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Generating independent chaotic attractors by 
chaos anticontrol in nonlinear circuits

Cristina Morel, Marc Bourcerie, François Chapeau-Blondeau
Laboratoire d’Ingénierie des Systèmes Automatisés, Université d’Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France
The present paper introduces a new technique to generate several independent chaotic attractors by 
designing a switching piecewise-constant controller in continuous-time systems. This controller can create 
chaos using an anticon-trol of chaos feedback. It is shown that nonlinear continuous-time systems have 
several attractors, depending on initial conditions. We demonstrate that the state space equi-distant 
repartition of these attractors is on a precise curve, that depends of the system parameters. A mathematical 
formula giving the distance between the attractors is then deduced. Finally, several examples are given to 
verify the proposed methodology.
1. Introduction

Chaos has been extensively studied within the scientific, engineering and mathematical communities as an interesting

complex dynamic phenomenon. Recently, the traditional trend of understanding and analyzing chaos has evolved to a

new phase of investigation: controlling and utilizing chaos. Research in the field of chaos includes the suppression and

the generation of chaos, e.g. generating chaotic attractors using a switching type of piecewise-linear controller [1–3]. For

electronics engineers [4,5], it is well known that piecewise-linear functions can be used to generate various chaotic

attractors such as n-scroll attractors in Chua�s circuit [6]. A similar phenomenon generating various limit cycles is ob-

served in [7,8]. In [7], two sets of the initial conditions produce two different limit cycles and a new limit cycle for each

new initial condition selected is observed in [8]. Another technique to create chaos is the anticontrol of chaos (some-

times called chaotification), using time-delay feedback perturbation on a system parameter or employing an exogenous

time-delay state-feedback input. The anticontrol reference method designs a simple nonlinear feedback controller with

an arbitrarily small amplitude obtaining a chaotic dynamic in the controlled system [9–11].

The present paper proposes a new technique to generate several independent chaotic attractors, that can be reached

from several different initial conditions. The initial system is chaotified using the new controller, which is a combination

of the switching piecewise-constant characteristic and of the anticontrol of chaos state feedback (a simple sine function

of the system state, as in [10]).
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We demonstrate that the attractors periodicity in the state space depends on the sine anticontrol feedback frequency,

thus enabling the determination of the distance between attractors. The study of the attractors repartition in the state

space shows that they are situated on a precise curve. We determine the equation of this curve, which depends on the

controlled system dynamics and on its parameters. To verify our methodology, we treat the well-known examples of

Chua�s circuit, Lorentz system and the Buck converter.

A control engineering application is to make nonlinear system converge to some attractors of interest, starting from

different initial conditions, in order to reach different regimes of operation.
2. Generating independent chaotic attractors in a general nonlinear system

Consider a N-dimensional nonlinear system in the general form of
_x1 ¼
PN
i¼1

aixi þ
PN
i¼1
j¼1

bi;jxixj þ
PN
i¼1
j¼1

ci;jx2i xj þ v;

_x2 ¼
PN
i¼1

mixi þ
PN
i¼1
j¼1

ni;jxixj þ
PN
i¼1
j¼1

oi;jx2i xj;

..

.

_xN ¼
PN
i¼1

qixi þ
PN
i¼1
j¼1

ri;jxixj þ
PN
i¼1
j¼1

si;jx2i xj;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ
where ai, bi,j, ci,j, mi, ni,j, oi,j, qi, ri,j and si,j, for i; j ¼ 1;N , are real parameters and v is zero.

A single-input controlled system is obtained by adding a feedback controller v. In order to generate independent

chaotic attractors for the system (1), we specify a piecewise-constant characteristic for the feedback controller, defined

analytically as follows:
v ¼
1; f ðtÞ < uðtÞ;
0; f ðtÞ P uðtÞ;

�
ð2Þ
where f(t) is a periodic function with a small amplitude and u(t) the anticontrol of chaos state feedback. The application

of the classical method ([9–11]) of anticontrol of chaos to obtain a chaotic dynamics in the controlled system (1) uses a

simple nonlinear feedback with a small amplitude. We are interested in a simple sine function of the system state, as in

[10], but with large variations of the sine amplitude. The nonlinear feedback is described by
uðtÞ ¼ e sinðrx1ðtÞÞ: ð3Þ
We propose to use the anticontrol of chaos state feedback together with a piecewise-constant controller, hereafter de-

noted anticontrol switching piecewise-constant controller.

