end of subsection 5.1.2, the cubic surface Mφcl,3

⊂ C3 given

by φcl,3(y1, y2, y3) = y1y2y3 − y21 − y33 can be considered as an affine cone over a
singular genus one rational curve Esing ⊂ WP(3, 1, 2). Its coordinate ring

C[Mφcl,3
] = C[y1, y2, y3]/(y1y2y3 − y21 − y33)

is isomorphic to the ring of sections ⊕k≥0H
0(Esing ,O(k)) of a degree 1 line bundle

O(1)) on the nodal rational curve Esing of arithmetic genus 1 (see [21] ch.5). This
cone is parametrised by toric theta-functions ϑi, i = 1, 2, 3 satisfying the relation

ϑ1ϑ2ϑ3 = ϑ2
1 + ϑ3

3

(see Theorem 2.34 of [21]).
Now we come back to the Poisson algebra corresponding to (6.64):

{x1, x2} = −3x2
3

m3
1

+x1x2; {x2, x3} = −3x2
1

m3
1

−2m1x1+x2x3; {x3, x1} =
3x2

2

m3
1

+x3x1

which will be written in the degenerated coordinates yi, i = 1, 2, 3 as

(6.67)

{y1, y2} = −3y23+y1y2; {y2, y3} = − 3y21√
m9

1

−2y1+y2y3; {y3, y1} =
3y22√
m9

1

+y3y1.

From this, in the infinite mass limit we obtain once again (compare with (5.51)) a
perturbed cluster Poisson structure:

(6.68) {y1, y2} = −3y23 + y1y2; {y2, y3} = −2y1 + y2y3; {y3, y1} = y3y1

which defines the Poisson algebra structure on the coordinate ring of the affine cone
over the curve Esing.

If, instead, we introduce the coordinates ỹi, i = 1, 2, 3 connected to x1, x2, x3 by
the following relations:

x1 =
ỹ1√
m1

, x2 = ỹ2, x3 =
√
m1ỹ3,

the Casimir now reads as

(6.69) φcl,4(ỹ1, ỹ2, ỹ3) = ỹ1ỹ2ỹ3 − ỹ21 −
1

m3
1

(
ỹ31√
m3

1

+ ỹ32 +m
3/2
1 ỹ33).

In the infinite mass limit m1 → ∞, (6.69) goes evidently to

(6.70) φcl,5(ỹ1, ỹ2, ỹ3) = ỹ1ỹ2ỹ3 − ỹ21
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Note that (up to the change of variable ỹ1 = y1, ỹ2 = y3, ỹ3 = y2) φcl,5 is the same

as φ̃1120 , and therefore, as before, the cubic surface Mφcl,4
⊂ C

3 is an affine cone

over the singular curve Ẽsing ⊂ WP(2, 1, 1). Its coordinate ring

C[Mφcl,4
] = C[ỹ1, ỹ2, ỹ3]/(ỹ1ỹ2ỹ3 − ỹ21)

is isomorphic to the ring of sections ⊕k≥0H
0(Ẽsing ,O(k)) of a degree 2 line bundle

O(1)) on the degenerated curve Ẽsing which is a union of conic and a line. This
cone is parametrised by Gross-Siebert toric theta-functions ϑi, i = 1, 2, 3 satisfying
the relation

(ϑ1ϑ2 − ϑ3)ϑ3 = 0

(see Proposition 40 of [6]).
By writing the Poisson algebra corresponding to (6.64) in the new coordinates

ỹ1, ỹ2, ỹ3 and taking the infinite mass limit we obtain once again (compare with
5.51) a perturbed cluster Poisson structure:

(6.71) {ỹ1, ỹ2} = ỹ1ỹ2; {ỹ2, ỹ3} = −2ỹ1 + ỹ2ỹ3; {ỹ3, ỹ1} = ỹ3ỹ1

which defines the Poisson algebra structure on the coordinate ring of the affine cone
over the curve Ẽsing.

