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Abstract The max-k-cut problem is to partition the vertices of an edge-
weighted graph G = (V,E) into k ≥ 2 disjoint subsets such that the weight
sum of the edges crossing the di�erent subsets is maximized. The problem
is referred as the max-cut problem when k = 2. In this work, we present a
multiple operator heuristic (MOH) for the general max-k-cut problem. MOH
employs �ve distinct search operators organized into three search phases to
e�ectively explore the search space. Experiments on two sets of 91 well-known
benchmark instances show that the proposed algorithm is highly e�ective on
the max-k-cut problem and improves the current best known results (lower
bounds) of most of the tested instances for k ∈ [3, 5]. For the popular special
case k = 2 (i.e., the max-cut problem), MOH also performs remarkably well
by discovering 4 improved best known results. We provide additional studies
to shed light on the key ingredients of the algorithm.

Keywords Max-k-cut and max-cut · Graph partition · Multiple search
strategies · Tabu list · Heuristics

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and
edge set E ⊂ V × V , each edge (i, j) ∈ E being associated a weight wij ∈ Z.
Given k ∈ [2, n], the max-k-cut problem is to partition the vertex set V into k
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(k is given) disjoint subsets {S1, S2, . . . , Sk}, (i.e.,
k
∪
i=1

Si = V, Si ̸= ∅, Si∩Sj =

∅, ∀i ̸= j), such that the sum of weights of the edges from E whose endpoints
belong to di�erent subsets is maximized, i.e.,

max
∑

1≤p<q≤k

∑
i∈Sp,j∈Sq

wij . (1)

Particularly, when the number of partitions equals 2 (i.e., k = 2), the problem
is referred as the max-cut problem. Max-k-cut is equivalent to the minimum
k-partition (MkP) problem which aims to partition the vertex set of a graph
into k disjoint subsets so as to minimize the total weight of the edges joining
vertices in the same partition [15].

The max-k-cut problem is a classical NP-hard problem in combinatorial
optimization and can not be solved exactly in polynomial time [4,18]. More-
over, when k = 2, the max-cut problem is one of the Karp's 21 NP-complete
problems [19] which has been subject of many studies in the literature.

In recent decades, the max-k-cut problem has attracted increasing atten-
tion for its applicability to numerous important applications in the area of data
mining [11], VLSI layout design [2,7,8,27,9], frequency planning [12], sports
team scheduling [26], and statistical physics [21] among others.

Given its theoretical signi�cance and large application potential, a number
of solution procedures for solving the max-k-cut problem (or its equivalent
MkP) have been reported in the literature. In [15], the authors provide a review
of several exact algorithms which are based on branch-and-cut and semide�nite
programming approaches. But due to the high computational complexity of
the problem, only instances of reduced size (i.e., |V | < 100) can be solved by
these exact methods in a reasonable computing time.

For large instances, heuristic and metaheuristic methods are commonly
used to �nd �good-enough� sub-optimal solutions. In particular, for the very
popular max-cut problem, many heuristic algorithms have been proposed, in-
cluding simulated annealing and tabu search [1], breakout local search [3], pro-
jected gradient approach [5], discrete dynamic convexized method [22], rank-2
relaxation heuristic [6], variable neighborhood search [13], greedy heuristics
[17], scatter search [25], global equilibrium search [29] and its parallel version
[28], memetic search [23,31,33], and unconstrained binary quadratic optimiza-
tion [30]. Compared with max-cut, there are much fewer heuristics for the
general max-k-cut problem or its equivalent MkP. Among the rare existing
studies, we mention the very recent discrete dynamic convexized (DC) method
of [34], which formulates the max-k-cut problem as an explicit mathematical
model and uses an auxiliary function based local search to �nd satisfactory
results.

In this paper, we partially �ll the gap by presenting a new and e�ective
heuristic algorithm for the general max-k-cut problem. We identify the contri-
butions of the work as follows.

� In terms of algorithmic design, the main originality of the proposed al-
gorithm is its multi-phased multi-strategy approach which relies on �ve
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distinct local search operators for solution transformations. The �ve em-
ployed search operators (O1−O5) are organized into three di�erent search
phases to ensure an e�ective examination of the search space. The descent-
based improvement phase uses the intensi�cation operators O1 − O2 to
�nd a (good) local optimum from a starting solution. Then by applying
two additional operators (O3−O4), the diversi�ed improvement phase aims
to discover promising areas around the obtained local optimum which are
then further explored by the descent-based improvement phase. Finally,
since the search can get trapped in local optima, the perturbation phase
applies a random search operator (O5) to de�nitively lead the search to
a distant region from which a new round of the search procedure starts.
This process is repeated until a stopping condition is met. To ensure a high
computational e�ciency of the algorithm, we employ bucket-sorting based
techniques to streamline the calculations of the di�erent search operators.

� In terms of computational results, we assess the performance of the pro-
posed algorithm on two sets of well-known benchmarks with a total of 91
instances which are commonly used to test max-k-cut and max-cut algo-
rithms in the literature. Computational results show that the proposed
algorithm competes very favorably with respect to the existing max-k-cut
heuristics, by improving the current best known results on most instances
for k ∈ [3, 5]. Moreover, for the very popular max-cut problem (k = 2), the
results yielded by our algorithm remain highly competitive compared with
the most e�ective and dedicated max-cut algorithms. In particular, our al-
gorithm manages to improve the current best known solutions for 4 (large)
instances, which were previously reported by speci�c max-cut algorithms
of the literature.

The rest of the paper is organized as follows. In Section 2, the proposed
algorithm is presented. Section 3 provides computational results and compar-
isons with state-of-the-art algorithms in the literature. Section 4 is dedicated
to an analysis of several essential parts of the proposed algorithm. Concluding
remarks are given in Section 5.

2 Multiple search operator heuristic for max-k-cut

2.1 General working scheme

The proposed multiple operator heuristic algorithm (MOH) for the general
max-k-cut problem is described in Algorithm 1 whose components are ex-
plained in the following subsections. The algorithm explores the search space
(Section 2.2) by alternately applying �ve distinct search operators (O1 to O5)
to make transitions from the current solution to a neighbor solution (Section
2.4). Basically, from an initial solution, the descent-based improvement phase
aims, with two operators (O1 and O2), to reach a local optimum I (Alg. 1, lines
11 − 21, descent-based improvement phase, Section 2.6). Then the algorithm
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continues to the diversi�ed improvement phase (Alg. 1, lines 30− 40, Section
2.7) which applies two other operators (O3 and O4) to locate new promising
regions around the local optimum I. This second phase ends once a better
solution than the current local optimum I is discovered or when a maximum
number of diversi�ed moves ω is reached. In both cases, the search returns
to the descent-based improvement phase with the best solution found as its
new starting point. If no improvement can be obtained after ξ descent-based
improvement and diversi�ed improvement phases, the search is judged to be
trapped in a deep local optimum. To escape the trap and jump to an unex-
plored region, the search turns into a perturbation-based diversi�cation phase
(Alg. 1, lines 42− 45), which uses a random operator (O5) to strongly trans-
form the current solution (Section 2.8). The perturbed solution serves then as
the new starting solution of the next round of the descent-based improvement
phase. This process is iterated until the stopping criterion (typically a cuto�
time limit) is met.

2.2 Search space and evaluation solution

Recall that the goal of max-k-cut is to partition the vertex set V into k sub-
sets such that the sum of weights of the edges between the di�erent sub-
sets is maximized. As such, we de�ne the search space Ω explored by our
algorithm as the set of all possible partitions of V into k disjoint subsets,

Ω = {{S1, S2, . . . , Sk} :
k
∪
i=1

Si = V, Si ∩ Sj = ∅, Si ⊂ V, ∀i ̸= j}, where each

candidate solution is called a k-cut.

For a given partition or k-cut I = {S1, S2, . . . , Sk} ∈ Ω, its objective value
f(I) is the sum of weights of the edges connecting two di�erent subsets:

f(I) =
∑

1≤p<q≤k

∑
i∈Sp,j∈Sq

wij . (2)

Then, for two candidate solutions I ′ ∈ Ω and I ′′ ∈ Ω, I ′ is better than I ′′

if and only if f(I ′) > f(I ′′). The goal of our algorithm is to �nd a solution
Ibest ∈ Ω with f(Ibest) as large as possible.

2.3 Initial solution

The MOH algorithm needs an initial solution to start its search. Generally,
the initial solution can be provided by any eligible means. In our case, we
adopt a randomized two step procedure. First, from k empty subsets Si =
∅, ∀i ∈ {1, . . . , k}, we assign each vertex v ∈ V to a random subset Si ∈
{S1, S2, . . . , Sk}. Then if some subsets are still empty, we repetitively move a
vertex from its current subset to an empty subset until no empty subset exists.
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Algorithm 1 General procedure for the max-k-cut problem

1: Input: Graph G = (V,E), number of partitions k, max number ω of diversi�ed moves, max number
ξ of consecutive non-improvement rounds of the descent improvement and diversi�ed improvement
phases before the perturbation phase, probability ρ for applying operator O3, γ the perturbation
strength.

2: Output: the best solution Ibest found so far
3: I ← Generate_initial_solution(V, k) ◃ I is a partition of V into k subsets
4: Ibest ← I ◃ Ibest Records the best solution found so far
5: flo ← f(I) ◃ flo Records the objective value of the latest local optimum reached by O1 ∪O2

6: fbest ← f(I) ◃ fbest Records the best objective value found so far
7: cnon_impv ← 0 ◃ Counter of consecutive non-improvement rounds of descent and diversi�ed

search
8: while stopping condition not satis�ed do
9: /* lines 10 to 19: Descent-based improvement phase by applying O1 and O2, see Section 2.4*/
10: repeat
11: while f(I ⊕O1) > f(I) do ◃ Descent Phase by applying operator O1

12: I ← I ⊕O1 ◃ Perform the move de�ned by O1

13: Update ∆ ◃ ∆ is the bucket structure recording move gains for vertices, see Section 2.5
14: end while
15: if f(I ⊕O2) > f(I) then ◃ Descent Phase by applying operator O2

16: I ← I ⊕O2

17: Update ∆
18: end if
19: until I can not be improved by operator O1 and O2

20: flo ← f(I)
21: if f(I) > fbest then
22: fbest ← f(I); Ibest ← I ◃ Update the best solution found so far
23: cnon_impv ← 0 ◃ Reset counter cnon_impv

24: else
25: cnon_impv ← cnon_impv + 1

26: end if
27: /* lines 28 to 38: Diversi�ed improv. phase by applying O3 and O4 at most ω times, see Section

2.4 */
28: cdiv ← 0 ◃ Counter cdiv records number of diversi�ed moves
29: repeat
30: if Random(0, 1) < ρ then ◃ Random(0,1) returns a random real number between 0 to 1
31: I ← I ⊕O3

32: else
33: I ← I ⊕O4

34: end if
35: Update H (H,λ) ◃ Update tabu list H where λ is the tabu tenure, see Section 2.4
36: Update ∆ ◃ Update the move gains impacted by the move, see Section 2.5
37: cdiv ← cdiv + 1
38: until cdiv > ω or f(I) > flo
39: /* Perturbation phase by applying O5 if fbest not improved for ξ rounds of phases 1-2, see Sect.

