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Abstract 
Background  Sarcomas are rare mesenchymal 
malignancies whose pathogenesis is poorly understood; 
both environmental and genetic risk factors could 
contribute to their aetiology.
Methods and results  We performed whole-exome 
sequencing (WES) in a familial aggregation of three 
individuals affected with soft-tissue sarcoma (STS) 
without TP53 mutation (Li-Fraumeni-like, LFL) and found 
a shared pathogenic mutation in CDKN2A tumour 
suppressor gene. We searched for individuals with 
sarcoma among 474 melanoma-prone families with a 
CDKN2A-/+ genotype and for CDKN2A mutations in 190 
TP53-negative LFL families where the index case was a 
sarcoma. Including the initial family, eight independent 
sarcoma cases carried a germline mutation in the 
CDKN2A/p16INK4A gene. In five out of seven formalin-
fixed paraffin-embedded sarcomas, heterozygosity was 
lost at germline CDKN2A mutations sites demonstrating 
complete loss of function. As sarcomas are rare in 
CDKN2A/p16INK4A carriers, we searched in constitutional 
WES of nine carriers for potential modifying rare variants 
and identified three in platelet-derived growth factor 
receptor (PDGFRA) gene. Molecular modelling showed 
that two never-described variants could impact the 
PDGFRA extracellular domain structure.
Conclusion  Germline mutations in CDKN2A/P16INK4A, 
a gene known to predispose to hereditary melanoma, 
pancreatic cancer and tobacco-related cancers, account 
also for a subset of hereditary sarcoma. In addition, we 
identified PDGFRA as a candidate modifier gene.

Sarcomas are a complex group of rare malignant 
tumours derived from cells that originate from the 
mesenchyma. These tumours, which can affect both 
bone and soft tissue, include more than 50 different 
subtypes. The annual incidence of soft-tissue 
sarcomas (STS) is around five new cases per 100 
000 population, whereas it is 0.8 for bone sarcomas 
in Caucasians.1 They account for nearly 20% of all 

paediatric solid malignant cancers, but less than 1% 
of all adult solid malignant cancers.2 The pathogen-
esis of most sarcomas is still poorly understood, and 
both environmental and genetic risk factors could 
contribute to their aetiology. The main environ-
mental factors are carcinogens, viruses and ionising 
radiation, particularly radiation therapy received 
for a first cancer.3 The risk of sarcoma is enhanced 
in several hereditary cancer syndromes, including 
Li-Fraumeni syndrome (LFS), a rare, dominant 
Mendelian cancer syndrome linked to TP53 muta-
tions and possibly to POT1 mutations.4 5 Beyond 
these syndromes, there may be other complex 
heritable predispositions and others not yet iden-
tified.6

The potential for intrafamily exome-sequencing 
approach to identify additional cancer suscepti-
bility genes has been demonstrated. Therefore, 
we conducted germline whole-exome sequencing 
(WES) in two affected members of a three sarco-
ma-cases family (Patients I-2 and II-1, Family 7389, 
table  1, figure  1A). We performed data mining 
applying classical filtering strategies using Inge-
nuity Variant Analysis (IVA) software (Qiagen).7 
With very stringent frequency filtering (MAF) 
<0.001%, using a Biological Context of sarcoma, 
three germline variants shared by both sarcoma-af-
fected relatives (uncle and nephew) were identified 
in CDKN2A, PDGFRA and SKA3 genes (figure 1B). 
Because of the loss of function mutation detected in 
CDKN2A and the well-known role of CDKN2A in 
somatic sarcomagenesis, both in humans and mice, 
we focused first on this gene.8 CDKN2A is a known 
tumour suppressor gene and the first familial 
melanoma gene identified; it encodes two distinct 
proteins, p16INK4A and p14ARF, which both function 
in cell cycle regulation.9 We confirmed the germ-
line splice mutation (c.151-2A>G) with Sanger 
sequencing and also in DNA extracted from forma-
lin-fixed, paraffin-embedded (FFPE) tumorous 
tissue from the third case, deceased patient I-1 
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Figure 1  Whole-exome sequencing in a three sarcoma cases family without TP53 germline mutation: identification of CDKN2A and PDGFRA germline 
mutations, co-segregating with sarcomas (A) Pedigree of the Li-Fraumeni-like family. Cancer diagnosis and age at onset are indicated for affected members; 
hatched circles/squares indicate sarcoma: AGS, angiosarcoma; LPS, liposarcoma; STS, soft-tissue sarcoma. Genotypes of CDKN2A and PDGFRA for all 
samples available for testing are shown. Patients with WES data are indicated with a black star. (B) Whole-exome sequencing (WES) germline SNV filtering 
and interpretation, for two patients of Family 7389. We used Ingenuity Variant Analysis software (v.2.1.20130711, IVA, Qiagen) and predetermined filters 
(see Bioinformatics analysis, online supplementary material). Starting with 307 690 variants spanning 17 673 genes, successive filters lead to 3 variants 
spanning 3 genes (CDKN2A, PDGFRA and SKA3). (C) Structural properties of platelet-derived growth factor receptor α (PDGFRα) wild-type and variants. 
(Top row) the PDGFRα protein has a modular structure composed of five Ig-like domains (D1, D2, D3, D4 and D5), a trans-membrane domain (TMD) and 
a cytoplasmic region. The cytoplasmic region consists of a regulatory juxtamembrane region (JMR) and a catalytic kinase domain, with an N-lobe and a 
C-lobe, which harbours a kinase insert domain (KID). (Bottom row) The X-ray analysis structures are represented as ribbon diagrams, based on the KIT 
oncogene structural data. D1 and D5 are denoted as ovals. (Middle row) Schematic representations of D1 and D5 topologies. (Bottom figures) Superimposed 
conformations of wild-type PDGFRα (blue) and PDGFRα germline variants (pink), obtained from molecular dynamics (MD) simulations. Representative 
conformations were selected by RMSDs clustering and are presented as ribbon diagrams.
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(online supplementary figure S2A). We had previously identified 
this specific mutation in three independent, melanoma-prone 
families. Transcript analysis was performed for a proband, 
indicating that CDKN2A exon two had been skipped in both 
p16INK4A and p14ARF transcripts, creating putative frameshifts 
(online supplementary figure S3).