6.3. Quantisation of Gross-Siebert theta functions. In [6], P. Bousseau pro-
posed a deformation quantisation for some Poisson algebra structures connected
with mirror duals of Looijenga pairs (Y,D) where Y is a smooth projective sur-
face and D some singular anticanonical divisor. As examples he considered the
deformation quantisation of function algebras on affine varieties Vr where r is the
number of irreducible components of the cubic divisor D. When r = 1 the variety
V1 is exactly the affine cone of the nodal curve embedded in the weighted projective
space WP 2,1,3 :

V1 = Mφ̃2,1,30
= SpecAφ̃2,1,30

where Aφ̃2,1,3
is given in (5.52). The Poisson algebra on V1 is given by the brackets

(5.51).
The Proposition 41 in [6] states that the relations





√
q̂Ŷ3Ŷ1 − 1√

q̂
Ŷ1Ŷ3 = 0√

q̂Ŷ2Ŷ3 − 1√
q̂
Ŷ3Ŷ2 = (q̂ − q̂−1)Ŷ1√

q̂Ŷ1Ŷ2 − 1√
q̂
Ŷ2Ŷ1 = (q̂3/2 − q̂−3/2)Ŷ 2

3

and the central element

Ω̂2,1,3(Ŷ ) = Ŷ2Ŷ3Ŷ1 − q̂1/2Ŷ 2
1 − q̂Ŷ 3

3 .

give the quantisation of (5.51).
In the same paper, Bousseau considered also a deformation quantisation of the

function algebra on V2 related to the mirror dual of the Looijenga pair (Y,D) where
the divisor has two connected components, namely for V2 = Mφ0

1,1,2
, where φ1,1,20

os given in (5.53) and the Poisson algebra is the Jacobian algebra on C[y1, y2, y3]
with the brackets (5.54).

A natural question posed in [6] is to make a comparison of his deformation quan-
tisations and the scheme of quantisation following the ideas of Etingof-Ginzburg
scheme.



QUANTISED PAINLEVÉ MONODROMIES, SKLYANIN AND CY ALGEBRAS. 33

In the next theorem we show that these that these two quantisations lead the
same algebras in the case V1 and V2.

Theorem 6.2. The deformation quantisations of the affine Poisson structures on
V1,2 obtained in [6] coincide (after a proper rescaling) with the appropriate degen-
erations of the quantum Sklyanin-Painlevé algebras defined by relations (1.9).

Proof. We start by observing that the quantum algebra corresponding to (6.70) is a
degenerate case of the Calabi-Yau algebra C〈X1, X2, X3〉/JΦphys

with the potential
(6.61). Indeed, by analogy with the classical case, we introduce the coordinates
Yi, i = 1, 2, 3 connected to X1, X2, X3 by the following relations:

X1 =
Y1√
m1

, X2 =
Y2√
m1

, X3 = m1Y3,

to obtain

Φphys = Y1Y2Y3 − qY2Y1Y3 +
Λ

3

(
m3

1Y
3
3 +

Y 3
1 + Y 3

2√
m3

1

)
+

+
1

2
Y 2
1 +

m2

m1
Y 2
2 +m1m2Y

2
3 + e1Y1 + e2Y3 + e3Y2,

(6.72)

which is by our discussion a PBW non-homogeneous deformation of the Koszul
generalised Sklyanin algebra. By putting Λ = m−3

1 , m2 = 0 and e1 = e2 = e3 = 0,
we obtain

Φm1 = Y1Y2Y3 − qY2Y1Y3 +
1

3

(
Y 3
3 +

Y 3
1 + Y 3

2

m3
1

√
m3

1

)
+

1

2
Y 2
1 ,

and in the limit m1 → ∞ we obtain

Φ∞(Y ) = Y1Y2Y3 − qY2Y1Y3 +
1

3
Y 3
3 +

1

2
Y 2
1

and the corresponding quantum algebra C〈Y1, Y2, Y3〉/JΦ∞
has relations

(6.73)






