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ABSTRACT- Journal fluid bearings are widely used in industry
due to their static and dynamic behavior and their very low
coefficient of friction. The technical requirementsto improve the
new technologies design are increasingly focused on the
indicators of dependability of systems and machines. Then, it is
necessary to develop a methodology to study the rdiability of
bearingsin order to improve and to evaluate their design quality.
Few works arereferenced in literature concer ning the estimation
of the reliability of journal fluid bearings. This paper dealswith a
methodology to study the failure probability of a hydrodynamic
journal bearing. An analytical approach is proposed to calculate
static characteristics in using the Reynolds equation. The
commonly methods used in structural réiability such as FORM
(First Order Reliability Method), SORM (Second Order
Reliability Method) and Monte Carlo are developed to estimate
the failure probability. The function of performance bounding
two domains (domain of safety and domain of failure) is
estimated for several geometrical configurations of a
hydrodynamic journal bearing (long journal bearings with the
hypotheses of Sommerfeld, Gumbel and Reynolds, and a short
journal bearing with the hypothesis of Gumbel).

Keywords: Hydrodynamic Journal Bearing, FORM, SORM,
Monte Carlo, Function of performance, Probability of Failure,
Reliability.

|. INTRODUCTION

Fluid bearings are sensitive components for masharel
systems. The design of a fluid bearing is usualged on
deterministic static characteristics. However sisubjected to
load and pressure fluctuations or to fluid film gagyturbations
induced for instance by defects of the slide waydases
geometry [1, 2 and 3]. These factors induce exeitatin the

bearing dynamic response; which may eventually léad

bearing instability. The prediction of the reliatyilof a fluid
bearing under operating conditions is then necgssar
applications requiring high accuracy movementsasitpning
[1]. Charki and al. [1, 2 and 4] developed a metiogy to
estimate the failure probability of a thrust flliéaring and a
hemispherical fluid bearing.

The influence of geometrical parameters on theatharistics
of bearings such load capacity and stiffness ienoftudied
with a deterministic approach.
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Fréne and al. [5] developed an analytical approaith the
assumptions of Sommerfeld, Gumbel and Reynolds.thiNa
Ram and al. [6] analyzed the behavior of a hybadrijal
bearing. An experimental assessment of hydrostduiast
bearing performance was done by Osman and al. [7].

In reliability analysis, the principle consists iihe

approximation of a limit-state function boundingobh@omains
(domain of safety and domain of failure). This i@@geh is
based on an explicit or implicit performance fuantevaluated
by the solving of the Reynolds equation.

Lemaire and al. [8], detailed the various evaluatizethods of
the probability of failure. Madsen [9] and Melchefk0]

proposed several examples of the estimation of félilare

probability. Austin [11] studied the cause of theabings
failures in engines.

This paper presents an adapted method to evahmat@iture
probability of a journal fluid bearing (see Fig.. 1Jhe
methodology is applied to various geometrical apunfations
of a hydrodynamic journal bearing.

Fig.1. Failure of circular cylindrical bearing

II. JOURNALBEARING MODELING
The expressions of Navier-Stockes equations
considerably simplified. The Reynolds equationi§spbtained
as follows,
Equation of conservation of mass:

VV=0 €Y

Equation of momentum conservation:



v o 1~ p_
—+ (V.V).V=——VP +-V?V 2
6t+( ) p +p (2)

WhereV the velocity vector of the fluid with components is

u,v,w; trepresents the time; P is the pressure of the.flui
Boundary conditions [5]:

v=0;
V=V,,;

y=0 u=uy;
y=h u=u,;

The equation of Reynolds is expressed as:

o [h3apP +6 h3 gp
x| uox| 0z|poz

dh
= 6(u1 - uz)&'i' 6(W1 - Wz)_+ 6h

0
72 % (u; + uy)
6h£ (Wl + Wz)

+12v, (3)

The hypotheses relative to the equation of Reynaltiikh
allows to write the laminar flow of a fluid betweémno walls
very close and being able to be in movement arengby [5].

shaft

Va wR

w Uz

Bearing

Fig.2. Movement between shaft and bearing

By geometrical considerations (see Fig. 2), we have

u, = wRcosd 4
v, = wRsind 5)

For an angleS very small, the components of speeds become:With, x = R8

dh
Vv, = wR& 7
Replacing components of speed, and v, by their
expressions, the equation (3) becomes then:
h3 oP h3 oP R dh 8
ax u x u 9z ax ®)

Expression of the film thickness

We consider a point M belong the surface of tharing and
located by the angléM0,, MO,) with O, et O, respectively
the centers of the pivot shaft and the bearing E$ge3). The
point M’ is the orthogonal projection 6, on the ling¢ O, M).