Fig. 1 shows a transient state space trajectory until a chaotic attractor is reached. The transitions 0 ! 1 ! 0! 1 of

the anticontrol switching piecewise-constant controller v of Eq. (2) determine a triangle characteristic of the transient

state space trajectory. The times ðtkÞk2N of the transitions 1 ! 0 of v are symbolized by circles d on the state space. At

each time ðtkÞk2N, f(t) is equal to u(t). Consequently, we can write:
f ðtÞ ¼ uðtÞ: ð4Þ
According with Eq. (3), Eq. (4) becomes:
f ðtÞ ¼ e sin rx1ðtÞð Þ: ð5Þ
For t = t0, the solution of Eq. (5) is:
x1ðt0Þ ¼
1

r
arcsin

f ðt0Þ
e

: ð6Þ
The 2p periodicity of the sine function of u(t) enables to find all the solutions x1(tk) of Eq. (4):
rx1ðtkÞ � 2kp ¼ arcsin
f ðt0Þ
e

; k 2 N: ð7Þ
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Fig. 1. Periodicity of the attractors in the state space.
Then,
x1ðtkÞ ¼
1

r
arcsin

f ðt0Þ
e

� 2kp
r

; k 2 N: ð8Þ
We can also write:
x1ðtkÞ � x1ðtk�1Þ ¼
2p
r
; k 2 Nþ: ð9Þ
We have demonstrated that the periodicity of the x1(t) function is 2p/r, i.e. the distance on the x1 axis between two

consecutive transitions 1 ! 0 of v.

Fig. 1 presents several independent chaotic attractors reached from different initial conditions. These attractors have

an equidistant repartition on the state space. Furthermore, we observe that the distance between two consecutive attrac-

tors on the x1 axis coincides with the distance between two circles d on the x1 axis. Therefore, the distance between two

consecutive attractors is:
dx1 ¼
2p
r
: ð10Þ
Choosing ðxi0Þi¼1;N ¼ ðxið0ÞÞi¼1;N as independent dynamical variables, the attractors are situated on a precise curve in the

state space.

The equilibrium points of the system (1) are defined by:
_xi ¼ 0; for i ¼ 1;N : ð11Þ
Applying the Eq. (11) to the system (1) gives:
PN
i¼1

aixi þ
PN
i¼1
j¼1

bi;jxixj þ
PN
i¼1
j¼1

ci;jx2i xj þ v ¼ 0;

PN
i¼1

mixi þ
PN
i¼1
j¼1

ni;jxixj þ
PN
i¼1
j¼1

oi;jx2i xj ¼ 0;

..

.

PN
i¼1

qixi þ
PN
i¼1
j¼1

ri;jxixj þ
PN
i¼1
j¼1

si;jx2i xj ¼ 0:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð12Þ
When v varies, the equilibrium points of the system (12) are situated on a curve we name attractors curve. Indeed,

the dynamical state space trajectory remains around the fixed point, for each attractor. Taking the last N � 1 equations

of the system (12) into account, the same curve is obtained, but the first parametrical equation of the system (12) is
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eliminated. The attractors curve is given by the last N � 1 implicit equations (12). Furthermore, Eq. (12) enables to

determine the distance between two consecutive attractors on the other axis ðxiÞi¼2;N . If one of the state variables

ðxwÞw¼2;N is explicit and presents a linear relation with the state variables ðxiÞi¼1;N
i 6¼w

, substituting the state variable

ðxiÞi¼1;N
i 6¼w

by ðdxiÞi¼1;N
i 6¼w

leads to the determination of ðdxwÞw¼2;N , the distance between two consecutive attractors on the

w axis.

In order to verify our independent chaotic attractors generation methodology, let us treat the well-known examples

of Chua�s circuit, Lorentz system and the Buck converter.
3. Chua’s circuit

The Chua�s circuit [6,10] has become, in recent years, a standard model for the study of chaos in systems described

by finite-dimensional differential equations. The state equations of Chua�s circuit are:
F

_x1 ¼ aðx2 � x1 � gðx1ÞÞ;
_x2 ¼ x1 � x2 þ x3;
_x3 ¼ �bx2 � cx3;

8<
: ð13Þ
where
gðx1Þ ¼ bx1 þ
a� b
2

ðjx1 þ 1j � jx1 � 1jÞ: ð14Þ
With the dimensionless state (13), (14), when a = 10, b = 24.5, c = 0, a = �1.27 and b = �0.68, a stable period orbit of

Chua�s circuit is generated, as in Fig. 2.