2.8 */
40: if cnon_impv > ξ then

41: I ← I ⊕O5 ◃ Apply random perturbation γ times, see Section 2.8
42: cnon_impv ← 0

43: end if
44: end while

2.4 Move operations and search operators

Our MOH algorithm iteratively transforms the incumbent solution to a neigh-
bor solution by applying some move operations. Typically, a move operation
(or simply a move) changes slightly the solution, e.g., by transferring a vertex
to a new subset. Formally, let I be the incumbent solution and let mv be a
move, we use I ′ ← I ⊕ mv to denote the neighbor solution I ′ obtained by
applying mv to I.
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Associated to a move operation mv, we de�ne the notion of move gain

∆mv, which indicates the objective change between the incumbent solution I
and the neighbor solution I ′ obtained after applying the move, i.e.,

∆mv = f(I ′)− f(I) (3)

where f is the optimization objective (see Formula (2)).
In order to e�ciently evaluate the move gain of a move, we develop dedi-

cated techniques which are described in Section 2.5. In this work, we employ
two basic move operations: the `single-transfer move' and the `double-transfer

move'. These two move operations form the basis of our �ve search operators.

� Single-transfer move (st): Given a k-cut I = {S1, S2, . . . , Sk}, a vertex
v ∈ Sp and a target subset Sq with p, q ∈ {1, . . . , k}, p ̸= q, the `single-
transfer move' displaces vertex v ∈ Sp from its current subset Sp to the
target subset Sq ̸= Sp. We denote this move by st(v, Sp, Sq) or v → Sq.

� Double-transfer move (dt): Given a k-cut I = {S1, S2, . . . , Sk}, the `double-
transfer move' displaces vertex u from its subset Scu to a target subset
Stu ̸= Scu, and displaces vertex v from its current subset Scv to a target
subset Stv ̸= Scv. We denote this move by dt(u, Scu, Stu; v, Scv, Stv) or
dt(u, v), or still dt.

From these two basic move operations, we de�ne �ve distinct search oper-

ators O1 − O5 which indicate precisely how these two basic move operations
are applied to transform an incumbent solution to a new solution. After an
application of any of these search operators, the move gains of the impacted
moves are updated according to the dedicated techniques explained in Section
2.5.

� The O1 search operator applies the single-transfer move operation. Pre-
cisely, O1 selects among the (k − 1)n single-transfer moves a best move
v → Sq such that the induced move gain ∆(v→Sq) is maximum. If there
are more than one such moves, one of them is selected at random. Since
there are (k−1)n candidate single-transfer moves from a given solution, the
time complexity of O1 is bounded by O(kn). The proposed MOH algorithm
employs this search operator as its main intensi�cation operator which is
complemented by the O2 search operator to locate good local optima (see
Alg. 1, lines 11− 21 and Section 2.6).

� The O2 search operator is based on the double-transfer move operation
and selects a best dt move with the largest move gain ∆dt. If there are
more than one such moves, one of them is selected at random.
Let dt(u, Scu, Stu; v, Scv, Stv) (Scu ̸= Stu, Scv ̸= Stv) be a double-transfer
move, then the move gain∆dt of this double transfer move can be calculated
by a combination of the move gains of its two underlying single-transfer
moves (∆u→Stu and ∆v→Stv ) as follows:

∆dt(u,v) = ∆u→Stu +∆v→Stv + ψωuv (4)
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where ωuv is the weight of edge e(u, v) ∈ E and ψ is a coe�cient which is
determined as follows:

ψ =



−2, if Scu = Scv, Stu = Stv

2, if Stu = Scv, Scu = Stv

−1, if Scu = Scv, Stu ̸= Stv

1, if Scu = Stv, Stu ̸= Scv

−1, if Scu ̸= Scv, Stu = Stv

1, if Scu ̸= Stv, Stu = Scv

0, if Scu ̸= Scv, Stu ̸= Scv, Scu ̸= Stv, Stu ̸= Stv

(5)

The operator O2 is used when O1 exhausts its improving moves and pro-
vides a �rst means to help the descent-based improvement phase to es-
cape the current local optimum and discover solutions of increasing qual-
ity. Given an incumbent solution, there are a total number of (k − 1)2n2

candidate double-transfer moves denoted as set DT . Seeking directly the
best move with the maximum ∆dt among all these possible moves would
just be too computationally expensive. In order to mitigate this problem,
we devise a strategy to accelerate the move evaluation process.

From Formula (4), one observes that among all the vertices in V , only
the vertices verifying the condition ωuv ̸= 0 and ∆dt(u,v) > 0 are of
interest for the double-transfer moves. Note that without the condition
ωuv ̸= 0, performing a double-transfer move would actually equal to two
consecutive single-transfer moves, which on the one hand makes the op-
erator O2 meaningless and on the other hand fails to get an increased
objective gain. Thus, by examining only the endpoint vertices of edges
in E, we shrink the move combinations by building a reduced subset:
DTR = {dt(u, v) : dt(u, v) ∈ DT,ωuv ̸= 0, ∆dt(u,v) > 0}. Based on DTR,
the complexity of examining all possible double-transfer moves drops to
O(|E|), which is not related to k. In practice, one can examine ϕ|E| end-
point vertices in case |E| is too large. We empirically set ϕ = 0.1/d, where
d is the highest degree of the graph.

To summarize, the O2 search operator selects two st moves u → Stu and
v → Stv from the reduced set DTR, such that the combined move gain
∆dt(u,v) according to Formula (4) is maximum.

� The O3 search operator, like O1, selects a best single-transfer move
(i.e., with the largest move gain) while considering a tabu list H [16]. The
tabu list is a memory which is used to keep track of the performed st moves
to avoid revisiting previously encountered solutions. As such, each time a
best st move is performed to displace a vertex v from its original subset
to a target subset, v becomes tabu and is forbidden to move back to its
original subset for the next λ iterations (called tabu tenure). In our case,
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the tabu tenure is dynamically determined as follows.

λ = rand(3, n/10) (6)

where rand(3, n/10) denotes a random integer between 3 and n/10.

Based on the tabu list, O3 considers all possible single-transfer moves ex-
cept those forbidden by the tabu list H and selects the best st move with
the largest move gain ∆st. Note that a forbidden move is always selected
if the move leads to a solution better than the best solution found so far.
This is called aspiration in tabu search terminology [16].

Although both O3 and O1 use the single-transfer move, they are two di�er-
ent search operators and play di�erent roles within the MOH algorithm. On
the one hand, as a pure descent operator, O1 is a faster operator compared
to O3 and is designed to be an intensi�cation operator. Since O1 alone has
no any diversi�cation capacity and always ends with the local optimum
encountered, it is jointly used with O2 to visit di�erent local optima. On
the other hand, due to the use of the tabu list, O3 can accept moves with a
negative move gain (leading to a worsening solution). As such, unlike O1,
O3 has some diversi�cation capacity, and when jointly used with O4, helps
the search to examine nearby regions around the input local optimum to
�nd better solutions (see Alg. 1, lines 30− 40 and Section 2.7).

� The O4 search operator, like O2, is based on the double-transfer opera-
tion. However, O4 strongly constraints the considered candidate dt moves
with respect to two target subsets which are randomly selected. Speci�cally,
O4 operates as follows. Select two target subsets Sp and Sq at random, and
then select two single-transfer moves u → Sp and v → Sq such that the
combined move gain ∆dt(u,v) according to Formula (4) is maximum.
Operator O4 is jointly used with operator O3 to ensure the diversi�ed im-
provement search phase.

� The O5 search operator is based on a randomized single-transfer move
operation. O5 �rst selects a random vertex v ∈ V and a random target
subset Sp, where v ̸∈ Sp and then moves v from its current subset to
Sp. This operator is used to change randomly the incumbent solution for
the purpose of (strong) diversi�cation when the search is considered to be
trapped in a deep local optimum (see Section 2.8).

Among the �ve search operators, four of them (O1 − O4) need to �nd a
single-transfer move with the maximum move gain. To ensure a high computa-
tional e�ciency of these operators, we develop below a streamlining technique
for fast move gain evaluation and move gain updates.
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2.5 Bucket sorting for fast move gain evaluation and updating

The algorithm needs to rapidly evaluate a number of candidate moves at each
iteration. Since all the search operators basically rely on the single-transfer
move operation, we developed a fast incremental evaluation technique based
on a bucket data structure to keep and update the move gains after each move
application [10]. Our streamlining technique can be described as follows: let
v → Sx be the move of transferring vertex v from its current subset Scv to
any other subset Sx, x ∈ {1, . . . , k}, x ̸= cv. Then initially, each move gain is
determined as follows:

∆v→Sx =
∑

i∈Scv,i̸=v

ωvi −
∑
j∈Sx

ωvj , x ∈ {1, . . . , k}, x ̸= cv (7)

where ωvi and ωvj are respectively the weights of edges e(v, i) and e(v, j).
Suppose the move v → Stv, i.e., displacing v from Scv to Stv, is performed,

the move gains can be updated by performing the following calculations:

1. for each Sx ̸= Scv, Sx ̸= Stv,
∆v→Sx = ∆v→Sx −∆v→Stv

2. ∆v→Scv = −∆v→Stv

3. ∆v→Stv = 0
4. for each u ∈ V −{v}, moving u ∈ Scu to each other subset Sy ∈ S−{Scu},

∆u→Sy =



∆u→Sy − 2ωuv, if Scu = Scv, Sy = Stv

∆u→Sy + 2ωuv, if Scu = Stv, Sy = Scv

∆u→Sy − ωuv, if Scu = Scv, Sy ̸= Stv

∆u→Sy + ωuv, if Scu = Stv, Sy ̸= Scv

∆u→Sy − ωuv, if Scu ̸= Scv, Sy = Stv

∆u→Sy + ωuv, if Scu ̸= Stv, Sy = Scv

∆u→Sy , if Scu ̸= Scv, Scu ̸= Stv, Sy ̸= Scv, Sy ̸= Stv

(8)

For low-density graphs, ωuv = 0 stands for most cases. Hence, we only up-
date the move gains of vertices a�ected by this move (i.e., the displaced vertex
and its adjacent vertices), which reduces the computation time signi�cantly.

The move gains can be stored in an vector, with which the time for �nd-
ing the best move grows linearly with the number of vertices and partitions
(O(kn)). For large problem instances, the required time to search the best
move can still be quite high, which is particular true when k is large. To fur-
ther reduce the computing time, we adapted the bucket sorting technique of
Fiduccia and Mattheyes [14] initially proposed for the two-way network par-
titioning problem to the max-k-cut problem. The idea is to keep the vertices
ordered by the move gains in decreasing order in k arrays of buckets, one
for each subset Si ∈ {S1, S2, . . . , Sk}. In each bucket array i, the jth entry
stores in a doubly linked list the vertices with the move gain ∆v→Si currently
equaling j. To ensure a direct access to each vertex in the doubly linked lists,
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as suggested in [14], we maintain another array for all vertices, where each
element points to its corresponding vertex in the doubly linked lists.

Fig. 1 shows an example of the bucket structure for k = 3 and n = 8. The
8 vertices of the graph (Fig. 1, left) are divided to 3 subsets S1, S2 and S3.
The associated bucket structure (Fig. 1, right) shows that the move gains of
moving vertices e, g, h to subset S1 equal −1, then they are stored in the entry
of B1 with index of −1 and are managed as a doubly linked list. The array AI
shown at the bottom of Fig. 1 manages position indexes of all vertices.
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Fig. 1: An example of bucket structure for max-3-cut

For each array of buckets, �nding the best vertex with maximum move
gain is equivalent to �nding the �rst non-empty bucket from top of the array
and then selecting a vertex in its doubly linked list. If there are more than
one vertices in the doubly linked list, a random vertex in this list is selected.
To further reduce the searching time, the algorithm memorizes the position of
the �rst non-empty bucket (e.g., gmax1, gmax2, gmax3 in Fig. 1). After each
move, the bucket structure is updated by recomputing the move gains (see
Formula (8)) of the a�ected vertices which include the moved vertex and its
adjacent vertices, and shifting them to appropriate buckets. For instance, the
steps of performing an O1 move based on Fig. 1 are shown as follows: First,
obtain the index of maximum move gain in the bucket arrays by calculating
max(gmax1, gmax2, gmax3), which equals gmax3 in this case. Second, select
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randomly a vertex indexed by gmax3, vertex b in this case. At last, update
the positions of the a�ected vertices a, b, d.