Y3Y1 − qY1Y3 = 0
Y2Y3 − qY3Y2 = Y1

Y1Y2 − qY2Y1 = Y 2
3

This algebra has central element

(6.74) Ωm1
0 (Y ) = Y3Y2Y1 +

q

q2 − 1
Y 2
1 +

q2

q3 − 1
Y 3
3

and quantises the coordinate ring of the cone over the nodal rational genus 1 curve
or the coordinate ring of the affine surface (6.70). But these are the same as (6.73)
and (6.74) by setting

q =
1

q̂
, Y1 =

(1 = q̂)(q̂ − 1)3(1 + q̂ + q̂2)2

q̂
1
4

Ŷ1, Ŷ2 = q̂
7
4Y2, Ŷ3 = (1−q̂2−q̂3+q̂5)Y3.

We can degenerate the algebra (6.73) further by rescaling the variables Y1, Y2, Y3

and taking different limits. Namely, setting

Y1 → ǫ1Y1, Y2 → ǫ2Y2, Y3 → ǫ3Y3,
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we obtain

(6.75)





Y3Y1 − qY1Y3 = 0
Y2Y3 − qY3Y2 = ǫ1

ǫ2ǫ3
Y1

Y1Y2 − qY2Y1 =
ǫ23

ǫ1ǫ2
Y 2
3

with central element

(6.76) Ωm1
0 (Y ) = Y3Y2Y1 +

q

q2 − 1

ǫ1
ǫ2ǫ3

Y 2
1 +

q2

q3 − 1
ǫ23ǫ1ǫ2Y

3
3

Imposing ǫ2 = 1, ǫ1 = ǫ23, ǫ3, in the limit ǫ3 → 0, we obtain

(6.77)






Y1Y3 − qY3Y1 = 0
Y2Y3 − qY3Y2 = 0
Y2Y1 − qY1Y2 = Y 2

3

and the central element is given by

(6.78) Ω∞(Y ) = Y2Y3Y1 +
1

q2 − 1
Y 2
3 .

�

Observe that by choosing different values and limits of ǫ1, ǫ2, ǫ3 in (6.75), we can
recognise the algebras given by the super-pontentials of non-commutative Painlevé
cubics (PIV and PII) to which the next two subsections are dedicated.

6.3.1. One non-zero mass and Painlevé IV. We consider the deformation provided
by addition a single mass term to Φsmooth. The corresponding potential (4.2 of [3])
reads (up to symmetric group Σ3-action):

(6.79) Φ1m = X1X2X3 − qX2X1X3 −
m

2
X2

1 .

The corresponding ideal is defined by

(6.80) X1X2 − qX2X1 = 0; X2X3 − qX3X2 = mX1; X3X1 − qX1X3 = 0

Taking the Poisson limit q → 1 one gets the cubic Casimir :

φcl,PIV(x1, x2, x3) = x1x2x3 −
m

2
x2
1.

Once again, to link with some of our Painlevé cubics ( in the single mass case it
will be the PIV cubic) we need to add the linear terms:

(6.81) Φ1,m = X1X2X3 − qX2X1X3 −
m

2
X2

1 + d1X1 + d2X2 + d2X3.

Taking d2 = d3 one gets

(6.82) X1X2−qX2X1 = d2; X2X3−qX3X2 = mX1+d1; X3X1−qX1X3 = d2

and the cubic Casimir (q 6= ±1)

ΦPIV = X1X2X3 − qX2X1X3 −
m

2
X2

1 +
1

1− q
(d1X1 + d2(X2 +X3)).

corresponds to the PIV case in the table of cubics 1.
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6.3.2. NC Painlevé II. Consider the potential

(6.83) ΦPII = X1X2X3 − qX2X1X3 + (q − 1)(X1 +Ω2X2 +X3)

The algebraic relations corresponding to the Jacobian ideal are
(6.84)
X1X2−qX2X1 = (q−1); X2X3−qX3X2 = (q−1); X3X1−qX1X3 = (q−1)Ω2

and the Poisson limit gives the Casimir cubics for the Miwa-Jimbo Painlevé II cases:

φcl,PII = −x1x2x3 + x1 + ω2x2 + x3

The authors of [3] argue that, in the framework of study of “orbifold singularities”,
one should take the relation on the moduli space