Next, we performed Sanger sequencing of CDKN2A for germ-
line mutations in full collection A (190 unrelated families with 
suspected LFS or Li-Fraumeni-like, LFL, whose index case was a 
sarcoma without detectable TP53 germline mutation). We iden-
tified a second carrier of a CDKN2A/P16INK4A germline mutation 
(p.Ile49Ser), a patient diagnosed with a pleomorphic liposar-
coma at the age of 32 years whose brother died of osteosarcoma 
at the age of 24 years (Family 18 998, table 1, online supplemen-
tary S1A and S2B).

To explore further the potential connection between CDKN2A 
germline mutations and sarcoma, we reviewed the phenotypes 
in our collection of 296 melanoma-prone French families with 
CDKN2A/P16INK4A germline mutations (collection B; mutations 
were partially described previously10 and found eight kindreds that 
contained at least one member with sarcoma. Among them, five 
probands with sarcoma carried the pathogenic familial CDKN2A/
P16INK4A germline mutation (table  1, families 14 288, 2 225, 1 
4289, 14 291 and 15 118, online supplementary figure S1B) and 
three families had incomplete data (two untested index cases and 
one unconfirmed STS; see online supplementary figure S4A,S4C; 
material and methods). Overall, among the 296 families, the differ-
ence in sarcoma incidence between CDKN2A mutation carriers 
(5/593; 0.84%; 95% CI 0.3% to 2%) and non-carriers (1/298; 
0.34%; 95% CI 0.02% to 2.16%) did not reach statistical signif-
icance (p=0.67; Fisher’s exact test). Considering the yearly inci-
dence in Caucasians of 5.8 per 1 00 0001 and the mean follow-up 
duration in collection B of 46 years, the probability of observing 
at least five sarcomas in the 593 CDKN2A carriers population was 
0.02 (assuming a binomial distribution). In the 298 CDKN2A WT 
populations, the mean follow-up was 39 years, and the probability 
of observing at least 1 sarcoma was 49%.

Next, we searched for biological arguments. As loss of hetero-
zygosity (LOH) is considered in tumour’s biology as a strong indi-
cator to the causative role of a tumour suppressor, we performed 
Sanger sequencing in seven FFPE sarcoma blocs available from 
French patients. We identified LOH at the CDKN2A germline 
mutation site in five out of seven samples (table 1; online supple-
mentary figure S2). These LOHs demonstrate the occurrence of a 
second genetic hit on CDKN2A and, therefore, complete loss of 
p16INK4A function in five sarcomas, in accordance with the driver 
role of CDKN2A tumour suppressor gene in sarcomagenesis.8

Finally, we interrogated the GenoMEL database containing 
178 CDKN2A+ melanoma-prone families (collection C), after 
removal of 60 French families already included in collection B. 
We identified three additional independent CDKN2A mutation 
carriers affected with a sarcoma. One family was from Australia 
and carried a CDKN2A/p16INK4A p.Leu32Pro germline muta-
tion (Family 20 473, table 1; online supplementary figure S1C). 
The second family was from the UK (21 kb deletion targeting 
CDKN2A/p14ARF exon 1b) (data not shown), and the third 
family was from the Netherlands, but the initial diagnosis of 
fibrosarcoma case was revised to melanoma and, therefore, was 
excluded.

