First observation of $^{28}$O
Y Kondo
,
N.L Achouri
(1)
,
H. Al Falou
,
L Atar
,
T Aumann
,
H Baba
,
K Boretzky
,
C Caesar
,
D Calvet
(2)
,
H Chae
,
N Chiga
,
A Corsi
(2)
,
F Delaunay
(1)
,
A Delbart
(2)
,
Q Deshayes
(1)
,
Zs Dombrádi
,
C.A Douma
,
A Ekström
,
Z Elekes
,
C Forssén
,
I Gašparić
,
J.-M Gheller
(2)
,
J Gibelin
(1)
,
A Gillibert
(2)
,
G Hagen
,
M.N Harakeh
,
A Hirayama
,
C.R Hoffman
,
M Holl
,
A Horvat
,
Á Horváth
,
J.W Hwang
,
T Isobe
,
W.G Jiang
,
J Kahlbow
,
N Kalantar-Nayestanaki
,
S Kawase
,
S Kim
,
K Kisamori
,
T Kobayashi
,
D Körper
,
S Koyama
,
I Kuti
,
V Lapoux
(2)
,
S Lindberg
,
F.M Marqués
(1)
,
S Masuoka
,
J Mayer
,
K Miki
,
T Murakami
,
M Najafi
,
T Nakamura
,
K Nakano
,
N Nakatsuka
,
T Nilsson
,
A Obertelli
(2)
,
K Ogata
,
F de Oliveira Santos
(3)
,
N.A Orr
(1)
,
H Otsu
,
T Otsuka
,
T Ozaki
,
V Panin
,
T Papenbrock
,
S Paschalis
,
A Revel
(1, 3)
,
D Rossi
,
A.T Saito
,
T.Y Saito
,
M Sasano
,
H Sato
,
Y Satou
,
H Scheit
,
F Schindler
,
P Schrock
,
M Shikata
,
N Shimizu
,
Y Shimizu
,
H Simon
,
D Sohler
,
O Sorlin
(3)
,
L Stuhl
,
Z.H Sun
,
S Takeuchi
,
M Tanaka
,
M Thoennessen
,
H Törnqvist
,
Y Togano
,
T Tomai
,
J Tscheuschner
,
J Tsubota
,
N Tsunoda
,
T Uesaka
,
Y Utsuno
,
I Vernon
,
H Wang
,
Z Yang
,
M Yasuda
,
K Yoneda
,
S Yoshida
Y Kondo
- Function : Author
H. Al Falou
- Function : Author
L Atar
- Function : Author
T Aumann
- Function : Author
H Baba
- Function : Author
K Boretzky
- Function : Author
C Caesar
- Function : Author
H Chae
- Function : Author
N Chiga
- Function : Author
Zs Dombrádi
- Function : Author
C.A Douma
- Function : Author
A Ekström
- Function : Author
Z Elekes
- Function : Author
C Forssén
- Function : Author
I Gašparić
- Function : Author
G Hagen
- Function : Author
M.N Harakeh
- Function : Author
A Hirayama
- Function : Author
C.R Hoffman
- Function : Author
M Holl
- Function : Author
A Horvat
- Function : Author
Á Horváth
- Function : Author
J.W Hwang
- Function : Author
T Isobe
- Function : Author
W.G Jiang
- Function : Author
J Kahlbow
- Function : Author
N Kalantar-Nayestanaki
- Function : Author
S Kawase
- Function : Author
S Kim
- Function : Author
K Kisamori
- Function : Author
T Kobayashi
- Function : Author
D Körper
- Function : Author
S Koyama
- Function : Author
I Kuti
- Function : Author
S Lindberg
- Function : Author
S Masuoka
- Function : Author
J Mayer
- Function : Author
K Miki
- Function : Author
T Murakami
- Function : Author
M Najafi
- Function : Author
T Nakamura
- Function : Author
K Nakano
- Function : Author
N Nakatsuka
- Function : Author
T Nilsson
- Function : Author
K Ogata
- Function : Author
H Otsu
- Function : Author
T Otsuka
- Function : Author
T Ozaki
- Function : Author
V Panin
- Function : Author
T Papenbrock
- Function : Author
S Paschalis
- Function : Author
D Rossi
- Function : Author
A.T Saito
- Function : Author
T.Y Saito
- Function : Author
M Sasano
- Function : Author
H Sato
- Function : Author
Y Satou
- Function : Author
H Scheit
- Function : Author
F Schindler
- Function : Author
P Schrock
- Function : Author
M Shikata
- Function : Author
N Shimizu
- Function : Author
Y Shimizu
- Function : Author
H Simon
- Function : Author
D Sohler
- Function : Author
L Stuhl
- Function : Author
Z.H Sun
- Function : Author
S Takeuchi
- Function : Author
M Tanaka
- Function : Author
M Thoennessen
- Function : Author
H Törnqvist
- Function : Author
Y Togano
- Function : Author
T Tomai
- Function : Author
J Tscheuschner
- Function : Author
J Tsubota
- Function : Author
N Tsunoda
- Function : Author
T Uesaka
- Function : Author
Y Utsuno
- Function : Author
I Vernon
- Function : Author
H Wang
- Function : Author
Z Yang
- Function : Author
M Yasuda
- Function : Author
K Yoneda
- Function : Author
S Yoshida
- Function : Author
Abstract
Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10$^{−21}$ s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of $^{28}$O and $^{27}$O through their decay into $^{24}$O and four and three neutrons, respectively. The $^{28}$O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers$^{1,2}$, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called ‘doubly magic’ nuclei. Both $^{27}$O and $^{28}$O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of $^{28}$O from a $^{29}$F beam is consistent with it not exhibiting a closed N = 20 shell structure.
Domains
Nuclear Experiment [nucl-ex]Origin | Files produced by the author(s) |
---|