The complexity of each move consists in 1) searching for the vertex with
maximum move gain in O(l) (l being the current length of the doubly link list
with the maximum gain, typically much smaller than n), 2) recomputing the
move gains for the a�ected vertices in O(kdmax) (dmax being the maximum
degree of the graph), and 3) updating the bucket structure in O(kdmax).

Bucket data structures have been previously applied to the speci�c max-cut
and max-bisection problems [3,23,35]. This work presents the �rst adaptation
of the bucket sorting technique to the general max-k-cut problem.

2.6 Descent-based improvement phase for intensi�ed search

The descent-based local search is used to obtain a local optimum from a given
starting solution. As described in Algorithm 1 (lines 11 - 21), we alternatively
uses two search operators O1 and O2 de�ned in Section 2.4 to improve a solu-
tion until reaching a local optimum. Starting from the given initial solution,
the procedure �rst applies O1 to improve the incumbent solution. According
to the de�nition of O1 in Section 2.4, at each step, the procedure examines
all possible single-transfer moves and selects a move v → Sq with the largest
move gain ∆v→Sq subject to ∆v→Sq > 0, and then performs that move. After
the move, the algorithm updates the bucket structure of move gains according
to the technique described in Section 2.5.

When the incumbent solution can not be improved by O1 (i.e., ∀v ∈
V, ∀Sq,∆v→Sq ≤ 0), the procedure turns to O2 which makes one best double-
transfer move. If an improved solution is discovered with respect to the local
optimum reached by O1, we are in a new promising area. We switch back to
operator O1 to resume an intensi�ed search to attain a new local optimum.
The descent-based improvement phase stops when no better solution can be
found with O1 and O2. The last solution is a local optimum Ilo with respect to
the single-transfer and double-transfer moves and serves as the input solution
of the second search phase which is explained in the next section.

2.7 Diversi�ed improvement phase for discovering promising region

The descent-based local phase described in Section 2.6 alone can not go beyond
the best local optimum Ilo it encounters. The diversi�ed improvement search
phase is used 1) to jump out of this local optimum and 2) to intensify the
search around this local optimum with the hope of discovering other improved
solutions better than the input local optimum Ilo. The diversi�ed improvement
search procedure alternatively uses two search operators O3 and O4 de�ned in
Section 2.4 to perform moves until a prescribed condition is met (see below and
Alg. 1, line 40). The application of O3 or O4 is determined probabilistically:
with probability ρ, O3 is applied; with 1− ρ, O4 is applied.
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When O3 is selected, the algorithm searches for a best single transfer move
v → Sq with maximum move gain ∆v→Sq which is not forbidden by the tabu
list or veri�es the aspiration criterion. Each performed move is then recorded
in the tabu list H and is classi�ed tabu for the next λ (calculated by Formula
(6)) iterations. The bucket structure is updated to actualize the impacted move
gains accordingly. Note that the algorithm only keeps and updates the tabu
list during the diversi�ed improvement search phase. Once this second search
phase terminates, the tabu list is cleared up.

Similarly, when O4 is selected, two subsets are selected at random and
a best double-transfer dt move with maximum move gain ∆dt is determined
from the bucket structure (break ties at random). After the move, the bucket
structure is updated to actualize the impacted move gains.

The diversi�ed improvement search procedure terminates once a solution
better than the input local optimum Ilo is found, or a maximum number ω
of diversi�ed moves (O3 or O4) is reached. Then the algorithm returns to the
descent-based search procedure and use the current solution I as a new starting
point for the descent-based search. If the best solution founded so far (fbest)
can not be improved over a maximum allowed number ξ of consecutive rounds
of the descent-based improvement and diversi�ed improvement phases, the
search is probably trapped in a deep local optima. Consequently, the algorithm
switches to the perturbation phase (Section 2.8) to displace the search to a
distant region.

2.8 Perturbation phase for strong diversi�cation

The diversi�ed improvement phase makes it possible for the search to escape
some local optima. However, the algorithm may still get deeply stuck in a non-
promising regional search area. This is the case when the best-found solution
fbest can not be improved after ξ consecutive rounds of descent and diversi�ed
improvement phases. Thus the random perturbation is applied to strongly
change the incumbent solution.

The basic idea of the perturbation consists in applying the O5 operator
γ times. In other words, this perturbation phase moves γ randomly selected
vertices from their original subset to a new and randomly selected subset. Here,
γ is used to control the perturbation strength; a large (resp. small) γ value
changes strongly (resp. weakly) the incumbent solution. In our case, we adopt
γ = 0.1|V |, i.e., as a percent of the number of vertices. After the perturbation
phase, the search returns to the descent-based improvement phase with the
perturbed solution as its new starting solution.
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3 Experimental results and comparisons

3.1 Benchmark instances

To evaluate the performance of the proposed MOH approach, we carried out
computational experiments on two sets of well-known benchmarks with a total
of 91 large instances of the literature1. The �rst set (G-set) is composed of 71
graphs with 800 to 20000 vertices and an edge density from 0.02% to 6%. These
instances were previously generated by a machine-independent graph genera-
tor including toroidal, planar and random weighted graphs. These instances
are available from: http://www.stanford.edu/yyye/yyye/Gset. The second set
comes form [6], arising from 30 cubic lattices with randomly generated interac-
tion magnitudes. Since the 10 small instances (with less than 1000 vertices) of
the second set are very easy for our algorithm, only the results of the 20 larger
instances with 1000 to 2744 vertices are reported. These well-known bench-
marks were frequently used to evaluate the performance of max-bisection,
max-cut and max-k-cut algorithms [3,13,29,28,30�34].

3.2 Experimental protocol

The proposed MOH algorithm was programmed in C++ and compiled with
GNU g++ (optimization �ag �-O2"). Our computer is equipped with a Xeon
E5440/2.83GHz CPU with 2GB RAM. When testing the DIMACS machine
benchmark2, our machine requires 0.43, 2.62 and 9.85 CPU time in seconds
respectively for graphs r300.5, r400.5, and r500.5 compiled with g++ -O2.

3.3 Parameters

The MOH algorithm requires �ve parameters: tabu tenure λ, maximum num-
ber ω of diversi�ed moves, maximum number ξ of consecutive non-improving
rounds of the descent and diversi�ed improvement phases before the pertur-
bation phase, probability ρ for applying the operator O3, and perturbation
strength γ. For the tabu tenure λ, we adopted the recommended setting of
the Breakout Local Search [3], which performs quite well for the benchmark
graphs. For each of the other parameters, we �rst identi�ed a collection of
varying values and then determined the best setting by testing the candidate
values of the parameter while �xing the other parameters to their default val-
ues. This parameter study was based on a selection of 10 representative and
challenging G-set instances (G22, G23, G25, G29, G33, G35, G36, G37, G38
and G40). For each parameter setting, 10 independent runs of the algorithm
were conducted for each instance and the average objective values over the

1 Our best results are available at: http://www.info.univ-angers.fr/pub/hao/maxkcut/
MOHResults.zip.
2 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
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10 runs were recorded. If a large parameter value presents a better result, we
gradually increase its value; otherwise, we gradually decrease its value. By re-
peating the above procedure, we determined the following parameter settings:
λ = rand(3, |V |/10), ω = 500, ξ = 1000, ρ = 0.5, and γ = 0.1|V |, which were
used in our experiments to report computational results.

Considering the stochastic nature of our MOH algorithm, each instance was
independently solved 20 times. For the purpose of fair comparisons reported in
Sections 3.4 and 3.5, we followed most reference algorithms and used a timeout
limit as the stopping criterion of the MOH algorithm. The timeout limit was
set to be 30 minutes for graphs with |V | < 5000, 120 minutes for graphs with
10000 ≥ |V | ≥ 5000, 240 minutes for graphs with |V | ≥ 10000.

To fully assess the performance of the MOH algorithm, we performed two
comparisons with the state-of-the-art algorithms. First, we focused on the max-
k-cut problem (k = 2, 3, 4, 5), where we thoroughly compared our algorithm
with the recent discrete dynamic convexized algorithm [34] which provides the
most competitive results for the general max-k-cut problem in the literature.
Secondly, for the special max-cut case (k = 2), we compared our algorithm with
seven most recent max-cut algorithms [3,20,29�32]. It should be noted that
those state-of-the-art max-cut algorithms were speci�cally designed for the
particular max-cut problem while our algorithm was developed for the general
max-k-cut problem. Naturally, the dedicated algorithms are advantaged since
they can better explore the particular features of the max-cut problem.

3.4 Comparison with state-of-the-art max-k-cut algorithms

In this section, we present the results attained by the MOH algorithm for the
max-k-cut problem. As mentioned above, we compare the proposed algorithm
with the discrete dynamic convexized algorithm (DC) [34], which was pub-
lished very recently. DC was tested on a computer with a 2.11 GHz AMD
processor and 1 GB of RAM. According to the Standard Performance Evalu-
ation Cooperation (SPEC) (www.spec.org), this computer is 1.4 times slower
than the computer we used for our experiments. Note that DC is the only
heuristic algorithm available in the literature, which published computational
results for the general max-k-cut problem.

Tables 1 to 4 respectively show the computational results of the MOH
algorithm (k = 2, 3, 4, 5) on the 2 sets of benchmarks in comparison with
those of the DC algorithm. The �rst two columns of the tables indicate the
name and the number of vertices of the graphs. Columns 3 to 6 present the
results attained by our algorithm, where fbest and favg show the best objective
value and the average objective value over 20 runs, std gives the standard
deviation and time(s) indicates the average CPU time in seconds required
by our algorithm to reach the best objective value fbest. Columns 7 to 10
present the statistics of the DC algorithm, including the best objective value
fbest, average objective value favg, the time required to terminate the run
tt(s) and the time bt(s) to reach the fbest value. Considering the di�erence
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between our computer and the computer used by DC, we normalize the time
of DC by dividing them by 1.4 according to the SPEC mentioned above. The
entries marked as �-" in the tables indicate that the corresponding results are
not available. The entries in bold indicate that those results are better than
the results provided by the reference DC algorithm. The last column (gap)
indicates the gap of the best objective value for each instance between our
algorithm and DC. A positive gap implies an improved result.

From Table 1 on max-2-cut, one observes that our algorithm achieves a
better fbest (best objective value) for 50 out of 74 instances reported by DC,
while a better favg (average objective value) for 71 out of 74 instances. Our
algorithm matches the results on other instances and there is no result worse
than that obtained by DC. The average standard deviation for all 91 instances
is only 2.82, which shows our algorithm is stable and robust.

From Table 2, 3, and 4, which respectively show the comparative results
on max-3-cut, max-4-cut and max-5-cut. One observes that our algorithm
achieves much higher solution quality on more than 90 percent of 44 instances
reported by DC while getting 0 worse result. Moreover, even our average results
(favg) are better than the best results reported by DC.

Note that the DC algorithm used a stopping condition of 500 generations
(instead of a cuto� time limit) to report its computational results. Among
the two timing statistics (tt(s) and bt(s)), bt(s) roughly corresponds to col-
umn time of the MOH algorithm. Still given that the two algorithms attain
solutions of quite di�erent quality, it is meaningless to directly compare the
corresponding time values listed in Tables 1�4. To fairly compare the compu-
tational e�ciency of MOH and DC, we reran the MOH algorithm with the
best objective value of the DC algorithm as our stopping condition and re-
ported our timing statistics in Table 5. One observes that our algorithm needs
at most 16 seconds (less than 1 second for most cases) to attain the best ob-
jective value reported by the DC algorithm, while the DC algorithm requires
at least 44 seconds and up to more than 2000 seconds for several instances.
More generally, as shown in Table 1�4, except the last 17 instances of the very
competitive max-2-cut problem for which the results of DC are not available,
the MOH algorithm requires rarely more than 1000 seconds to attain solutions
of much better quality.