As discussed previously, in order to generate several independent chaotic attractors, we can apply the anticontrol

switching piecewise-constant controller v of Eq. (2). The Chua�s circuit (13) becomes:
_x1 ¼ aðx2 � x1 � gðx1; vÞÞ;
_x2 ¼ x1 � x2 þ x3;
_x3 ¼ �bx2;

8<
: ð15Þ
where
gðx1; vÞ ¼ bx1 þ v
a� b
2

ðjx1 þ 1j � jx1 � 1jÞ: ð16Þ
The anticontrol switching piecewise-constant controller is chosen according with Eqs. (2) and (3), for e = 50, r = 100

and f(t) = sin(1000t) as follows:
v ¼
1; sinð1000tÞ < 50 � sinð100x1Þ
0; sinð1000tÞ P 50 � sinð100x1Þ:

�
ð17Þ
ig. 2. A stable period orbit of Chua�s circuit (Eqs. (13) and (14)) with a = �1.27, b = �0.68, a = 10, b = 24.5 and c = 0.
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Fig. 3. Independent chaotic attractors of Chua�s circuit of Eq. (15).
Fig. 3 displays several independent chaotic attractors in the state space. The same phenomena is observed even with

other numerical values of e, r and with any periodical function f(t). The attractors are situated on a line, whose equation

results from the application of (12) to the modified Chua�s circuit (15):
x2 ¼ 0;

x3 ¼ �x1:

�
ð18Þ
The equidistant repartition of the attractors on the state space enables to determine the distance between two consec-

utive attractors on the three axes. According to the Eq. (10) for the axis x1, we have:
dx1 ¼
2p
r

¼ 0:0628: ð19Þ
To determine the distance between two consecutive independent chaotic attractors on the other axes x2 and x3, the state

variables of Eq. (18) are replaced by dx2 and dx3 :
dx2 ¼ 0;

dx3 ¼ �dx1 ¼ �0:0628:

�
ð20Þ
4. Lorentz system

The Lorentz system [10] is described by
_x1 ¼ �10x1 þ 10x2;

_x2 ¼ rx1 � x2 � x1x3 þ v;

_x3 ¼ � 8
3
x3 þ x1x2;

8><
>: ð21Þ
where v is zero. The uncontrolled Lorentz system (21) has the origin as an exponentially stable equilibrium point if

0 < r 6 1, two stable equilibria ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr � 1Þ=3

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr � 1Þ=3

p
; r � 1Þ and ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr � 1Þ=3

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr � 1Þ=3

p
; r � 1Þ if

1 < r < rH � 24.74. The Lorentz system is chaotic if r > rH. In our simulations, we take r = 1. Using the anticontrol

switching piecewise-constant controller (17), the Lorentz system (21) presents several independent chaotic attractors

as shown in Fig. 4. The attractors are situated on the following curve:
x2 ¼ x1;

x3 ¼ 3x1x2
8

:

(
ð22Þ
The distance between two consecutive attractors on the axes x1 and x2 is given by Eq. (22) and (10).
dx1 ¼ 2p
r ¼ 0:0628;

dx2 ¼ dx1 ¼ 0:0628:

(
ð23Þ
Even if the state variable x3 is explicit, dx3 cannot be determined, because Eq. (22) is not linear.
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Fig. 4. Independent chaotic attractors of the Lorentz system (21).
5. The Buck converter

Fig. 5 shows the diagram of a classical Buck converter that uses a piecewise-constant characteristic as feedback con-

troller [4,12]. The circuit has two states determined by the position of the switch S. When S is closed, the input voltage E

provides energy to the load R as well as to the inductor L. When S is open, the inductor current x2, which flows through

diode D, transfers some of its stored energy to the load R. The amplifier A2 has a gain A. The simplest feedback con-

verter is obtained when the control law vc2(t) is identically zero. The control law vc(t) can then be written in function of

the voltage x1 of the capacitor C:
vcðtÞ ¼ vc1ðtÞ ¼ Aðx1ðtÞ � V refÞ: ð24Þ
The control law vc(t) is applied to the inverting input of the comparator A1. The non-inverting input is connected to an

independent voltage ramp generator. This ramp voltage vr(t) can be expressed as
vrðtÞ ¼ V L þ ðV U � V LÞ
t mod T

T
: ð25Þ
When vc(t)P vr(t), the switch S is open and diode D conducts; otherwise S is closed and D is blocked. The voltage x1 of

the capacitor C and the inductance current x2 are chosen as state variables [13,14]. The model of the converter can be

written as
Fig. 5. Block diagram of the Buck converter with a feedback anticontrol.
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_x1 ¼ � 1

RC
x1 þ

1

C
x2; ð26Þ

_x2 ¼ � 1

L
x1 þ

E
L
v; ð27Þ
where
v ¼
0; vrðtÞ < Aðx1ðtÞ � EÞ;
1; vrðtÞ P Aðx1ðtÞ � EÞ:

�
ð28Þ
and E is a constant input voltage. This classical converter has been studied for many years, notably in [4,12–14]. We

decided to choose the same values as in these references: L = 20 mH, C = 47 lF, R = 22 X, A = 8.4, Vref = 11.3 V,

VL = 3.8 V, VU = 8.2 V, T = 400 ls and E = 16 V.