Fig.3. Film thickness between shaft and bearing

Taking into account the relative eccentricityzg varying
from O to 1, the expression the film thickndg®) becomes
then:

h(6) = C(1 + €cosb) (10)

For the calculation, we are going to consider tinat load
supported by the cylindrical bearing is constantntensity
and in direction.

Ill. LONG BEARING WITH SOMMERFELD CONDITIONS

Boundary conditions of Sommerfeld [&le defined as:

{P(9=0, Z)= PO
P(0=2mz) = PR

Equation Reynolds for a long cylindrical bearing thwi
Sommerfeld conditions becomes:

(10)

h3 apP ah
ax u x ax

replacing h(0) = C(1 +&ecosb) in the
equation and according to an integratior2nfwe obtain:

6uw  (R\? _
Gl (v e

w2+ €2) — 4esiny + stinlIJCOSl]J}

PS:

2+ €2

+ P, (11



With ¢ such as:

cosO — ¢

cosp = 1+ ecosO

(12)

The load capacity with Sommerfeld conditions is resged
as:

B 12npwR3Le
S C2(2+e2)(1 - 82)1/2

(13)

IV. LONG BEARING WITH GUMBEL CONDITIONS
Boundary conditions of Gumbel [8}e defined as:

PO=02)=0
PO=mz)=0
P(0,z)=0 sin<O<2m

_ 6pw R\2 .
PG = m(a) {IIJ — & Slnll]

P(2 + €2) — 4esiny + 2sinyicosy
- 1-¢?) }

+PF (14)

The integration of the pressure on the surfacehefjournal
bearing gives the following expression of load @ityawith
Gumbel conditions:

W — el R3 & (4e? + m2(1 — €2)) /2
¢ T OHOR 2T (2 1 e2) (1 — €2)

(15)

V. LONG BEARINGWITH REYNOLDSCONDITIONS
Boundary conditions of Reynolds [&fe defined as:

P(@ =0, 2) =P,
P(6r =0, 2) =0

P o=, =Lo=6,n=0
%( = R'Z)—g( =0g,2) =
U P@,2)=0 si6,<0<2n

Pr
_ 6uw  (R\? _
T 1-e2)2 (E> [Eb e
W(2 + £2) — 4esimp — e2sinpcosy

B 2(1 — ecosyy) (16)
The equation of the fluid break is given:
e(sinprcospr — Pg) + 2(sing — Prcosg) = 0 (17)

The load capacity with Reynolds conditions is ezpedl as:

3uwRL R\? [ , (1 = cosypg)*
W, = _ N TR
N (1 —ecosyr)(1 — £2)"/2 (C) ‘ 1-¢?
+ 4(sinyy
1/2
- ¢RCOS¢R)2] (18)

VI. SHORT JOURNAL BEARING
Two main hypotheses allowing the justification ofshort
journal bearing are.

e The ratio of the length on the diameter of the ingar

. L 1
is low (— < —).
D 8

e The gradient of pressure at the circumference is

negligible in front of the axial pressure [5].

Taking into account these hypotheses, the equatibn
Reynolds for a short journal bearing becomes dsvist

d [ph3apP i dh 19
dz| u 9z| wd@ 19
oP 20
i (20)

We obtain finally for short bearing conditions, thepression
of the pressure and the load capacity:

Buw [, I? £sind
cz \? 4 ) (1+ ecosB)?

_ pRoL? £
(1= 2)2

P(8,2) = (21)

(n2(1 — €2) + 16g2) /2 (22)

€7 ac?

VIl. PRINCIPLEOF RELIABILITY
» Causes and failure modes of journal bearings

The causes of the failure of a fluid journal begriare
numerous and varied. We distinguish from it essdptiloads
excessive (axial and radial), vibrations and shodkad
alignment, etc.