We conclude that the proposed algorithm for the general max-k-cut prob-
lem dominates the state-of-the-art reference DC algorithm both in terms of
solution quality and computing time.

3.5 Comparison with state-of-the-art max-cut algorithms

Our algorithm was designed for the general max-k-cut problem for k ≥ 2. The
assessment of the last section focused on the general case. In this section, we
further evaluate the performance of the proposed algorithm for the special
max-cut problem (k = 2).
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Recall that max-cut has been largely studied in the literature for a long
time and there are many powerful heuristics which are speci�cally designed
for the problem. These state-of-the-art max-cut algorithms constitute thus
relevant references for our comparative study. In particular, we adopt the
following 7 best performing sequential algorithms published since 2012.

1. Global equilibrium search (GES) (2012) [29] - an algorithm sharing ideas
similar to simulated annealing and utilizing accumulated information of
search space to generate new solutions for the subsequent stages. The re-
ported results of GES were obtained on a PC with a 2.83GHz Intel Core
QUAD Q9550 CPU and 8.0GB RAM.

2. Breakout local search (BLS) (2013) [3] - a heuristic algorithm integrating
a local search and adaptive perturbation strategies. The reported results
of BLS were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and
2GB RAM.

3. Two memetic algorithms respective for the max-cut problem (MACUT)
(2012) [31] and the max-bisection problem (MAMBP) (2013) [32] - inte-
grating a grouping crossover operator and a tabu search procedure. The
results reported in the two papers were obtained on a PC with a 2.83GHz
Intel Xeon E5440 CPU and 2GB RAM.

4. GRASP-Tabu search algorithm (2013) [30] - a method converting the max-
cut problem to the UBQP problem and solving it by integrating GRASP
and tabu search. The reported results were obtained on a PC with a
2.83GHz Intel Xeon E5440 CPU and 2GB RAM.

5. Tabu search (TS-UBQP) (2013) [20] - a tabu search algorithm designed
for UBQP. The evaluation of TS-UBQP were performed on a PC with a
2.83GHz Intel Xeon E5440 CPU and 2GB RAM.

6. Tabu search based hybrid evolutionary algorithm (TSHEA) (2016) [33] -
a very recent hybrid algorithm integrating a distance-and-quality guided
solution combination operator and a tabu search procedure based on neigh-
borhood combination of one-�ip and constrained exchange moves. The re-
sults were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and
8GB RAM.

One notices that except GES, the other �ve reference algorithms were run
on the same computing platform. Nevertheless, it is still di�cult to make a fully
fair comparison of the computing time, due to the di�erences on programming
language, compiling options, and termination conditions, etc. Our comparison
thus focuses on the best solution achieved by each algorithm. Recall that for
our algorithm, the timeout limit was set to be 30 minutes for graphs with
|V | < 5000, 120 minutes for graphs with 1000 ≥ |V | ≥ 5000, 240 minutes
for graphs with |V | ≥ 10000. Our algorithm employed thus the same timeout
limits as [31] on the graphs |V | < 10000, but for the graphs |V | ≥ 10000, we
used 240 minutes to compare with BLS [3].

Table 6 gives the comparative results on the 91 instances of the two bench-
marks. Columns 1 and 2 respectively indicate the instance name and the num-
ber of vertices of the graphs. Columns 3 shows the current best known objective
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value fpre reported by any existing max-cut algorithm in the literature includ-
ing the latest parallel GES algorithm [28]. Columns 4 to 10 give the best objec-
tive value obtained by the reference algorithms: GES [29], BLS [3], MACUT
[31], TS-UBQP [20], GRASP-TS/PM [30], MAMBP [32] and TSHEA [33].
Note that MAMBP is designed for the max-bisection problem (i.e., balanced
max-cut), however it achieves some previous best known max-cut results. The
last column `MOH' recalls the best results of our algorithm from Table 1. The
rows denoted by `Better', `Equal' and `Worse' respectively indicate the num-
ber of instances for which our algorithm obtains a result of better, equal and
worse quality relative to each reference algorithm. The entries are reported in
the form of x/y/z, where z denotes the total number of the instances tested by
our algorithm, y is the number of the instances tested by a reference algorithm
and x indicates the number of instances where our algorithm achieved `Bet-
ter', `Equal' or `Worse' results. The results in bold mean that our algorithm
has improved the best known results. The entries marked as �-" in the table
indicate that the results are not available.

From Table 6, one observes that the MOH algorithm is able to improve
the current best known results in the literature for 4 instances, and match the
best known results for 74 instances. For 13 cases (in italic), even if our results
are worse than the current best known results achieved by the latest parallel

GES algorithm [28], they are still better than the results of other existing algo-
rithms, except for 4 instances if we refer to the most recent TSHEA algorithm
[33]. Note that the results of the parallel GES algorithm were achieved on
a more powerful computing platform (Intel CoreTM i7-3770 CPU @3.40GHz
and 8GB RAM) and with longer time limits (4 parallel processes at the same
time and 1 hour for each process).

Such a performance is remarkable given that we are comparing our more
general algorithm designed for max-k-cut with the best performing speci�c
max-cut algorithms. The experimental evaluations presented in this section
and last section demonstrate that our algorithm not only performs well on
the general max-k-cut problem, but also remains highly competitive for the
special case of the popular max-cut problem.
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Table 1: Comparative results for max-2-cut between the proposed MOH algo-
rithm and DC [34].

Instance |V | MOH DC gap

fbest favg std time(s) fbest favg tt(s) bt(s)

G1 800 11624 11624.00 0.00 1.46 11624 11617.20 131.73 90.98 0
G2 800 11620 11620.00 0.00 4.61 11620 11610.00 131.38 79.96 0
G3 800 11622 11622.00 0.00 1.25 11622 11612.20 130.78 64.22 0
G4 800 11646 11646.00 0.00 5.23 11646 11633.90 133.78 48.17 0
G5 800 11631 11631.00 0.00 0.99 11631 11623.20 131.71 36.46 0
G6 800 2178 2178.00 0.00 3.03 2178 2175.90 132.08 83.88 0
G7 800 2006 2006.00 0.00 2.98 2006 1997.70 137.61 59.61 0
G8 800 2005 2005.00 0.00 5.72 2005 2000.00 139.17 31.28 0
G9 800 2054 2054.00 0.00 3.21 2049 2043.50 134.94 40.03 5
G10 800 2000 2000.00 0.00 68.09 1999 1998.40 133.26 18.34 1
G11 800 564 564.00 0.00 0.22 564 563.80 58.84 7.78 0
G12 800 556 556.00 0.00 3.52 556 555.40 58.73 17.09 0
G13 800 582 582.00 0.00 0.85 582 580.00 60.95 43.21 0
G14 800 3064 3064.00 0.00 251.27 3057 3054.30 82.68 56.77 7
G15 800 3050 3050.00 0.00 52.19 3044 3038.00 82.43 27.69 6
G16 800 3052 3052.00 0.00 93.68 3052 3039.60 81.12 15.19 0
G17 800 3047 3047.00 0.00 129.53 3043 3037.80 81.61 15.05 4
G18 800 992 992.00 0.00 112.65 989 984.00 89.05 3.73 3
G19 800 906 906.00 0.00 266.92 906 899.90 84.43 24.96 0
G20 800 941 941.00 0.00 43.71 941 938.20 86.28 15.17 0
G21 800 931 931.00 0.00 155.34 931 926.00 86.24 12.44 0
G22 2000 13359 13357.00 1.91 352.37 13339 13315.90 683.67 108.56 20
G23 2000 13344 13344.00 0.00 433.79 13323 13298.90 705.23 433.48 21
G24 2000 13337 13336.70 0.46 777.86 13314 13286.00 692.07 237.38 23
G25 2000 13340 13335.50 2.40 442.45 13324 13293.70 694.73 667.19 16
G26 2000 13328 13325.50 2.31 535.14 13313 13282.20 689.61 251.36 15
G27 2000 3341 3341.00 0.00 42.25 3326 3285.40 677.86 464.32 15
G28 2000 3298 3298.00 0.00 707.18 3292 3272.00 680.47 594.81 6
G29 2000 3405 3397.85 5.31 555.23 3390 3357.20 693.45 375.90 15
G30 2000 3413 3412.15 0.36 330.46 3398 3369.50 676.54 587.80 15
G31 2000 3310 3307.85 0.91 592.56 3295 3273.90 696.42 212.48 15
G32 2000 1410 1410.00 0.00 65.75 1408 1402.70 514.87 115.58 2
G33 2000 1382 1381.60 0.80 504.10 1378 1373.70 508.85 271.75 4
G34 2000 1384 1384.00 0.00 84.23 1378 1376.70 531.51 97.37 6
G35 2000 7686 7681.65 1.59 796.70 7647 7632.20 614.51 391.36 39
G36 2000 7680 7673.60 1.62 664.48 7625 7618.50 613.15 594.82 55
G37 2000 7691 7685.75 2.26 652.78 7640 7627.70 623.72 609.25 51
G38 2000 7688 7683.60 2.27 779.69 7641 7614.40 632.95 587.98 47
G39 2000 2408 2405.35 1.85 787.69 2375 2352.50 659.34 281.45 33
G40 2000 2400 2397.35 2.43 472.50 2384 2371.70 656.75 425.90 16
G41 2000 2405 2405.00 0.00 377.35 2377 2357.40 666.79 244.21 28
G42 2000 2481 2476.35 2.01 777.42 2469 2441.30 657.13 374.11 12
G43 1000 6660 6660.00 0.00 1.15 6657 6648.90 156.66 29.04 3
G44 1000 6650 6650.00 0.00 5.28 6650 6643.70 155.84 24.82 0
G45 1000 6654 6654.00 0.00 6.87 6647 6640.70 155.28 95.98 7
G46 1000 6649 6648.90 0.30 67.27 6647 6637.90 157.02 61.02 2
G47 1000 6657 6657.00 0.00 43.25 6657 6648.50 157.81 144.33 0
G48 3000 6000 6000.00 0.00 0.02 6000 6000.00 420.15 0.26 0
G49 3000 6000 6000.00 0.00 0.03 6000 6000.00 440.26 0.36 0
G50 3000 5880 5879.70 0.71 532.13 5880 5880.00 552.51 0.59 0
G51 1000 3848 3848.00 0.00 189.20 3842 3831.50 137.56 122.03 6
G52 1000 3851 3851.00 0.00 209.69 3840 3830.50 132.69 119.09 11
G53 1000 3850 3849.95 0.22 299.28 3844 3835.00 136.25 62.86 6
G54 1000 3852 3851.10 0.30 190.38 3831 3824.40 136.04 60.29 21
G55 5000 10299 10283.40 7.13 1230.40 - - - - -
G56 5000 4016 4007.47 6.49 990.40 - - - - -
G57 5000 3494 3486.80 2.45 1528.34 - - - - -
G58 5000 19288 19275.40 4.58 1522.29 - - - - -
G59 5000 6087 6077.19 7.90 2498.80 - - - - -
G60 7000 14190 14173.00 6.98 2945.40 - - - - -
G61 7000 5798 5782.67 5.72 6603.34 - - - - -
G62 7000 4868 4851.73 7.10 5568.63 - - - - -
G63 7000 27033 27019.20 6.23 6492.11 - - - - -
G64 7000 8747 8700.87 19.28 4011.10 - - - - -
G65 8000 5560 5531.93 6.43 4709.53 - - - - -
G66 9000 6360 6323.53 6.34 6061.92 - - - - -
G67 10000 6942 6903.93 8.91 4214.28 - - - - -
G70 10000 9544 9527.80 9.32 8732.40 - - - - -
G72 10000 6998 6957.80 7.36 6586.64 - - - - -
G77 14000 9928 9920.00 3.08 9863.56 - - - - -
G81 20000 14036 14020.30 8.50 20422.00 - - - - -
3dl101000 1000 896 896.00 0.00 8.35 896 888.70 113.30 48.64 0
3dl102000 1000 900 900.00 0.00 9.50 900 898.50 111.50 2.56 0
3dl103000 1000 892 892.00 0.00 148.25 888 884.70 112.96 23.59 4
3dl104000 1000 898 898.00 0.00 4.20 898 895.00 112.19 30.17 0
3dl105000 1000 886 886.00 0.00 17.00 884 882.80 115.04 14.16 2
3dl106000 1000 888 888.00 0.00 5.55 888 883.70 114.72 32.87 0
3dl107000 1000 900 899.60 0.80 61.10 898 892.40 114.06 39.41 2
3dl108000 1000 882 882.00 0.00 76.95 880 877.70 120.03 15.83 2
3dl109000 1000 902 902.00 0.00 21.55 902 894.40 113.64 9.72 0
3dl1010000 1000 894 894.00 0.00 12.15 894 893.40 110.87 21.37 0
3dl141000 2744 2446 2445.00 1.61 552.20 2434 2416.40 1039.73 694.21 12
3dl142000 2744 2458 2457.70 1.31 479.15 2444 2431.00 1016.16 496.31 14
3dl143000 2744 2444 2439.60 2.33 58.75 2426 2415.00 1012.31 121.79 18
3dl144000 2744 2450 2448.10 2.23 220.55 2440 2425.30 997.51 587.98 10
3dl145000 2744 2446 2444.90 2.23 372.35 2432 2422.40 999.31 277.75 14
3dl146000 2744 2452 2449.60 2.06 227.80 2438 2430.00 1035.41 930.23 14
3dl147000 2744 2444 2442.70 1.31 239.05 2428 2413.40 1022.70 556.16 16
3dl148000 2744 2448 2446.40 1.50 405.35 2432 2424.40 1030.67 954.38 16
3dl149000 2744 2428 2424.70 2.12 112.05 2418 2403.70 1020.11 832.95 10
3dl1410000 2744 2458 2455.70 2.63 286.35 2438 2429.30 1018.15 466.77 20
Better 50/74/91 71/74/91
Equal 24/74/91 3/74/91
Worse 0/74/91 0/74/91
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Table 2: Comparative results for max-3-cut between the proposed MOH algo-
rithm and DC [34]