Because the Buck converter uses a piecewise-constant characteristic described by Eq. (28) as feedback controller, we

only have to apply Eq. (3) to generate independent chaotic attractors. The new control law we propose has the

expression:
vcðtÞ ¼ vc1ðtÞ þ vc2ðtÞ ¼ Aðx1ðtÞ � V refÞ þ e sin rðx1ðtÞ � V refÞ½ �: ð29Þ
The anticontrol switching piecewise-constant controller is:
v ¼
0; f ðtÞ < Aðx1ðtÞ � V refÞ þ e � sinðrðx1ðtÞ � V refÞÞ;
1; f ðtÞ P Aðx1ðtÞ � V refÞ þ e � sinðrðx1ðtÞ � V refÞÞ;

�
ð30Þ
where f(t) = vr(t), e = 18 V and r = 100 rad/V.

The attractors are situated on a line, whose equation results from the application of Eq. (12) in Eq. (26):
x2 ¼
1

R
x1: ð31Þ
The slope of the line attractors only depends on the converter load resistance R. The variation of the load resistance R

(12 X, 16 X, 22 X, 30 X), displays on the Fig. 6 several independent chaotic attractors, reached from different initial

conditions.

Using (10) and (31), the distance between two consecutive attractors is determined.
dx1 ¼
2p
r

¼ 0:0628V: ð32Þ

dx2 ¼
2p
Rr

¼ 0:014A: ð33Þ
Fig. 6. Attractors diagram using different initial conditions in function of R: R = 12 X, 16 X, 22 X, 30 X.
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Fig. 7. Sensitive dependence on initial conditions of the Buck converter (26), (27) and (30) starting from (x10;x20) = (11.4004;0.48),

(x10;x20) = (11.4005;0.48) and (x10;x20) = (11.4006;0.48).
The sensitive dependence on initial conditions of the modified Buck converter (26), (27) and (30) is a generic property

of chaotic systems. Fig. 7 presents three time trajectories starting from distinct, but almost identical, initial conditions

(x10;x20) = (11.4004;0.48), (x10;x20) = (11.4005;0.48) and (x10;x20) = (11.4006;0.48). At the beginning (i.e. for t = 0), the

trajectories are undistinguishable. After a few iterations, the sequences differ widely, even if the initial conditions differ

less than 0.001%. Starting from (x10;x20) = (11.4004;0.48) and (x10;x20) = (11.4005;0.48), the trajectories are close

one from the other, remain in the same bounded region around x1 = 10.86 V, but never coincide. With

(x10;x20) = (11.4006;0.48), the time trajectory ends in the other bounded region (around x1 = 10.925 V).

A quantitative measure of the sensitive dependence on initial conditions is the Lyapunov exponent. Considering e as
parameter, the maximum Lyapunov exponent of the modified Buck converter (26), (27) and (30) is shown in Fig. 8. Its

positive value shows the chaotical behavior of the Buck converter.

We study the attractors repartition in the state space as a function of the parameter e. Without any changes of the

Buck converter parameters (R, L, C, . . .), all the chaotic attractors are situated on the same curve on the state space

when e varies, because R is fixed. In order to avoid the superposition of the attractors in a graphical (x1;x2) state space

representation, we decide to represent them according to the state variable x2 and the parameter e in Fig. 9. For e < 12,

the Buck converter is characterized by a unique attractor. The system presents several independent chaotic attractors,

reached from many different initial conditions, for e P 12 V.
Fig. 8. The maximum Lyapunov exponent of Buck converter (26), (27) and (30) in function of e.
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Fig. 9. Attractors diagram in function of e, with different initial conditions.
6. Conclusion

The present paper introduces a new technique to generate several independent chaotic attractors by designing a new

controller, which is a combination of the switching piecewise-constant characteristic and of the anticontrol of chaos

state feedback.

We demonstrated that the attractors periodicity in the state space depends on the sine anticontrol feedback fre-

quency, thus enabling the determination of the distance between attractors, which repartition in the state space is on

a precise curve. We determined the equation of this curve, which depends on the controlled system dynamics and on

its parameters.

A control engineering application is to make nonlinear system converge to some attractors of interest, starting from

different initial conditions, in order to reach different regimes of operation.
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