Overall, in collections A, B and C, ascertained for Li-Fraumeni 
(A) or multiple cases of melanoma and/or pancreatic cancer (B 
and C), we identified eight independent families in which at least 
a CDKN2A/P16INK4A mutation carrier had a sarcoma (table 1). 
Therefore, based on probabilistic and biological arguments, 

CDKN2A/P16INK4A germline mutations can be strongly suspected 
to increase sarcoma risk. Interestingly, in the literature, two 
sarcoma cases in CDKN2A/P16INK4A mutation carriers were 
identified in families with melanoma/pancreatic cancer and 
very recently germline CDKN2A mutations were identified in 
two independent patients presenting with LFS.11 12 In addition 
to the well-known role of CDKN2A in somatic sarcomagenesis, 
other observations in animals suggested a germline effect.8 First, 
in a mouse model, deletion of the Cdkn2a locus could substi-
tute for mutations in Trp53 to generate STSs.13 Second, in a 
naturally occurring, canine breed-specific histiocytic sarcoma, 
a genome-wide association study (GWAS) identified a haplo-
type near CDKN2A.14 In conclusion to our work and published 
data, germline mutations in CDKN2A/P16INK4A, a gene known 
to predispose to hereditary melanoma, pancreatic cancer and 
tobacco-related cancers, account also for a subset of hereditary 
sarcoma.9

As melanoma risk in CDKN2A mutation carriers is clearly asso-
ciated with MC1R frequent alleles acting as modifiers,15 we formu-
lated the hypothesis that the very low frequency of sarcoma cases 
observed in CDKN2A/P16INK4A-positive melanoma-prone families 
could be explained by rare modifiers alleles. In a model of oligo-
genic inheritance, it is challenging to identify rare germline vari-
ants that act in synergy to initiate cancer, and GWAS is unable to 
identify rare disease-predisposing variants.16 Candidate pathogenic 
variants for sarcoma risk in ATM, ATR, BRCA2 and ERCC2 genes 
were identified recently in a large sarcoma case–control study as 
well as POT1 variants in cardiac angiosarcoma, but other genes 
not yet identified could also play a role.5 6 To explore this hypoth-
esis, we considered the two additional germline variants identified 
in PDGFRA and SKA3 genes in the WES data of patients I-2 and 
II-1, both sarcoma-affected (initial Family 7389). In SKA3 gene, an 
insertion of 2T was supposed to have occurred in a stretch of 12T 
but was unconfirmed by Sanger sequencing (online supplementary 
figure S5). The platelet-derived growth factor receptor alpha gene 
(PDGFRA) harboured a germline missense mutation, c.335T>G, 
p.Leu112Arg, located in the extracellular receptor domain and 
predicted deleterious by two computational methods (GVGD and 
SIFT). This mutation was verified by Sanger sequencing and was 
also found in DNA extracted from FFPE-sarcoma tissue from the 
third family member, patient I-1, therefore being present in the 
three sarcoma-affected patients (Family 7389, figure  1A; online 
supplementary S7A).

Next, we performed additional WES analyses in blood-ex-
tracted DNA from seven probands affected with sarcoma 
that carried germline CDKN2A mutations (family 18 998-II.1 
in collection A; families 14 288-II.1, 2 225-II.1, 14 289-I.1, 
14 291-II.1 and 15 118-II.1 in collection B and family 20 473-I.4 
in collection C). Subsequently, we data mined the WES avail-
able for a total of nine CDKN2A/P16INK4A carriers affected with 
sarcoma, including two relatives. We applied classical filtering 
strategies using the IVA software (Qiagen) (online supplemen-
tary figure S6).7 For variant frequency, we defined rare variants 
as those with a minor allele frequency (MAF) <0.5%.16 The 
outcome of our filtering strategy was the selection of 82 vari-
ants spanning 76 genes. Among previously published sarcoma 
susceptibility genes, we found no mutations in TP53, ATR, 
BRCA2 and ERCC2.6 We found a c.8584+1G>A putative 
splice site mutation in ATM gene in patient 7389-I.2, but this 
variant was absent in the sarcoma-affected relative, II.1. We also 
found, in patient 14 291-II.1, a POT1 c.1127A>G, p.Gln376Arg 
missense variant, present at a frequency of 0.07% in Eur-Am 
ESP and predicted deleterious by four prediction methods 
(SIFT, MutationTaster, Polyphen 2 and Condel). This variant 
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was also present in the unaffected mother. More interestingly, 
we detected two other germline missense mutations (verified 
by Sanger sequencing, online supplementary figure S7B, S7C) 
located in the extracellular receptor domain of the platelet-de-
rived growth factor receptor alpha gene (PDGFRA), including 
one absent in public databases. The PDGFRA missense variant 
c.227A>G, p.Asn76Ser, predicted deleterious by four computa-
tional methods (GVGD, SIFT, Mutation Taster and Polyphen 2), 
was not present in unaffected mother that carried the CDKN2A 
p.Gly101Trp mutation (Family 14 291, online supplementary 
figure S1B). In the sarcoma-proband I-4 of family 20 473 (online 
supplementary figure S1C), we identified another germline 
PDGFRA variant, c.1388C>G, p.Thr463Ser, described with an 
allelic frequency of 0.02%, and predicted deleterious by two 
computational methods (Mutation Taster and Condel). Co-seg-
regation analysis was not informative (online supplementary 
figure S1C).

