First observation of $^{28}$O - Structure Nucléaire (LPC Caen)
Journal Articles Nature Year : 2023

First observation of $^{28}$O

Y Kondo
  • Function : Author
H. Al Falou
  • Function : Author
L Atar
  • Function : Author
T Aumann
  • Function : Author
H Baba
  • Function : Author
K Boretzky
  • Function : Author
C Caesar
  • Function : Author
H Chae
  • Function : Author
N Chiga
  • Function : Author
Zs Dombrádi
  • Function : Author
C.A Douma
  • Function : Author
A Ekström
  • Function : Author
Z Elekes
  • Function : Author
C Forssén
  • Function : Author
I Gašparić
  • Function : Author
G Hagen
  • Function : Author
M.N Harakeh
  • Function : Author
A Hirayama
  • Function : Author
C.R Hoffman
  • Function : Author
M Holl
  • Function : Author
A Horvat
  • Function : Author
Á Horváth
  • Function : Author
J.W Hwang
  • Function : Author
T Isobe
  • Function : Author
W.G Jiang
  • Function : Author
J Kahlbow
  • Function : Author
N Kalantar-Nayestanaki
  • Function : Author
S Kawase
  • Function : Author
S Kim
  • Function : Author
K Kisamori
  • Function : Author
T Kobayashi
  • Function : Author
D Körper
  • Function : Author
S Koyama
  • Function : Author
I Kuti
  • Function : Author
S Lindberg
  • Function : Author
S Masuoka
  • Function : Author
J Mayer
  • Function : Author
K Miki
  • Function : Author
T Murakami
  • Function : Author
M Najafi
  • Function : Author
T Nakamura
  • Function : Author
K Nakano
  • Function : Author
N Nakatsuka
  • Function : Author
T Nilsson
  • Function : Author
K Ogata
  • Function : Author
H Otsu
  • Function : Author
T Otsuka
  • Function : Author
T Ozaki
  • Function : Author
V Panin
  • Function : Author
T Papenbrock
  • Function : Author
S Paschalis
  • Function : Author
D Rossi
  • Function : Author
A.T Saito
  • Function : Author
T.Y Saito
  • Function : Author
M Sasano
  • Function : Author
H Sato
  • Function : Author
Y Satou
  • Function : Author
H Scheit
  • Function : Author
F Schindler
  • Function : Author
P Schrock
  • Function : Author
M Shikata
  • Function : Author
N Shimizu
  • Function : Author
Y Shimizu
  • Function : Author
H Simon
  • Function : Author
D Sohler
  • Function : Author
L Stuhl
  • Function : Author
Z.H Sun
  • Function : Author
S Takeuchi
  • Function : Author
M Tanaka
  • Function : Author
M Thoennessen
  • Function : Author
H Törnqvist
  • Function : Author
Y Togano
  • Function : Author
T Tomai
  • Function : Author
J Tscheuschner
  • Function : Author
J Tsubota
  • Function : Author
N Tsunoda
  • Function : Author
T Uesaka
  • Function : Author
Y Utsuno
  • Function : Author
I Vernon
  • Function : Author
H Wang
  • Function : Author
Z Yang
  • Function : Author
M Yasuda
  • Function : Author
K Yoneda
  • Function : Author
S Yoshida
  • Function : Author

Abstract

Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10$^{−21}$ s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of $^{28}$O and $^{27}$O through their decay into $^{24}$O and four and three neutrons, respectively. The $^{28}$O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers$^{1,2}$, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called ‘doubly magic’ nuclei. Both $^{27}$O and $^{28}$O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of $^{28}$O from a $^{29}$F beam is consistent with it not exhibiting a closed N = 20 shell structure.
Fichier principal
Vignette du fichier
s21_27o28o.20230614.pdf (3.1 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04196834 , version 1 (09-10-2023)

Identifiers

Cite

Y Kondo, N.L Achouri, H. Al Falou, L Atar, T Aumann, et al.. First observation of $^{28}$O. Nature, 2023, 620 (7976), pp.965-970. ⟨10.1038/s41586-023-06352-6⟩. ⟨hal-04196834⟩
48 View
72 Download

Altmetric

Share

More