Failure modes are generally a combination of canss
which act on the bearing until cause a damage failare.
Failure modes represent the result or the way tiodlem
shows itself and not the cause of the problem efltéaring.
We distinguish essentially failure modes due tor@sion or
fatigue, or misalignment of the shaft in the beguthl].

¢ Function of performance
The reliability of a journal bearing is defined bye
knowledge of a function state linG{(X;), variables of design
X; chosen as random variables. The considered vesiadifl
design are the viscosity, the angular speed, thgtheand
diameter of the bearing, the radial clearance. ddmains of
the performance function [8, 9] are defined as:

G(Xi) > 0 is the domain of safety;
G(Xi) < 0isthe domain of failure;
G(Xi) = 0 is the limit state;

Hasofer and Lind [12] show that the index of relipis the

minimum of the distance between the origin andspha&ce of
variables normalized with the constraii{U;) whereH the

function of performance in the reduced centereddstedized
space (see Fig. 4). The calculation of the indexetifbility

requires the research for the most likely point failure

P*called design point when it is considered as refazepoint
for a sizing. The evaluation of this point of faduis a matter
of a not linear optimization adapted to the natofethe

problem.

Standard normal space

Physical space

Fig. 4. Transformation into standard normal space

my; andmy, are respectively the average of variatgsand

X, in the physical spac#.is the transformation of the passage

of the physical space in the standardized space.
In the case of our study, we are going to consttat the

U;: Random variable in the gaussian standardizedespac
my;: Mean of the random variablg
ox,: Standard deviation of the random variakje
B Index of reliability estimated in the centerednskardized
space.

e Algorithm of Rackwitz-Fiessler
The algorithm developed by Rackwitz and Fiessldraised on
the calculation of the gradients of every variaBleowing the
gradients, we can then estimate linearly the degpajnt, and
take the same strategy around this new point P4l unt
convergence.
By taking place in the poin/* corresponding to the design
point of the iterationk, we can write the development of
Taylor around this point of the functigh(U) [8]:
H(U) = H(U™X) + VH(U)[.« (U — U*K) (24)
By this formula, we can estimate the design offtilwing
iteration:

H(U*1) = H(U™X) + VH(U) {u (UK — UK) = 0 (25)
We introduce the vector of the cosine direetor
VH(U)

_ 26
= VRO (26)
The limit state takes the following shape:

VH(U™Y) T

+ U*k+1 _ U*k k — 0 27
VAT ¢ )a 7)
Or
VH(U"¥)
U*k+1 T k — U*k T k _ 28
( ) o= (U*) « [IVH(U) || yx (28)

By introducing the index of reliability into thedaequation, it
is transformed by:

random variables are Gaussian and independents. Th&e aigorithm stops when:

transformation T of the physical space is immedéate builds
itself variable by variable.

U; = Ti(Xy)

T Xj — My,
Xi Ui = L

on (23)

X;: Random variable in the physical space

VH(U"¥)
k1 — (k)T ok — 29
Bt = U)o~ [Ty @9
We can then estimate the new design point:

*k+1 — —Bk+10(k (30)
|8+ — BX[| <ces €3))

Wheregs is the desired condition of stop. In the casethef
mechanical calculations, the evaluation of the igrad by
finished differences appeals to a numeral calautative
define a point to be calculated for every variable:

UK = (UM 0% e, U )



performance function in order two at the desigmpbi‘. This
Variable Ujk written in the standardized space is transformednethod consists to determine an approximationefuhction

at first into variablex in the physical space. Then, we makeperformancéi(U), noted A(U) by a development of Taylor

the numeral calculation associated in every pdil}it to
estimedH(Ujk). The calculation of the function of

performanceH for the design poinfJ** is also led. The
gradientH(U*¥) is then given as:

H(Ui) —H(U™)
| U]*k _ U*k

The use of this plan implies+ 1 calculations by iteration of
the algorithm.
+ FORM
FORM (First Order Reliability Method) approxireat the
domain of failure by a half-space bounded by hypae
tangent plan on the surface in the design pointth@ffact of
symmetry of revolution of the standardized normallitin
distribution, the probability of failure is simplgpproached

by:

VH(U*k)j = (32)

Pr=@(=p) (33)

The design point is determined by looking for thanp of
limit state the closest to the origin of the staddzed space.

around a given poirif,.