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 15165 15164.90 0.36 557.25 15127 508.34 339.41 38
G2 800 15172 15171.20 0.99 333.25 15159 497.49 228.37 13
G3 800 15173 15173.00 0.00 269.60 15149 506.45 205.06 24
G4 800 15184 15181.40 2.46 300.55 - - - -
G5 800 15193 15193.00 0.00 98.15 - - - -
G6 800 2632 2631.95 0.22 307.30 - - - -
G7 800 2409 2408.40 1.07 381.00 - - - -
G8 800 2428 2427.55 0.67 456.50 - - - -
G9 800 2478 2475.85 2.52 282.00 - - - -
G10 800 2407 2406.40 0.86 569.30 - - - -
G11 800 669 667.80 0.75 143.80 660 240.99 132.51 9
G12 800 660 658.95 0.50 100.70 655 212.56 59.09 5
G13 800 686 685.40 0.58 459.35 679 230.20 111.53 7
G14 800 4012 4009.45 1.88 88.20 3984 271.47 190.40 28
G15 800 3984 3982.40 0.58 80.30 3960 271.88 183.92 24
G16 800 3991 3986.30 1.87 1.30 3958 272.44 75.02 33
G17 800 3983 3981.00 1.05 7.80 - - - -
G18 800 1207 1205.60 1.56 0.30 - - - -
G19 800 1081 1078.05 2.38 0.20 - - - -
G20 800 1122 1115.00 4.05 13.25 - - - -
G21 800 1109 1106.75 2.30 55.75 - - - -
G22 2000 17167 17157.80 7.62 28.45 17008 2121.42 986.19 159
G23 2000 17168 17156.70 6.40 45.05 17021 2190.36 1208.18 147
G24 2000 17162 17152.10 4.98 16.30 17037 2230.09 1385.32 125
G25 2000 17163 17155.20 3.44 64.75 - - - -
G26 2000 17154 17146.30 4.61 44.80 - - - -
G27 2000 4020 4013.80 3.33 53.15 - - - -
G28 2000 3973 3966.45 5.10 38.85 - - - -
G29 2000 4106 4097.30 5.40 68.15 - - - -
G30 2000 4119 4109.90 5.34 150.40 - - - -
G31 2000 4003 3999.20 6.69 124.70 - - - -
G32 2000 1653 1651.85 0.73 160.05 1635 1274.91 905.73 18
G33 2000 1625 1622.30 0.95 62.55 1603 1215.13 664.57 22
G34 2000 1607 1604.00 1.00 88.85 1589 1303.88 827.79 18
G35 2000 10046 10039.90 2.59 66.15 9965 1793.30 1048.97 81
G36 2000 10039 10034.40 3.81 74.25 9945 1822.04 1196.02 94
G37 2000 10052 10047.80 1.96 3.35 9952 1845.20 1288.13 100
G38 2000 10040 10035.50 3.26 116.60 - - - -
G39 2000 2903 2890.05 6.75 8.95 - - - -
G40 2000 2870 2850.65 8.08 82.80 - - - -
G41 2000 2887 2862.90 9.77 87.70 - - - -
G42 2000 2980 2964.30 5.99 2.45 - - - -
G43 1000 8573 8573.00 0.00 380.30 8510 512.48 112.20 63
G44 1000 8571 8569.60 2.35 616.80 8526 491.34 47.87 45
G45 1000 8566 8564.85 1.11 186.20 8515 504.19 44.00 51
G46 1000 8568 8564.60 2.01 215.30 - - - -
G47 1000 8572 8568.70 2.72 239.35 - - - -
G48 3000 6000 6000.00 0.00 0.40 5998 2591.27 293.30 2
G49 3000 6000 6000.00 0.00 0.90 6000 2653.42 1587.05 0
G50 3000 6000 6000.00 0.00 119.15 5998 2547.78 279.78 2
G51 1000 5037 5031.35 1.90 47.90 - - - -
G52 1000 5040 5037.50 0.81 0.65 - - - -
G53 1000 5039 5038.00 1.05 223.85 - - - -
G54 1000 5036 5033.55 2.29 133.95 - - - -
G55 5000 12429 12423.70 2.61 383.10 - - - -
G56 5000 4752 4741.90 7.84 569.20 - - - -
G57 5000 4083 4079.00 1.55 535.60 - - - -
G58 5000 25195 25182.10 8.89 576.00 - - - -
G59 5000 7262 7246.70 9.20 27.50 - - - -
G60 7000 17076 17067.00 4.40 683.00 - - - -
G61 7000 6853 6842.10 5.26 503.10 - - - -
G62 7000 5685 5681.50 1.43 242.40 - - - -
G63 7000 35322 35301.60 10.35 658.50 - - - -
G64 7000 10443 10408.80 25.23 186.90 - - - -
G65 8000 6490 6485.80 2.04 324.70 - - - -
G66 9000 7416 7411.50 2.42 542.50 - - - -
G67 10000 8086 8083.50 2.29 756.70 - - - -
G70 10000 9999 9999.00 0.00 7.80 - - - -
G72 10000 8192 8186.70 3.35 271.20 - - - -
G77 14000 11578 11568.90 4.01 154.90 - - - -
G81 20000 16321 16313.00 4.05 331.20 - - - -
3dl101000 1000 1067 1066.10 0.54 150.40 1043 333.45 179.20 24
3dl102000 1000 1072 1071.95 0.22 669.50 1044 339.38 188.68 28
3dl103000 1000 1065 1063.60 0.66 142.85 1042 326.69 114.20 23
3dl104000 1000 1071 1070.30 0.46 160.20 1045 341.58 109.75 26
3dl105000 1000 1064 1061.90 0.77 4.40 1039 320.88 178.88 25
3dl106000 1000 1063 1061.80 0.60 120.00 1032 353.75 23.96 31
3dl107000 1000 1075 1074.40 0.58 414.05 1053 335.95 157.18 22
3dl108000 1000 1071 1069.95 0.38 78.55 1049 325.50 209.77 22
3dl109000 1000 1079 1078.20 0.81 208.85 1052 328.38 232.87 27
3dl1010000 1000 1070 1069.50 0.50 478.65 1044 346.13 184.91 26
3dl141000 2744 2924 2919.75 2.45 25.00 2845 2527.70 1496.07 79
3dl142000 2744 2935 2929.25 2.53 55.95 2856 2556.83 1408.24 79
3dl143000 2744 2912 2909.50 1.40 110.25 2829 2658.27 1659.44 83
3dl144000 2744 2924 2919.90 2.41 81.15 2861 2490.92 1759.67 63
3dl145000 2744 2914 2911.25 1.92 67.50 2839 2515.36 1764.88 75
3dl146000 2744 2913 2909.00 2.00 22.05 2834 2541.43 1529.38 79
3dl147000 2744 2913 2909.30 1.73 70.05 2834 2554.19 1748.39 79
3dl148000 2744 2925 2919.40 4.05 73.95 2845 2495.00 1440.25 80
3dl149000 2744 2906 2901.50 2.62 6.35 2823 2476.52 1699.97 83
3dl1410000 2744 2933 2927.65 2.22 29.90 2851 2519.16 1476.52 82
Better 43/44/91
Equal 1/44/91
Worse 0/44/91
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Table 3: Comparative results for max-4-cut between the proposed MOH algo-
rithm and DC [34]