The PDGFRα, composed of extracellular, trans-membrane 
and intracellular domains (figure  1C), is activated by the 
binding of its ligand, which induces dimerisation, followed 
by kinase domain activation.17 Germline oncogenic gain-of-
function mutations in PDGFRA cause familial gastrointestinal 
stromal tumours (GIST) associated with other tumours.18 19 
Accordingly, the variants described above were not oncogenic in 
classical cell transformation assays (data not shown). Neverthe-
less, these variants could favour sarcomagenesis by interfering 
with various PDGFRA molecular functions, either canonical or 
not.20 To study the impact of PDGFRA germline variants on the 
3D receptor structure, we performed molecular modelling of 
three PDGFRA missense variants identified in CDKN2A carriers 
with sarcoma, the two variants absent from public databases, 
p.Asn76Ser (N76S), p.Leu112Arg (L112R) and the rare variant, 
p.Thr463Ser (T463S) (ESP Eur. Am. 0.02%). We added as a 
control, a frequent SNP, p.Ser478Pro (S478P) described with 
an allelic frequency of 10.26% (ESP Eur. Am.) and predicted 
neutral by five computational methods (GVGD, SIFT, Muta-
tion Taster, Polyphen 2 and Condel), identified in patients 
14 288-II.1 and 14 289-I.1 (online supplementary figure S7D). 
As the PDGFRα signalling complex has remained uncharac-
terised at the structural level, we modelled two extracellular 
immunoglobulin (Ig)-like domains (D1 and D5; figure  1C) 
containing these variants by homology with the related extra-
cellular domains in KIT, CSF-1R, FLT3 and PDGFRβ. Structur-
ally, all these domains feature five to eight β-strands that form 
two β-sheets (a β-sandwich). Figure 1C illustrates how the vari-
ants N76S and L112R affect the structure of D1. In particular, 
N76S promoted larger β-strands fold (β3 and β4) before and 
after the mutation site, contributing to stabilisation of a perfect 
antiparallel β-sheet, constituted with β1, β3 and β4 strands 
and maintained by a regular, stable H-bond network that 
contrasted with the fluctuating network in the native protein. 
Moreover, this variant promoted destabilisation of two small 
β-strands (β2 and β5) that were present in the native protein. 
Variant L112R induced β-strand (β5) formation in place of the 
random coil rather observed in the native protein and increased 
β-folding in segments more distant from the mutation point (β 
strands β1, β2 and β4). Our analysis of the impact of T463S 
and S478P variants in the D5 domain suggested only a slight 
increase in residual flexibility, but all its structural features were 
well preserved with respect to the native protein. It should be 
noted that a comprehensive characterisation of PDGFRα vari-
ants located in the extracellular domains may require detailed 
analysis of the full-length protein structure in the native and 
mutated states.

Overall, our data identified PDGFRA as a new sarcoma candi-
date modifier gene. Unfortunately, PDGFRA was not included 
in the 72 genes panel studied in the recent study of 1162 
patients with sarcoma.6 PDGFRα belongs to the large family 
of membrane RTKs and plays primary roles in mesenchymal 
tissue development. Recent whole-genome or whole-exome 
analyses have revealed numerous somatic mutations localised 
in the RTK-III extracellular domain, which could have trans-
forming potential, based on their structural and physicochemical 
effects on the receptor.21 These mutations in PDGFRA extra-
cellular domains could affect non-canonical RTK functions. On 
ligand activation, RTKs are internalised and translocated into 
endosomal compartments for signalling.20 Overall, our genetic 
and molecular modelling results suggested that PDGFRA germ-
line variants that affect the extracellular domain could play a 
role in sarcomagenesis, but the functional mechanism remains 
unknown.
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