(L) = H(Uy) + 2 (U = Ug) + 5 (U~ Up) H(U)(U — Uy)
+00IU ~ Ugli® @37

The matrix Hessialili owes to be determined then
diagonalized so that the main curvatutgsan be calculated.
The approximation of these curvatures allows having
guadratic approximation SORM which thus takes tiegps of
hyper tangent paraboloid in the design point anathvban be
expressed:

n-1
A(U) = Uy~ B3 ) KU/ 39)
i=1

The probability of failure can be so estimed by théowing
relation:

P=o(-p) | [a+kp (39)
i=1

The design point is the solution of the problem of

optimization:

{B = min (\/UtU) 34)
H(U) =0

The result of this problem of minimization undemstraint

will be solved by the algorithm of Rackwitz-Fiesstnd the

design point estimated as:

U* = —a'p (35)
The normalized gradient to the function at the limit state,
estimated at the point of desidii is determined by(26):
The index of reliability gis determined by (29):
The equation of the tangent hyperplan in the depimjnt U*

IS:

HW) = B+ ) il (36)

i=1

This method supplies an exact result when the -tate is
linear in the standard space. it becomes indistivitén the
function of performance is strongly not linear imet
neighborhood of the point of design point or whbaré are
secondary significant minimums.

e SORM
The SORM (Second Order Reliability Method) consists
approaching the surface of state-limit by a quadrsrface.
For that purpose, we make a Taylor developmenthef t

Surrounding areas of second order were envisageadaijng
the hypothesis that a development of the statet limithe
second order was better than a development irirteofder.
¢ Monte Carlo method

Methods by simulation allow estimating the prolbity of
failure in the case of complex laws of probabilitgsrelations
between variables or function of not linear limitates.
However these methods require calculation time kvican be
prohibitive. The principle of the simulations of kte Carlo is
to do, according to the law of joint probability thfe random
vector and to count the number of times when tistesy is in
the domain of failure. The probability of failurearc be
expressed by the relation:

N
1
P~ < ) 1I6(X) < 0] (40)

Where X; the vector of random variables, and the indicator
function[ is equall if the conditionG(X;) < 0 is true and) if
not. The evaluation of the probability of failue éxact if the
number of samples is sufficiently high. One of tmajor
inconveniences of the methods of Monte Carlo is ltdrge
number of simulations required in certain casedeéu, for a
low probability of failure, an inadequate number
simulations could lead to a significant degreerode

of

VIIl. APPLICATIONS
We consider five random variables as shown in table



Table.1. Random variables

Variables Mean Star]dgrd .
deviation Distribution
X My; o
Xi

,u(Pa.s) 12E-4 12E-5 Norma
w(radian.s1l) 157 15.7 Norma
L(m) 05 1E-5 Norma
R(m) 5E-2 1E-4 Norma
c(m) 40E-6 40E-7 Norma

For long journal bearing with conditions of Somneddlf the
function of performance G is defined as a diffeezbetween
a critical load capacity and an operating load cipdl, 2, 3

and 4]

G(L,R,C,w, ) = WE — W

The critical load capacity with conditions of Sonrfeéd is

taken for a value of relative eccentricity:

e=0.95

Ws = 2.9E5N.

Load capacity Ws (M)

L . L L L L 1 L .
n] [ 02 03 0.4 05 06 07 (NR:] o8 i
Eccentricity ratio g

Fig. 5 Load capacity versus relative eccentriciihvsommerfeld

conditions
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Fig. 6 Failure probability according versus ecdeitir with
conditions of Sommerfeld

For the long journal bearing on conditions of Guinlibe
function of performance is the difference betweearitical
load capacity and an operating load capacity.

£=0.95

W¢ = 2.1E5N

It writes then:
G(L,R,C,w,p) =W —Wg

—L=04m

—:—-=06m

Load capacity WG (M)

10 L I L ! L ! L I L
] 01 0z 03 04 05 0B 07 D& 08 1

Ececentricity ratio €

Fig. 7 Load capacity versus relative eccentricithvcumbel

conditions
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Fig. 8 Failure probability according versus ecdeitr with
conditions of Gumbel

For the long journal bearing on conditions of Rdgap the
function of performance is also given as the differe
between the critical load capacity and an operatimad
capacity.