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 16803 16801 0.86 26.45 16740 450.16 290.51 63
G2 800 16809 16808 1.12 268.55 16735 455.81 388.76 74
G3 800 16806 16804.7 0.78 138.25 16752 431.86 245.50 54
G4 800 16814 16811.2 1.49 146.65 - - - -
G5 800 16816 16815.8 0.36 577.45 - - - -
G6 800 2751 2748.45 1.07 89.95 - - - -
G7 800 2515 2513.75 0.54 57.15 - - - -
G8 800 2525 2523.35 0.65 78.6 - - - -
G9 800 2585 2583.35 0.96 16.45 - - - -
G10 800 2510 2507.6 1.24 79.85 - - - -
G11 800 677 676 0.32 20.3 675 171.27 152.04 2
G12 800 664 662.25 0.54 41.25 660 179.99 117.52 4
G13 800 690 689.1 0.44 198.7 685 187.54 127.56 5
G14 800 4440 4435.35 1.93 55.95 4402 243.08 159.14 38
G15 800 4406 4403.4 0.8 89.55 4373 249.66 129.21 33
G16 800 4415 4414.05 1.02 392.45 4378 246.11 75.89 37
G17 800 4411 4406.45 2.27 0.2 - - - -
G18 800 1261 1253.9 3.06 0.3 - - - -
G19 800 1121 1115.35 3.69 1.2 - - - -
G20 800 1168 1160.95 3.12 0.4 - - - -
G21 800 1155 1148.25 3.74 54.7 - - - -
G22 2000 18776 18765.7 5.67 107.25 18615 1988.31 1314.45 161
G23 2000 18777 18765.8 5.71 73.7 18612 1941.85 1775.80 165
G24 2000 18769 18763.6 3.75 26.4 18620 1822.82 407.66 149
G25 2000 18775 18767.6 4.36 75.65 - - - -
G26 2000 18767 18761.2 4.49 96.55 - - - -
G27 2000 4201 4188.5 4.6 45.35 - - - -
G28 2000 4150 4138.85 5.91 24.95 - - - -
G29 2000 4293 4281.65 5.68 87.4 - - - -
G30 2000 4305 4296.4 4.12 33.5 - - - -
G31 2000 4171 4164.4 6.46 107.8 - - - -
G32 2000 1669 1667.85 1.01 120.9 1659 1140.66 736.15 10
G33 2000 1638 1634.65 1.15 0 1629 1052.38 870.96 9
G34 2000 1616 1611.7 1.65 0.05 1604 1105.02 1016.31 12
G35 2000 11111 11106.2 2.14 17.2 11007 1890.32 1764.52 104
G36 2000 11108 11101.4 2.9 17.25 10993 1738.64 1634.13 115
G37 2000 11117 11112.5 2.33 36.05 11023 1754.17 115.08 94
G38 2000 11108 11101.1 3.16 48.4 - - - -
G39 2000 3006 2998.7 3.91 1.15 - - - -
G40 2000 2976 2955.65 8.99 48.7 - - - -
G41 2000 2983 2970.3 6.91 1.8 - - - -
G42 2000 3092 3084.05 4.8 16.9 - - - -
G43 1000 9376 9373.95 1.2 84.15 9306 422.97 62.38 70
G44 1000 9379 9373.55 2.52 67.9 9315 430.52 43.88 64
G45 1000 9376 9375.1 0.94 249.5 9312 463.45 319.58 64
G46 1000 9378 9375.35 1.96 139.75 - - - -
G47 1000 9381 9377.05 2.04 60.5 - - - -
G48 3000 6000 6000 0 0 6000 1673.79 0.48 0
G49 3000 6000 6000 0 0 6000 1675.56 0.49 0
G50 3000 6000 6000 0 0 6000 1678.91 0.50 0
G51 1000 5571 5567.65 1.93 14.6 - - - -
G52 1000 5584 5581.15 1.74 20.9 - - - -
G53 1000 5574 5571.85 1.19 6.85 - - - -
G54 1000 5579 5576.25 1.58 0.7 - - - -
G55 5000 12498 12498 0 0.9 - - - -
G56 5000 4931 4917.1 6.49 424.6 - - - -
G57 5000 4112 4110.5 1.12 298.1 - - - -
G58 5000 27885 27870.9 8.68 435.4 - - - -
G59 5000 7539 7515.1 15.09 969.3 - - - -
G60 7000 17148 17148 0 2.3 - - - -
G61 7000 7110 7104.6 5.08 1305.2 - - - -
G62 7000 5743 5738.7 2.69 385.5 - - - -
G63 7000 39083 39063.5 9.18 660.2 - - - -
G64 7000 10814 10797.4 13.28 910.5 - - - -
G65 8000 6534 6525.4 4.48 1.5 - - - -
G66 9000 7474 7467.8 4.24 2.2 - - - -
G67 10000 8155 8142.5 5.57 3 - - - -
G70 10000 9999 9999 0 0.5 - - - -
G72 10000 8264 8254.6 7.36 3.1 - - - -
G77 14000 11674 11658.9 10.08 6.4 - - - -
G81 20000 16470 16454.3 8.5 27.9 - - - -
3dl101000 1000 1103 1100.6 0.86 64.5 1073 304.44 187.92 30
3dl102000 1000 1102 1100 0.95 1.5 1070 351.27 301.64 32
3dl103000 1000 1108 1106.4 0.86 22.8 1072 340.99 249.06 36
3dl104000 1000 1103 1101.65 0.65 87.7 1076 323.51 276.29 27
3dl105000 1000 1098 1096.3 0.78 58.6 1074 334.38 294.70 24
3dl106000 1000 1097 1095.15 0.91 94.05 1063 358.27 307.91 34
3dl107000 1000 1114 1112.2 1.08 108.3 1093 308.31 101.66 21
3dl108000 1000 1105 1103 0.77 28.9 1079 276.09 260.12 26
3dl109000 1000 1115 1113.45 0.8 108.35 1086 271.29 60.70 29
3dl1010000 1000 1109 1106.1 0.89 54.9 1088 277.18 257.21 21
3dl141000 2744 3016 3012.05 1.91 57.05 2893 1990.54 1511.84 123
3dl142000 2744 3026 3019.8 2.04 18.45 2893 2007.26 464.84 133
3dl143000 2744 3006 3001.7 2.88 37.2 2892 1956.09 1339.53 114
3dl144000 2744 3012 3007.85 1.85 47.8 2897 1980.32 1923.14 115
3dl145000 2744 3006 3001.2 2.16 58.1 2882 1972.18 1866.67 124
3dl146000 2744 3005 3001.35 1.46 14 2888 1948.91 1892.88 117
3dl147000 2744 3007 3001.95 2.31 30.5 2879 1995.73 1983.25 128
3dl148000 2744 3018 3014.5 1.96 165.45 2883 1982.66 1914.45 135
3dl149000 2744 2999 2993.95 2.62 20 2877 2024.45 1769.77 122
3dl1410000 2744 3023 3021.15 1.68 389.4 2904 2007.36 2003.40 119
Better 41/44/91
Equal 3/44/91
Worse 0/44/91
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Table 4: Comparative results for max-5-cut between the proposed MOH algo-
rithm and DC [34]

Instance |V | MOH DC gap

fbest favg std time(s) fbest tt(s) bt(s)

G1 800 17703 17700.80 1.18 76.40 17627 532.14 376.14 76
G2 800 17706 17702.50 1.63 122.20 17636 537.26 288.13 70
G3 800 17701 17699.20 1.47 210.20 17623 525.92 357.24 78
G4 800 17709 17706.50 1.75 141.20 - - - -
G5 800 17710 17708.60 1.66 269.70 - - - -
G6 800 2781 2776.00 2.26 146.20 - - - -
G7 800 2533 2530.75 2.00 56.50 - - - -
G8 800 2535 2532.75 1.13 105.00 - - - -
G9 800 2601 2598.65 1.28 6.55 - - - -
G10 800 2526 2520.00 4.18 143.70 - - - -
G11 800 677 675.40 0.58 0.00 670 239.03 147.55 7
G12 800 662 661.40 0.49 153.10 660 240.87 191.89 2
G13 800 689 688.40 0.49 317.15 687 222.88 177.50 2
G14 800 4639 4634.60 1.83 37.65 4597 297.49 63.30 42
G15 800 4606 4599.90 1.79 80.05 4571 293.47 99.68 35
G16 800 4613 4610.30 1.31 94.60 4579 291.25 243.93 34
G17 800 4603 4600.85 1.01 96.50 - - - -
G18 800 1268 1261.85 3.48 0.05 - - - -
G19 800 1132 1122.45 7.08 0.10 - - - -
G20 800 1172 1163.90 4.73 0.35 - - - -
G21 800 1162 1153.50 5.34 0.05 - - - -
G22 2000 19553 19547.00 3.64 42.40 19413 2429.87 1685.57 140
G23 2000 19558 19549.20 4.04 85.40 19413 2422.00 2248.13 145
G24 2000 19555 19547.20 2.93 88.55 19423 2255.39 1668.64 132
G25 2000 19554 19547.80 3.18 140.35 - - - -
G26 2000 19552 19545.00 2.80 85.00 - - - -
G27 2000 4236 4224.30 6.23 143.10 - - - -
G28 2000 4182 4171.45 6.84 65.10 - - - -
G29 2000 4327 4317.50 4.25 72.85 - - - -
G30 2000 4340 4329.75 4.44 50.45 - - - -
G31 2000 4211 4196.40 7.89 37.40 - - - -
G32 2000 1670 1666.45 1.94 0.75 1647 1304.51 1272.00 23
G33 2000 1638 1635.05 1.20 0.20 1615 1194.92 678.48 23
G34 2000 1615 1610.20 2.84 0.40 1594 1232.62 629.56 21
G35 2000 11605 11595.20 4.15 68.80 11521 2030.16 961.14 84
G36 2000 11601 11593.80 3.03 12.25 11516 2074.70 510.45 85
G37 2000 11603 11599.40 2.46 70.15 11532 2026.00 1661.50 71
G38 2000 11601 11596.20 3.19 163.65 - - - -
G39 2000 3022 3014.35 5.32 70.15 - - - -
G40 2000 2986 2967.20 9.45 0.50 - - - -
G41 2000 2986 2972.85 7.84 20.05 - - - -
G42 2000 3109 3099.15 5.29 0.60 - - - -
G43 1000 9770 9767.30 1.38 56.50 9700 583.20 76.61 70
G44 1000 9772 9768.05 1.60 16.85 9702 518.05 482.50 70
G45 1000 9771 9768.10 1.30 25.60 9708 502.37 470.51 63
G46 1000 9774 9769.55 1.66 47.80 - - - -
G47 1000 9775 9770.05 1.86 60.70 - - - -
G48 3000 6000 6000.00 0.00 0.00 6000 1871.21 0.50 0
G49 3000 6000 6000.00 0.00 0.00 6000 1864.70 0.48 0
G50 3000 6000 6000.00 0.00 0.00 6000 1887.36 0.50 0
G51 1000 5826 5822.30 2.05 0.75 - - - -
G52 1000 5837 5832.35 1.68 4.90 - - - -
G53 1000 5829 5825.90 1.09 55.75 - - - -
G54 1000 5830 5826.70 1.42 28.40 - - - -
G55 5000 12498 12498.00 0.00 0.00 - - - -
G56 5000 4971 4957.90 8.75 243.70 - - - -
G57 5000 4111 4108.70 1.19 293.50 - - - -
G58 5000 29105 29090.70 9.28 272.10 - - - -
G59 5000 7566 7541.20 19.22 120.40 - - - -
G60 7000 17148 17148.00 0.00 0.00 - - - -
G61 7000 7188 7174.50 7.74 437.60 - - - -
G62 7000 5744 5736.90 2.88 4.20 - - - -
G63 7000 40786 40767.50 10.50 420.80 - - - -
G64 7000 10896 10851.50 23.04 48.60 - - - -
G65 8000 6540 6528.90 4.93 8.50 - - - -
G66 9000 7476 7470.60 4.74 10.90 - - - -
G67 10000 8165 8151.60 7.32 8.20 - - - -
G70 10000 9999 9999.00 0.00 0.10 - - - -
G72 10000 8266 8256.00 6.74 8.60 - - - -
G77 14000 11687 11672.10 11.41 21.10 - - - -
G81 20000 16501 16480.20 10.06 271.50 - - - -
3dl101000 1000 1106 1102.95 1.50 38.00 1073 321.44 79.97 33
3dl102000 1000 1106 1103.50 1.12 51.95 1067 358.55 78.05 39
3dl103000 1000 1111 1106.95 1.86 74.10 1072 343.13 106.00 39
3dl104000 1000 1108 1105.65 0.91 44.00 1076 330.08 223.84 32
3dl105000 1000 1098 1096.15 1.01 76.90 1074 327.13 197.17 24
3dl106000 1000 1099 1097.55 0.92 48.25 1071 329.38 304.61 28
3dl107000 1000 1119 1115.85 1.62 48.80 1084 321.82 230.50 35
3dl108000 1000 1113 1110.70 1.27 126.30 1077 333.74 147.03 36
3dl109000 1000 1119 1117.30 0.84 17.85 1089 327.09 186.92 30
3dl1010000 1000 1115 1114.10 0.83 336.95 1081 330.26 301.70 34
3dl141000 2744 3029 3022.00 3.51 4.15 2912 2416.83 1114.20 117
3dl142000 2744 3033 3025.75 3.73 58.40 2916 2665.55 1512.49 117
3dl143000 2744 3015 3007.75 5.23 100.10 2891 2568.33 706.35 124
3dl144000 2744 3021 3015.95 2.65 30.85 2914 2658.98 2066.46 107
3dl145000 2744 3014 3005.25 2.90 7.45 2897 2405.89 2252.09 117
3dl146000 2744 3013 3010.05 2.22 102.50 2906 2363.11 2227.79 107
3dl147000 2744 3016 3009.55 4.17 85.60 2900 2536.90 257.75 116
3dl148000 2744 3027 3022.70 2.12 12.85 2920 2376.40 2127.40 107
3dl149000 2744 3005 2994.15 4.15 0.25 2901 2711.61 2687.12 104
3dl1410000 2744 3033 3023.25 3.78 17.75 2917 2432.17 1767.87 116
Better 41/44/91
Equal 3/44/91
Worse 0/44/91
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Table 5: Average computing time needed by the MOH algorithm (MOH(tavg))
to attain the best objective value of the DC algorithm [34]. The time required
by DC (DC(t)) to reach the same objective value is also included.