(6.85) x1x2x3 − (en1x1 + en2x2 + en3x3) + 2(e1e2e3)
n/2Tn(−

w

2(e1e2e3)1/2
) = 0,

where Tn(w) = cos(n arccosw) is the n- th Chebyshev polynomial.
Taking e1 = e2 = e3 = exp( iπn ) and n = 1 (which means T1(w) = w) we have

the expression

x1x2x3 + x1 + x2 + x3 − w = 0,

so the Miwa-Jimbo Painlevé Casimir cubic can be considered as the n = 1 member
of the family (6.85).

6.4. Le Bryun -Witten algebras. Our final remark is that the generalised Sklyanin-
Painlevé algebra with potential Φγ gives an example of the conformal sl2- en-
veloping algebra Uabc(sl2) ([26]). It corresponds to the choice of the parameters
a = c = q; m1 = m2 = 1; e1 = e3 = 0, e2 = −1;−γ = b :

(6.86)





X1X2 − qX2X1 = X3

X2X3 − qX3X2 = X1

X3X1 − qX1X3 = −γX2
2 +X2 + 1

This algebra corresponds to the generalised Sklyanin with β = γ = 0, a = b = c = q,
case (2) of Theorem 4.10

The central element is

ΩLBW = (q2 − 1)X3X2X1 − γ
1 + q

q(1 + q + q2)
X3

2 + qX2
1 +

1

q
X2

2 + qX2
3 .

It was proved by Le Bruyn in ([26]) that the conformal sl2 enevloping algebras
are Auslander regular and have the Cohen-Macaulay property as finitely generated
(left) filtered rings. We observe now that, following the results of Artin, Tate and
Van den Bergh ([1]), one can construct a cubic divisor C →֒ P2 for any three-
dimensional Auslander-regular algebra and the algebra is defined by the divisor
and an automorphism σ : C → C.

This divisor is defined by the equation

(6.87) [C] = det




γX2 −qX1 X3

X1 0 −qX2

−qX3 X2 0


 = 0,

where the determinant is calculated quantically as follows:

−γqX3
2 + (q3 − 1)X1X2X3 = 0

and defines a conic (−γqX2
2 +(q3− 1)X1X3 = 0) and a line X2 = 0. The automor-

phism σ is given on the line by σ(X1 : 0 : X3) = (X1 : 0 : qX3) and on the conic
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by σ(X1 : X2 : X3) = (qX : X2 : q−1X3). Thus, we see that if γ ≡ 0, q3 6= 1 then
the divisor gives the triangular configuration X1X2X3 = 0 and if q3 = 1 then the
divisor degeneratres in a triple line.

7. del Pezzo of degree 3 and open problems

In this section, we summarise our results concerning del Pezzo of degree 3 and
their quantisation in three tables and highlight some open problems for the future.

Let us start by describing Table 4.
The first column contains a list of double affine Hecke algebras. The elliptic

DAHA of type Ẽ6 is due to Rains, [44], while the GDAHA of type E
(1)
6 is due to [16].

The abbreviation “Deg. GDAHA” corresponds to some Whittaker degenerations

of the E
(1)
6 GDAHA [12, 28], the ČC1 DAHA is due to Cherednik [11, 47, 31],

while the abbreviation “Deg. DAHA” correspond to the algebras obtained in [27]
by Whittaker degeneration.

The second column is the polynomial φ such that Mφ is the center of the cor-
responding (elliptic or generalised or degenerate) DAHA for q = 1: for the cases of
Elliptic DAHA, this was conjectured in [16], for GDAHA it was proved in [16], for
the ČC1 in [32] and all other cases in [27, 28].

As discussed is Section 5, the projective completion Mφ is a del Pezzo of degree
3 with divisor D∞ - this is specified in the third column of table 4.