G(L,R,C,w,u) = WE — Wy

Load capacity YWR (M)

10 L L L

L L L L
01 0z 03 04 05 0B 07 08 08 1
Eccentricity ratio &

Fig.9 Load capacity versus relative eccentricitthvReynolds
conditions



+  FORM +
o'k +  SORM
+  Monte Carlo

Probahility of failure Pf

+ %

+

L . I L I
08 0.6 07 Rz} 0s9 i

Eccentricity ratio =
Fig.10 Failure probability according versus ecdeityr with
conditions of Reynolds
For the fluid break, we choogg, = 4.21346 rad.
The load capacity becomes rather important withirticeease
of the length of the journal bearing that is thé&oraf the
length for the diameter upper to @/D > 4). For the
approximation
of Sommerfeld, the probability of failure is estima
according to a critical load capacity," = 2.9E5N
corresponding in a relative eccentricity= 0.95. The
probability of failure is lower than10~3  for lower
eccentricities than 0.6 according to the resukemgiby FORM

L L
0z 03 04

and SORM. The results of Monte Carlo for the higher

eccentricities than 0.6 give values of probabitifyfailure in
agreement with FORM results. However, the resultthiee
methods (FORM, SORM and Monte Carlo) are almostlarm
for eccentricities higher than 0.6. The probabilitly failure
increases for a decrease of the index of religbilithich
represents the distance of the origin to the pdégign. The
values of index of reliability are acceptable onfgr
eccentricities higher thaf.6. Otherwise the result would not
be in agreement with the probability of failureadhted with
the three methods.

For the approximation of Gumbel, the probability faflure
remains acceptable for values of eccentricitiebdrighan0.7.
Beyond these values, the probability of failure foe three
methods are in agreement. The probability of failincreases
with the relative eccentricity and decreases iregponential
way with the index of reliability.

For the approximation of Reynolds, the probabitifyfailure
remains practically constant for lower eccentristthan0.5.
The probability of failure decreases exponentiallith the
increase of the values of index of reliability etcase of the
three methods (FORM, SORM and Monte Carlo). Theltes
of the probability of failure according to the indeeliability
for these three methods are perfectly similar.

In the case of short journal bearings, the bestptada
conditions are the ones of Gumbel according to Buand al.
[13] .This hypothesis of short journal bearing ifiss itself
for a ratio of the length in the lower diamel¢gB. The
function of performance is given by:

G(L,R,C w, 1) = WE — W

Load capacity WC (N)

1D- 1 It 1
i} 01 02z 03

D.I4 D.‘S D.‘E
Eccentricity ratio &
Fig. Load capacity versus relative eccentricitywabnditions of
short bearing
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Fig.12 10 Failure probability according versus etgeity with
conditions of short bearing

For the short journal bearing, the load capacitgréases
slightly with the eccentricity. The results obtainffom the
probability of failure are estimated accordinghie hypothesis
of a short bearing. The significant values of thebability of

failure are obtained for eccentricities higher thars

corresponding to index of reliability lower than Bowever,
for each method, the evolution of the probabilifyfailure

according to the eccentricity are nearby beyandg 0.25

corresponding to a probability of failure higheami0~2.

Conclusion

We proposed in this paper a suitable methodologsstomate
the reliability of a journal bearing. An analyticgbproach for
the calculation of load capacity of a journal begriis
developed with a combination of the principle dfagility.
FORM, SORM and Monte Carlo simulation are used to
estimate the failure probability of a journal beagri

Among these three methods, only FORM and MontedCane
more nearby to compare with SORM. As FORM and SORM
are approximations, the calculation of the derixatboecomes
difficult and particularly with SORM. The used meth of
Monte Carlo is the important sampling. This tecleigof



simulation consists in making drawings for the héigrhood
of the design point where the density of probapil¢ more
important. These studies of reliability of the agirical
bearing allow us to make a decision from the pofntiew of
the design point and a better choice for the custom
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