Instance max-3-cut max-4-cut max-5-cut

DC(t) MOH(tavg) DC(t) MOH(tavg) DC(t) MOH(tavg)

G1 339.41 0.16 290.51 0.18 376.14 0.01
G2 228.37 2.05 388.76 0.12 288.13 0.01
G3 205.06 0.35 245.50 0.24 357.24 0.01
G11 132.51 0.11 152.04 6.67 147.55 8.39
G12 59.09 2.11 117.52 6.65 191.89 16.02
G13 111.53 0.29 127.56 0.68 177.50 0.29
G14 190.40 0.09 159.14 0.13 63.30 0.01
G15 183.92 0.12 129.21 0.16 99.68 0.00
G16 75.02 0.08 75.89 0.09 243.93 0.01
G22 986.19 0.06 1314.45 0.09 1685.57 0.01
G23 1208.18 0.05 1775.80 0.08 2248.13 0.01
G24 1385.32 0.10 407.66 0.10 1668.64 0.01
G32 905.73 0.37 736.15 0.36 1272.00 2.00
G33 664.57 0.27 870.96 1.50 678.48 5.16
G34 827.79 0.31 1016.31 1.64 629.56 1.58
G35 1048.97 0.24 1764.52 0.10 961.14 0.00
G36 1196.02 0.13 1634.13 0.09 510.45 0.00
G37 1288.13 0.09 115.08 0.13 1661.50 0.00
G43 112.20 0.06 62.38 0.05 76.61 0.01
G44 47.87 0.09 43.88 0.08 482.50 0.01
G45 44.00 0.07 319.58 0.07 470.51 0.01
G48 293.30 0.52 0.48 0.01 0.50 0.00
G49 1587.05 0.53 0.49 0.01 0.48 0.00
G50 279.78 4.36 0.50 0.01 0.50 0.00
sg3dl101000 179.20 0.06 187.92 0.06 79.97 0.05
sg3dl102000 188.68 0.05 301.64 0.05 78.05 0.03
sg3dl103000 114.20 0.09 249.06 0.05 106.00 0.03
sg3dl104000 109.75 0.07 276.29 0.05 223.84 0.05
sg3dl105000 178.88 0.07 294.70 0.10 197.17 0.06
sg3dl106000 23.96 0.03 307.91 0.04 304.61 0.05
sg3dl107000 157.18 0.08 101.66 0.17 230.50 0.05
sg3dl108000 209.77 0.06 260.12 0.10 147.03 0.05
sg3dl109000 232.87 0.07 60.70 0.07 186.92 0.06
sg3dl1010000 184.91 0.05 257.21 0.14 301.70 0.04
sg3dl141000 1496.07 0.14 1511.84 0.05 1114.20 0.07
sg3dl142000 1408.24 0.14 464.84 0.04 1512.49 0.07
sg3dl143000 1659.44 0.11 1339.53 0.07 706.35 0.06
sg3dl144000 1759.67 0.25 1923.14 0.05 2066.46 0.09
sg3dl145000 1764.88 0.15 1866.67 0.05 2252.09 0.08
sg3dl146000 1529.38 0.12 1892.88 0.05 2227.79 0.07
sg3dl147000 1748.39 0.12 1983.25 0.05 257.75 0.07
sg3dl148000 1440.25 0.13 1914.45 0.05 2127.40 0.10
sg3dl149000 1699.97 0.14 1769.77 0.06 2687.12 0.11
sg3dl1410000 1476.52 0.11 2003.40 0.06 1767.87 0.07

Table 6: Comparative results of the proposed MOH algorithm with 7 state-of-
the-art max-cut algorithms

Instance |V | fpre GES [29] BLS [3] MACUT [31] TS-UBQP [20] TS/PM [30] MAMBP [32] TSHEA [33] MOH

G1 800 11624 11624 11624 11624 11624 11624 11624 11624 11624
G2 800 11620 11620 11620 11620 11620 11620 11617 11620 11620
G3 800 11622 11622 11622 11622 11620 11620 11621 11622 11622
G4 800 11646 11646 11646 - 11646 11646 11646 11646 11646
G5 800 11631 11631 11631 - 11631 11631 11631 11631 11631
G6 800 2178 2178 2178 - 2178 2178 2177 2178 2178
G7 800 2006 2006 2006 - 2006 2006 2002 2006 2006
G8 800 2005 2005 2005 - 2005 2005 2004 2005 2005
G9 800 2054 2054 2054 - 2054 2054 2052 2054 2054
G10 800 2000 2000 2000 - 2000 2000 1998 2000 2000
G11 800 564 564 564 564 564 564 564 564 564
G12 800 556 556 556 556 556 556 556 556 556
G13 800 582 582 582 582 580 582 582 582 582
G14 800 3064 3064 3064 3064 3061 3063 3062 3064 3064
G15 800 3050 3050 3050 3050 3050 3050 3050 3050 3050
G16 800 3052 3052 3052 3052 3052 3052 3052 3052 3052
G17 800 3047 3047 3047 - 3046 3047 3047 3047 3047
G18 800 992 992 992 - 991 992 992 992 992
G19 800 906 906 906 - 904 906 905 906 906
G20 800 941 941 941 - 941 941 941 941 941
G21 800 931 931 931 - 930 931 930 931 931
G22 2000 13359 13359 13359 13359 13359 13349 13359 13359 13359
G23 2000 13344 13342 13344 13344 13342 13332 13344 13344 13344
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Table 6 � continued from previous page

Instance |V | fpre GES [29] BLS [3] MACUT [31] TS-UBQP [20] TS/PM [30] MAMBP [32] TSHEA [33] MOH

G24 2000 13337 13337 13337 13337 13337 13324 13336 13337 13337
G25 2000 13340 13340 13340 - 13332 13326 13340 13340 13340
G26 2000 13328 13328 13328 - 13328 13313 13328 13328 13328
G27 2000 3341 3341 3341 - 3336 3325 3341 3341 3341
G28 2000 3298 3298 3298 - 3295 3287 3298 3298 3298
G29 2000 3405 3405 3405 - 3391 3394 3403 3405 3405
G30 2000 3413 3413 3412 - 3403 3402 3412 3413 3413
G31 2000 3310 3310 3309 - 3288 3299 3309 3310 3310
G32 2000 1410 1410 1410 1410 1406 1406 1410 1410 1410
G33 2000 1382 1382 1382 1382 1378 1374 1382 1382 1382
G34 2000 1384 1384 1384 1384 1378 1376 1384 1384 1384
G35 2000 7687 7686 7684 7686 7678 7661 7686 7687 7687
G36 2000 7680 7680 7678 7679 7670 7660 7678 7680 7680
G37 2000 7691 7691 7689 7690 7682 7670 7689 7691 7691
G38 2000 7688 7687 7687 - 7683 7670 7688 7688 7688
G39 2000 2408 2408 2408 - 2397 2397 2408 2408 2408
G40 2000 2400 2400 2400 - 2390 2392 2400 2400 2400
G41 2000 2405 2405 2405 - 2400 2398 2405 2405 2405
G42 2000 2481 2481 2481 - 2469 2474 2481 2481 2481
G43 1000 6660 6660 6660 6660 6660 6660 6659 6660 6660
G44 1000 6650 6650 6650 6650 6639 6649 6650 6650 6650
G45 1000 6654 6654 6654 6654 6652 6654 6654 6654 6654
G46 1000 6649 6649 6649 - 6649 6649 6649 6649 6649
G47 1000 6657 6657 6657 - 6656 6656 6657 6657 6657
G48 3000 6000 6000 6000 6000 6000 6000 6000 6000 6000
G49 3000 6000 6000 6000 6000 6000 6000 6000 6000 6000
G50 3000 5880 5880 5880 5800 5880 5880 5880 5880 5880
G51 1000 3848 3848 3848 - 3847 3847 3847 3848 3848
G52 1000 3851 3851 3851 - 3849 3850 3851 3851 3851
G53 1000 3850 3850 3850 - 3848 3848 3850 3850 3850
G54 1000 3852 3852 3852 - 3851 3850 3851 3852 3852
G55 5000 10299 - 10294 10299 10236 - 10299 10299 10299
G56 5000 4017 - 4012 4016 3934 - 4016 4017 4016
G57 5000 3494 - 3492 - 3460 - 3488 3494 3494
G58 5000 19293 - 19263 - 19248 - 19276 19276 19288
G59 5000 6086 - 6078 - 6019 - 6085 6085 6087
G60 7000 14188 - 14176 14186 14057 - 14186 14186 14190
G61 7000 5796 - 5789 - 5680 - 5796 5796 5798
G62 7000 4870 - 4868 - 4822 - 4866 4866 4868
G63 7000 27045 - 26997 - 26963 - 26754 27018 27033
G64 7000 8751 - 8735 - 8610 - 8731 8735 8747
G65 8000 5562 - 5558 5550 5518 - 5556 5560 5560
G66 9000 6364 - 6360 6352 6304 - 6352 6364 6360
G67 10000 6950 - 6940 6934 6894 - 6934 6944 6942
G70 10000 9591 - 9541 - 9458 - 9580 9548 9544
G72 10000 7006 - 6998 - 6922 - 6990 6990 6998
G77 14000 9938 - 9926 - - - 9900 9902 9928
G81 20000 14048 - 14030 - - - 13978 14010 14036
3dl101000 1000 896 896 - - - - - 896 896
3dl102000 1000 900 900 - - - - - 900 900
3dl103000 1000 892 892 - - - - - 892 892
3dl104000 1000 898 898 - - - - - 898 898
3dl105000 1000 886 886 - - - - - 886 886
3dl106000 1000 888 888 - - - - - 888 888
3dl107000 1000 900 900 - - - - - 900 900
3dl108000 1000 882 882 - - - - - 882 882
3dl109000 1000 902 902 - - - - - 902 902
3dl1010000 1000 894 894 - - - - - 894 894
3dl141000 2744 2446 2446 - - - - - 2446 2446
3dl142000 2744 2458 2458 - - - - - 2458 2458
3dl143000 2744 2442 2442 - - - - - 2442 2444
3dl144000 2744 2450 2450 - - - - - 2450 2450
3dl145000 2744 2446 2446 - - - - - 2446 2446
3dl146000 2744 2452 2452 - - - - - 2452 2452
3dl147000 2744 2444 2444 - - - - - 2444 2444
3dl148000 2744 2448 2448 - - - - - 2448 2448
3dl149000 2744 2428 2426 - - - - - 2428 2428
3dl1410000 2744 2460 2458 - - - - - 2460 2458

Better 4/91/91 4/74/91 20/71/91 7/30/91 47/69/91 29/54/91 33/71/91 11/91/91
Equal 74/91/91 70/74/91 51/71/91 23/30/91 22/69/91 25/54/91 37/71/91 75/91/91
Worse 13/91/91 0/74/91 0/71/91 0/30/91 0/69/91 0/54/91 1/71/90 5/91/91

4 Discussion

In this section, we investigate the role of several important ingredients of the
proposed algorithm, including the bucket sorting data structure, the descent
improvement search operators O1 and O2 and the diversi�ed improvement
search operators O3 and O4.