The table is split vertically by a double line - the whole right side of the table is
due to H. Sakai [48], and we have used his notation here. Before explaining what
this double line represents, let us recall the definition of an Okamoto pair (X,∆):
this is a pair (X,∆) where X is a generalised Halphen surface, namely the blow
up of 9 points in P2 in non generic position, and ∆ is a divisor that tells us the
position of such 9 points. Note that ∆ has the same configuration as a degenerate
elliptic curve in the classification by Kodaira-Neron. In other words, the 9 non
generic points lie at the intersection between ∆ and a generic elliptic curve in P2.
The generalised Halphen surfaces are uniquely determined by their divisor ∆ listed
in the fifth column.

Some of these divisors have multiple points on them. Starting from the fifth
row, at the intersection of lines we always have a multiple point, this is denoted
by an empty circle. The order of this point can be calculated by removing from
the number 9 the order of all other points. The single bullet points mean simple
points, the bullets with a circle and a number next to them mean multiple points
with the order specified by the number. In the last column we show the blow up
of such divisor ∆ at the multiple points.

Sakai labels the generalised Halphen surface according to the affine Weyl group

corresponding to the intersection matrix of the divisor. Note that in the case A
(1)
0

Sakai uses two notations according to the divisor, no star means ∆ is a smooth
elliptic curve, one star means ∆ is rational curve with a node. These labels are
given in the fourth column.

The first line of the table corresponds to the elliptic Painlevé equation, the
next three lines to the multiplicative or q-difference Painlevé equations and the last
eight rows correspond to the Painlevé differential equations. There are also additive
difference Painlevé equations, which we give in Table 6 because the corresponding
quantum algebra is not Calabi-Yau [30]. Finally, there are also high dimension
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multiplicative difference Painlevé equations the quantum description of which is
postponed [28].

In the case of the Painlevé differential equations, the left and right sides of the
table are related by the so-called Riemann-Hilbert correspondence - this was proved
by several authors, a nice unified approach can be found in [54]. The basic idea is
that the Okamoto pair corresponds to the space of initial conditions of the given
equation, while the Looijenga pair corresponds to the monodromy manifold.

Okamoto’s theory of initial value spaces [37], developed by Sakai [48], provides
a beautiful unification of differential and discrete equations. Whether differential
or discrete, initial values for any nonlinear equation, can be regular (meaning the
solution will be analytic around the initial point) or can be unbounded (reflecting
the existence of a singularity at the initial point). Okamoto compactified this space
to the complex projective plane and showed that any subsequent indeterminacy can
be removed by resolving the base points through blowup techniques from algebraic
geometry. It is a miraculous fact that nine blowups leads to a regularisation of the
whole space for all differential and discrete Painlevé equations. For discrete Painlevé
equations, there is no satisfactory concept of monodromy manifold - it is true that
each additive discrete Painlevé equation comes from the Backlünd transformations
of one of the differential ones, so that one could use the monodromy manifold asso-
ciated to the latter, however without a direct isomonodromic approach, interesting
dynamical behaviour may be lost. Moreover for the multiplicative discrete Painlevé
equations, a notion of monodromy manifold is completely missing. This leads us to

Conjecture 7.1. For the elliptic and multiplicative/additive discrete Painlevé
equations, the Riemann Hilbert correspondence assigns to the generalised Halphen
surface in Table 4 the corresponding Looijenga pair.

Intuitively speaking, evidence for this conjecture is provided by the fact that the
polynomials defining the divisors D∞ in the first four lines of Table 4 are the same
as those defining the corresponding Halphen divisors ∆ - i.e. D∞ = ∆ for the first
four lines in the table.

We list the quantum results in Table 5 and 6. All the quantum algebras in
Table 5 are specialisations of the generalised Sklyanin-Painlevé algebra introduced
in subsection 4.8.

We conclude by mentioning the relation between the quantum algebras in Table
5 and the matrix generalisations of the Painlevé equations. Building upon work
by Retakh and the third author [45], in [5] a set of non-commutative relations
which are non-commutative analogues of monodromy data relations for the Painlevé
II equation was constructed. The interesting feature of these non-commutative
relations is that by taking the scalar degeneration of the non-commutative operator
q, one obtains our quantum Painlevé II monodromy variety. This observation opens
the possibility of relating higher rank Elliptic/Generalised DAHA to the theory of
matrix Painlevé equations.



38 LEONID CHEKHOV, MARTA MAZZOCCO, VLADIMIR RUBTSOV

DAHA
Center φ

for q = 1
del Pezzo

divisor D∞

Gen.
Halphen
surface

Halphen

divisor ∆
Blow up

A
(1)
0

x1x2x3 + x3
1 + x3

2 + x3
3

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

x1x2x3+

+x3
1 + x3

2 + x3
3

Elliptic

Ẽ6

N.A.

A
(1)⋆

0

x1x2x3 + x3
1 + x3

2+

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

x1x2x3+

+x3
1 + x3

2
N.A.

GDAHA

E
(1)
6

A
(1)
1

x1x2x3 + x3
1

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

x1x2x3 + x3
1

N.A.

A
(1)
2

x1x2x3

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

x1x2x3

N.A.

Deg.

GDAHA

D
(1)
4

x1x2x3 − x2
1 − x2

2 − x2
3+

+ω1x1 + ω2x2 + ω3x3 + ω4

DAHA

ČC1

•

•

•

•

•

•

x1x2x3

D
(1)
5

x1x2x3 − x2
1 − x2

2+

ω1x1 + ω2x2 + ω3x3 + ω4

•

• •

•

•

x1x2x3

D
(1)
6

x1x2x3 − x2
1 − x2

2+

ω1x1 + ω2x2 + ω4
•

•

•

•

x1x2x3

Deg.

DAHA

D
(1)
7

x1x2x3 − x2
1 − x2

2+

+ω1x1 − x2

• 2

•2

x1x2x3

D
(1)
8

x1x2x3 − x2
1 − x2

2 − x2

•4
x1x2x3

E
(1)
6

x1x2x3 − x2
1+

ω1x1 + ω2x2 + ω3x3 + ω4
•

• •2

E
(1)
7

x1x2x3 − x2
1+

+ω1x1 − x2 − 1

x1x2x3

x1x2x3

x1x2x3

•

•

E
(1)
8

x1x2x3 − x1 − x2 + 1
• 9

Table 4. Results for del Pezzo of degree 3.
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Polynomial φ Quantum relations potential
Central
element

x1x2x3 + x3
1 + x3

2 + x3
3

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

(4.31) ΦEG +ΨEG

see (4.29), (4.30)

(4.33)

x1x2x3 + x3
1 + x3

2+

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

(4.38)

with γ = 0

Φα,β,0 +ΨEG

see (4.37), (4.30)
(4.39)

x1x2x3 + x3
1

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

(4.38)

with β = γ = 0

Φα,0,0 +ΨEG

see (4.37), (4.30)

(4.39)
with
β = 0

x1x2x3

+a1x
2
1 + b1x

2
2 + c1x

2
3+

+a2x1 + b2x2 + c2x3 + d

(4.31)
with t = 0

ΦEG +ΨEG

with t = 0
see (4.29), (4.30)

(4.35)

φ
(d)
P , d = PV I, . . . , PI

see (2.13)
(1.5) with ǫ

(d)
i ,Ω

(d)
i

in (2.14) (2.15)

ΦUZ
see (1.7)

(1.8)

Table 5. Quantum counterpart of Table 4 (we have squashed the last eight lines of Table 4 into one).

Polynomial φ Quantum relations
Halphen

surface
Divisor ∆

x3
1 − x2

2x3

x2
2x3 − x2

1x2

x3
1 + x3

3

x2
1 = x2

2 = 0

x3x2 + x2x3 = 0

x2x3 + x3x2 − x2
1 = 0

x2
2 = x2x1 + x1x2 = 0

x2
1 = x2

2 = 0

A
(1)∗∗

0

A
(1)∗

1

A
(1)∗

2

Table 6. Non Calabi-Yau cases
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gebras. J. Noncommut. Geom., 1(2):241–270, 2007.

[5] M. Bertola, M. Cafasso, and V. Rubtsov. Noncommutative Painlevé equations and systems
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