4.1 Impact of the bucket sorting technique

As described in Section 2.5, the bucket sorting technique is utilized in the
MOH algorithm for the purpose of quickly identifying a suitable move with
the best objective gain. To verify its e�ectiveness, we implemented another
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Table 7: Computational assessment of bucket sorting compared to an imple-
mentation using a vector applied to the max-3-cut problem

Instance bucket sorting structure vector structure di�erences

fbss iterbss fvs itervs fbss − fvs iterbss/itervs

G22 17135.65 87,068,095.55 17132.7 55,940,769.45 2.95 1.56
G26 17128.1 89,044,944.75 17121.65 50,698,801.15 6.45 1.76
G28 3943.4 81,621,472.45 3942.9 49,226,453.00 0.5 1.66
G30 4091.95 89,369,709.35 4095.85 52,714,888.95 -3.9 1.70
G32 1654.85 212,255,042.05 1652.75 59,712,070.05 2.1 3.55
G34 1605.4 216,409,597.50 1604.2 51,582,268.90 1.2 4.20
G36 10024.1 136,113,904.60 10015 48,257,118.45 9.1 2.82
G38 10027.1 147,998,869.05 10021.5 53,182,934.85 5.6 2.78
G40 2841.85 137,242,801.85 2831.75 53,555,508.15 10.1 2.56
G44 8556.75 99,472,399.80 8557.1 102,758,227.95 -0.35 0.97
G46 8555.1 100,453,139.40 8555.35 100,251,434.60 -0.25 1.00
G54 5028.65 170,660,709.15 5026.9 98,723,794.70 1.75 1.73
G56 4709.05 105,834,778.80 4662.45 14,561,723.95 46.6 7.27
G58 25144.4 88,340,858.10 25092.5 14,574,161.75 51.9 6.06
G60 17019.6 37,339,981.15 16963.55 8,873,616.55 56.05 4.21
G62 5685.7 101,427,430.65 5656.7 9,955,135.45 29 10.19
G64 10318.1 68,975,406.10 10175.75 8,846,430.90 142.35 7.80
G66 7417.3 92,758,417.20 7353.45 7,508,205.95 63.85 12.35
G70 9999 4,336,200.40 9999 4,046,618.05 0 1.07
G72 8189.35 77,034,721.40 8109.9 6,998,747.65 79.45 11.01

MOH version where we replaced the bucket sorting data structure with a
simple vector and conducted an experimental comparison on the max-3-cut
problem. For this experiment, we used 20 representative Gxx instances and
ran 20 times both MOH versions to solve each chosen instance with a time
limit of 300 seconds.

Table 7 reports the average of the best objective values and the total num-
ber of iterations of each MOH version for each instance. From Table 7, we
observe that the MOH algorithm using the bucket sorting structure conducted
3.3 times more iterations on average than using the vector structure within
the given time span. Moreover, the former is able to �nd better results for 16
instances and only one worse result. In conclusion, this experiment con�rms
that using the devised bucket sorting technique is able to considerably improve
the computational e�ciency and search capacity of the MOH algorithm.

4.2 Impact of the descent improvement search operators

As described in Section 2.6, the proposed algorithm employs operators O1 and
O2 for its descent improvement phase to obtain local optima. To analyze the
impact of these two operators, we implement three variants of our algorithm,
the �rst one using the operator O1 alone, the second one using the union
O1 ∪O2 such that the descent search procedure always chooses the best move
among the O1 and O2 moves [24], the third one using operator rand(O1, O2)
where the descent procedure applies randomly and with equal probability O1

or O2, while keeping all the other ingredients and parameters �xed as described
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in Section 3.3. The strategy used by our original algorithm, detailed in Section
2.6, is denoted as O1 +O2.

This study was based on the max-cut problem and the same 10 challenging
instances used for parameter tuning of Section 3.3 . Each selected instance
was solved 10 times by each of these variants and our original algorithm. The
stopping criterion was a timeout limit of 30 minutes. The obtained results
are presented in Table 8, including the best objective value fbest, the average
objective value favg over the 10 independent runs, as well as the CPU times
in seconds to reach fbest. To evaluate the performance, we display in Fig. 2(a)
the gaps between the best objective values obtained by di�erent strategies and
the best objective values by our original algorithm. We also show in Fig. 2(b)
the box and whisker plots which indicate, for di�erent O1 and O2 combination
strategies, the distribution and the ranges of the obtained results for the 10
tested instances. The results are expressed as the additive inverse of percent
deviation of the averages results from the best known objective values obtained
by our original algorithm.

From Fig. 2(a), one observes that for the tested instances, other combi-
nation strategies obtain fewer best known results compared to the strategy
O1+O2, and produce large gaps to the best known results on some instances.
From Fig. 2(b), we observe a clear di�erence in the distribution of the results
with di�erent strategies. For the results with the strategies of O1+O2, the plot
indicates a smaller mean value and signi�cantly smaller variation compared to
the results obtained by other strategies. We thus conclude that the strategy
used by our algorithm (O1 +O2) performs better than other strategies.

4.3 Impact of the diversi�ed improvement search operators

As described in Section 2.7, the proposed algorithm employs two diversi�ed
operator O3 and O4 to enhance the search power of the algorithm and make it
possible for the search to visit new promising regions. The diversi�ed improve-
ment procedure uses probability ρ to select O3 or O4. To analyze the impact of
operators O3 and O4, we tested our algorithm with ρ = 1 (using the operator
O3 alone), ρ = 0.5 (equal application of O3 and O4 used in our original MOH
algorithm), ρ = 0 (using the operator O4 alone), while keeping all the other
ingredients and parameters �xed as described before. The stopping criterion
was a timeout limit of 30 minutes. We then independently solved each selected
instance 10 times with those di�erent values of ρ. The obtained results on the
max-cut problem for the 10 challenging instances used for parameter tuning of
Section 3.3 are presented in Table 9, including the best objective value fbest,
the average objective value favg over the 10 independent runs, as well as the
CPU times in seconds to reach fbest. To evaluate the performance, we again
calculate the gaps between di�erent best objective values shown in Fig. 3(a)
and average objective values shown in Fig. 3(b), where the set of values fbest,
favg, when ρ = 0.5, are set as the reference values.
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Table 8: Comparative results for max-cut with varying combination strategies
of O1 and O2

Instance O1 O1 ∪O2

fbest favg time(s) fbest favg time(s)

G22 13359 13357.6 381.6 13359 13355.8 357.3
G23 13344 13343.6 473.4 13344 13344 550.9
G25 13338 13334 442.8 13339 13335.8 690.4
G29 3405 3398.22 211.1 3405 3396.4 254.2
G33 1382 1381.4 553.5 1382 1382 716.5
G35 7686 7681.3 755.4 7684 7679.1 449.6
G36 7680 7672 1367.1 7677 7672.5 408.1
G37 7690 7685.5 1039.2 7689 7683.4 1099.0
G38 7688 7684 135.2 7688 7681.2 177.8
G40 2400 2384.7 453.5 2396 2381.6 427.2

Instance rand(O1, O2) O1 + O2

fbest favg time(s) fbest favg time(s)

G22 13359 13356 365.3 13359 13357 438.2
G23 13344 13343.9 584.9 13344 13344 302.1
G25 13340 13336.4 408.8 13340 13335.5 451.5
G29 3405 3398.4 403.9 3405 3398.1 569.9
G33 1382 1381.8 585.2 1382 1381.4 667.4
G35 7686 7683.1 628.0 7687 7684.3 968.3
G36 7680 7672 944.8 7680 7675.3 1075.6
G37 7688 7681.7 1078.3 7691 7687.5 1133.2
G38 7688 7680.8 153.6 7688 7685.7 333.0
G40 2395 2388.8 412.4 2400 2385.2 467.1

As in Section 4.2, to evaluate the performance, we show in Fig. 3(a) the
gaps between the best objective values obtained with di�erent values of ρ and
the best objective values by our original MOH algorithm (ρ = 0.5). We also
show in Fig. 3(b) the box and whisker plots which indicates, for di�erent values
of ρ, the distribution and the ranges of the obtained results for the 10 tested
instances. The results are expressed as the additive inverse of percent deviation
of the averages results from the best known objective values obtained by our
original algorithm.

Fig. 3(a) discloses that using O3 or O4 alone obtains fewer best known
results than using them jointly and achieves signi�cantly worse results on
some particular instances. From Fig. 3(b), we observe a visible di�erence in
the distribution of the results with di�erent strategies. For the results with the
parameter ρ = 0.5, the plot indicates a smaller mean value and signi�cantly
smaller variation compared to the results obtained by other strategies. We
thus conclude that jointly using O3 and O4 with ρ = 0.5 is the best choice
since it produces better results in terms of both best and average results.

5 Conclusion

Our multiple search operator algorithm (MOH) for the general max-k-cut
problem achieves a high level performance by including �ve distinct search
operators which are applied in three search phases. The descent-based im-
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Fig. 2: Analysis of the move operators O1 and O2

Table 9: Comparative results for max-cut with varying parameter ρ

Instance ρ = 1 ρ = 0 ρ = 0.5

fbest favg time(s) fbest favg time(s) fbest favg time(s)

G22 13359 13350.1 352.7 13356 13355.2 440.6 13359 13357 438.2
G23 13344 13344 441.4 13338 13335.6 340.1 13344 13344 302.1
G25 13339 13335.1 426.1 13337 13333.5 412.9 13340 13335.5 451.5
G29 3405 3395.2 614.5 3402 3399.8 593.5 3405 3398.1 569.9
G33 1376 1373.6 519.9 1382 1382 609.2 1382 1381.4 667.7
G35 7686 7680.7 832.1 7680 7678.2 850.8 7687 7684.3 968.3
G36 7676 7669.2 1540.8 7671 7667.6 1304.8 7680 7675.3 1075.6
G37 7690 7681.2 1167.8 7685 7679.6 1053.8 7691 7687.5 1133.2
G38 7688 7681.4 275.1 7685 7679 257.3 7688 7685.7 333.0
G40 2394 2375.3 453.0 2399 2390.5 529.8 2400 2385.2 467.1
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Fig. 3: Analysis of the move operators O3 and O4

provement phase aims to discover local optima of increasing quality with two
intensi�cation-oriented operators. The diversi�ed improvement phase com-
bines two other operators to escape local optima and discover promising new
search regions. The perturbation phase is applied as a means of strong di-
versi�cation to get out of deep local optimum traps. To obtain an e�cient
implementation of the proposed algorithm, we developed streamlining tech-
niques based on bucket sorting.

We demonstrated the e�ectiveness of the MOH algorithm both in terms of
solution quality and computation e�ciency by a computational study on the
two sets of well-known benchmarks composed of 91 instances. For the general
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max-k-cut problem, the proposed algorithm is able to improve 90 percent of
the current best known results available in the literature. Moreover, for the
very popular special case with k = 2, i.e., the max-cut problem, MOH also
performs extremely well by discovering 4 improved best results which were
never reported by any max-cut algorithm of the literature. We also investigated
the importance of the bucket sorting technique as well as alternative strategies
for combing search operators and justi�ed the combinations adopted in the
proposed MOH algorithm.

Given that most ideas of the proposed algorithm are general enough, it is
expected that they can be useful to design e�ective heuristics for other graph
partitioning problems.
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